
International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 19, May 2015

46

Dynamic Capacity Planning with Comprehensive

Formation of SLAs in Clouds

Mahfoudh Alasaly
Information System Department

King Saud University
Riyadh, Saudi Arabia

Hassan Mathkour
Computer Science Department

King Saud University
Riyadh, Saudi Arabia

 Issam Al-Azzoni
 Software Engineering

Department
King Saud University
Riyadh, Saudi Arabia

ABSTRACT

The provision of service enabled connectivity is the

significant art of clouds. The long-held dream of computing as

a utility has become reality in the era of cloud computing.

Cloud users are now able to run and access their applications

from anywhere in the world on demand. The proposed

research considers dynamic capacity planning for cloud

systems. The aim is to dynamically adapt computing capacity

such that Service Level Agreements (SLAs) are continuously

met while minimizing the total costs incurred in running the

cloud services. However, research in this regard is still at its

infancy. Scalability, resource heterogeneity, workload

dynamicity, resource sharing and virtualization are the main

challenges that need to be overcome to have effective and

trustworthy schemes for capacity management, that play a

vital role in cloud computing. The work in this approach is

based on developing a capacity planning scheme to ensure

that high-level performance targets (SLAs) are continuously

met. The scheme applies threshold-based techniques to ensure

meeting the SLAs while minimizing the total incurred costs.

The approach is designed to work on cloud environments and

hence must address these environments specific challenges.

Keywords

Cloud computing, CPU Utilization, Response Time, Load

balancer, EC2.

1. INTRODUCTION
Cloud computing has created new dimensions for computing.

Recent research trend invokes the necessity of service enabled

business functions and hardware components. The service

oriented architecture can be best practiced under cloud

computing environment. Cloud offers three service models [1]

like Infrastructure-as-a-Services (IaaS), Platform-as-a-Service

(PaaS) and Software-as-a-Service (SaaS). With IaaS services

customers can use infrastructure according to their

requirements for particular time and they have to pay only for

what they used or how much they used? With the help of

PaaS, customers can develop, test, host, deploy and maintain

their applications using services in the same integrated

environment. Software as a Service (SaaS), allows the clouds

users to rent a complete software solution that is managed and

hosted by the cloud provider. Amazon EC2 and VCL are

example of IaaS service providers. Microsoft Azure and

Google App Engine are examples of PaaS service providers.

Oracle and IBM provide SaaS services for data base and other

applications.

Cloud deployment associates several noteworthy issues [2][3]

such as safety, upgrade control, bulky cost, backup hedge,

technical function’s customization, Quality of Service (QoS)

and solution integration. In this study, our ultimate concern is

with QoS and cost minimization through capacity planning

tactics.

To establish contracts with a cloud service provider, these

QoS goals are usually expressed as Service Level Agreement

(SLAs). SLAs play vital role in capacity planning polices in

order to manage the resources with limited cost. For example,

the deployment of any application on an IaaS cloud can

significantly reduce its economic cost by wisely using the

necessary capacity in terms of size and type that meets the

SLAs. The approach in this work to address SLAs in a cloud,

proposes a new capacity management scheme. It utilizes

threshold based techniques which aim at meeting the SLAs

while minimizing the incurred costs by adding or removing

instances depending on the monitored performance metrics.

This approach is based on a client server technique where the

laptop represents the client and the Amazon Web Service

(AWS) represents the server. The connection between the

client and AWS is established through a web service. AWS

monitoring tool monitors the CPU utilization and response

time in minute interval. Depending on these readings, the tool

adds or removes instances. The approaches adopted in the

prior work depend on predicting future workloads whereas,

this approach does not require performance models. The rest

of the paper is organized as follows. Section 2 covers the

related work. Section 3 explain the approach and

methodology that will be used including the description of the

proposed algorithms. Section 4 includes the experimental

results. The conclusion presents in Section 6.

2. RELATED WORK
Several research studies have addressed the capacity-planning

problem for cloud computing systems. Herein, the focus was

such work, which proposes policies that dynamically scale

resources up or down (e.g., computing, storage, and

networking) in compliance with the SLAs. The resources can

be heterogeneous in terms of performance and economical

costs. Several policies exploit queuing network models to

predict future performance under a given capacity

configuration. One of the first contributions for capacity

allocation and workload redirect has been proposed in [4].

The authors have proposed two algorithms for capacity

allocation and load redirect of the requests. In the first

algorithm they tried to determine the number of the running

VM instances on a specific site in order to minimize the cost

of these instances. They use optimization model to predict

these numbers. The second algorithm concerns on

determining the execution rate of incoming requests. If there

is a problem in one site (e.g. server is down), requests will be

redirected toward other sites taking in account that requests

can be redirected only once and if not, this will affect the

overall response time. Not far from what is aforementioned, in

[5] the authors also tried to develop an optimization model

using queuing model network to minimize the number of

running VM with respect to the customer response time.

unlike as we mentioned before, the authors developed an

optimization model by using two queuing model M/M/c for

the first tier and multiple queue M/M/1 for the other tiers

based on Poisson distribution as shown in Figure. 1.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 19, May 2015

47

The authors in [6] discuss the challenges that encounter the

auto scaling issues such as workload forecasting, identify

resource requirement for incoming load, and resource

allocation regarding cost factors.

Fig 1. Open queuing model for virtualized multi-tier

application

They develop a look-ahead RTA algorithm based on model

predictive control which forecasts future workload with

respect to the limitation and adjusts resources allocated to

user's ahead-of-time. As well as, in [7] the authors exploit

queuing system to determine the capacity of serving system.

Requests coming into a tier are modeled as requests visiting a

queue modeled as a G/G/1 queuing system. Each tier receives

partially processed requests from the previous tier and feeds
these requests into the next tier after local processing as

shown in Figure. 2.

Fig 2. Multi-tier application model

Subsequently, using optimization methods, a capacity

configuration is chosen such that the SLAs are met at minimal

capacity and cost. These policies assume homogeneous

capacity and the majority do not consider the economic costs

of running the cloud application.

Recently Al-Azzoni and Kondo in their paper [8] have

performed the Mean Value Analysis (MVA) to predict

performance of multi-tier web applications running on

multiple heterogeneous virtual machines over a public cloud
(Amazon EC2). Their approach was shown to produce good

performance predictions. The approach does not require

intensive instrumentation and uses readily available server
logs and system monitoring tools. In such environments, the

different virtual machines running on the public cloud can

potentially compete for resources, and hence it is important to

be able to measure resource demands in an online fashion.

Other policies apply concepts from control theory. These

policies respond in a reactive way rather than other commonly

used predictive and proactive approaches. The authors in [9]

designed a novel architecture, which enables the resources of

web application to grow or shrink on a cloud system with

respect to the incoming requests (on-demand scaling) as

depicted.

3. METHODOLOGY
The approach to address SLAs in a cloud, proposed a new

capacity management scheme. It utilizes threshold based

techniques which aim at meeting the SLAs while minimizing

the incurred costs by adding or removing instances depending

on the monitored performance metrics. This approach is based

on client server technique where the laptop represent the

client and the amazon web service (AWS) represents the

server. The connection between the client and AWS is

through a web service. The monitoring tool in client monitors

the CPU Utilization and response readings every minute.

Depending on these readings, the tool adds or removes the

instances. The approaches adopted in the prior work depends

on predicting future workloads whereas, this approach does

not require performance models. In this case study, client-

server architecture is used in which the client deploys this tool

and the Amazon cloud manager represents the server, the

connection between client and server is through web service.

The web application runs in Amazon cloud. The

performance of any particular system is determined by

carefully analyzing certain performance measures like

response time and resource utilization. The response

time (latency) is the time interval elapsed between the

times at which a transaction is submitted to the system

for processing until the answer begins to appear at the

user's terminal. Utilization is the percentage of time the

device is being used, during a given time interval.

The main objective of this research work is to find an

effective capacity management scheme to improve

performance (in terms of response time, service quality,

etc.) of multi-tier web applications as negotiated in the

SLAs of the cloud platform. Such approach should

provide solutions to decide how many instances to use

while reducing the incurred cost. Figure.3 shows the

processes that should be followed by this approach.

Fig 3. Capacity management scheme processes

1.1 Monitoring
The tool will develop constantly monitors the system. It

monitors the readings for CPU utilization and latency every

minute (this is the maximum possible monitoring frequency in

Amazon EC2). Depending the reading of CPU Utilization and

Response time, the tool automatically decides adding or

removing instance.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 19, May 2015

48

rbe Appache Tomcat MYSQL

TCP AJP
TCP

Monitoring

Program

Amazon Cloud

S S L

C
P
U
 U

ti
liz

at
io
n

m
ea

su
re

n
t

CPU U
til

iza
tio

n m
easure

nt

CPU Utilization measurent

CLient

Apache

Tomcat

Mysql

A W S

C lo u d

M a n a g e r

Amazon Cloud

C
re

ate
 in

sta
nce

W
eb S

erv
ic

e

1.2 Evaluate
The tool assesses the situation depending on the readings of

the CPU Utilization and Latency.

1.3 Decide
In this stage the tool decides how many instances should be

used. In this project using threshold-based schemes depending

on monitoring the CPU utilization or response time. The tool

dynamically adds or removes Tomcat instances to the load

balancer depending on monitored CPU utilization and

response time.

In this paper, client-server architecture is used in which the

client deploys the tool and the Amazon cloud manager

represents the server, the connection between client and server

is through web service. The web application runs in Amazon

loud instances. Figure.4 below shows the system deployment.

Fig 4. System Deployment

4. EXPERIMENTS
In this stage more experiments were carried out to measure

the CPU Utilization and Response time for different numbers

of clients (50,100, 150 and 200) and compared the results

between them. The maximum number of clients is 200

because when the clients are more than 200, the error is

occurred. In the same context also more experiments were

carried out for a minimum number of clients, which is 50.

TPC_W was used to run benchmark to generate the workload

for different numbers of clients.

4.1. Monitoring CPU Utilization for

different instances
Figure. 5 shows TPC-W web application deployed on three

instances: Apache, Tomcat and MySQL(S, S, and L). When

TPC_W was run using different numbers of clients (N), the

tool monitors the CPU-utilization of the three instances.

4.2. CPU UTILIZATION THRESHOLD-

BASED SCHEME
The algorithm below compute the max CPU utilization

threshold twice for every minute According to that add or

remove instances.

Fig 5. TPC_W deployment on Amazon cloud

Initially, in Figure. 6 the CPU utilization for the Tomcat

instance is zero because there is no workload yet. When the

TPC-W is running, Figure. 6 shows the CPU Utilization

measurement for the cases of N =50 clients and N=150

clients.

Let

 Max- CPU: maximum CPU-utilization

threshold

 Min -CPU: minimum CPU utilization

threshold

Count1=0;

 Count2 0;

 Every 1 minute:

 - Obtain monitoring data.

 - Compute average CPU utilization of the

active Tomcat instances (avgCPU)

 If (avgCPU >Max-CPU) {

If (count=1) {

 Add Tomcat instance to the list of active

Tomcat instances

 Count1=0;

} else count1=1;

 } else if (avgCPU<Min-CPU) {

If (count2=1) {

 Remove a tomcat from the list of active

Tomcat instances

Count2 =0;

} else count2 =1;

} else {

Count1=0;

Count2=0;

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 19, May 2015

49

The observation was when the time reaches 10, the CPU

utilization is zero because requests for clients were finished

Also, carried out more experiments using different numbers of

clients such as (50,100,150,200) clients.

Fig 6. CPU utilization measurement for Tomcat

instance under different numbers of clients

When the numbers of clients exceeded 100, was observed

slight change in CPU utilization. Slight change was noticed in

CPU utilization shown in Figure. 7.

Fig 7. Cloud Watch monitoring using different

numbers of clients

4.3. Using CPU Utilization Threshold-

based Scheme
In this case, Amazon load balancer was used instead of

Apache and generate workload by using remote browser

emulator (rbe) instance for different numbers of clients. CPU

Utilization threshold between 70% and 90% was set. The

monitoring program in the client allows to monitor the CPU

utilization for each Tomcat instance, for example, if the CPU

utilization increases more than 90%. In the start, the CPU-

utilization for Tomcat1 and Tomcat2 is zero because there is

no workload executing yet. When the rbe starts generating the

workload, for example using 50 or 150 clients, we see the

CPU Utilization increases. If the new reading for Tomcat1

instance becomes greater than 90% twice in a row, the

monitoring program in the client dynamically adds another

Tomcat instance to the load balancer. When the Tomcat2

instance is on, we see the new reading for the CPU in

Tomcat1 decreases twice, in a row the monitoring program

automatically adds the second Tomcat to the load balancer,

and vice versa if the average CPU utilization for both Tomcat

instances decreases to less than to 70%, the monitoring

program automatically removes this instance from the load

balancer. It is necessary the load balancer contains at least one

tomcat instance.

If the average CPU-utilization of the two Tomcat instances

decreases to less than 70% twice in a row, the monitoring

program removes the Tomcat2 instance. This process

continues until finishing the specified experiment time period.

Figure. 8 and Figure. 9 show the CPU Utilization changes in

Tomcat1 and Tomcat 2 when using 50 and 200 clients.

Fig 8. CPU Utilization measurements for N=50

Fig 9. CPU Utilization measurements for N=200

5. CONCLUSIONS
In this paper, the primary focus is to find new methods to help

monitor multi-tier web applications in a cloud platform.

Threshold-based capacity management scheme was proposed

to ensure SLAs are continuously met for multi-tiers web

applications while reducing the total incurred cost. In this

paper a capacity management schemes was built and verified

for web applications on Amazon EC2 cloud system. Also a

web application environment was setup in Amazon EC2.

Furthermore a tool to monitor Amazon instances online and to

manage the instances was built (i.e., dynamic capacity scheme

was implemented).

6. REFERENCES
[1] Peter, M and Timothy, G. 2011. The NIST Definition of

Cloud Computing.

 [2] Shehab, M., Sharp, L., et. al. 2004. Enterprise resource

planning, Business Process Management Journal, Vol. 10

No. 4, 2004, pp. 359-386, Emerald Group Publishing

Limited 1463-7154. DOI 10.1108/14637150410548056.

[3] Themistocleous, M., Irani, Z. and O’Keefe, R. 2001.

ERP and application integration: exploratory survey,

Business Process Management Journal, Vol. 7 No. 3, pp.

195-204.

[4] Danilo, A., Sara, C., and Barbara P.2011. Flexible

distributed capacity allocation and load redirect

algorithms for cloud systems. In Proceedings of the IEEE

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 19, May 2015

50

International Conference on Cloud Computing, 2011,

163-170.

[5] Jing, B., Zhiliang, Z., Ruixiong,T., and Qingbo, W.2010.

Dynamic provisioning modeling for virtualized multi-tier

applications in cloud data center. In Proceedings of the

IEEE International Conference on Cloud Computing,

2010, 370-377.

[6] Nilabja, R., Abhishek, D., and Aniruddha, G. 2011.

Efficient Autoscaling in the Cloud using Predictive

Models for Workload Forecasting. In Proceedings of the

IEEE International Conference on Cloud Computing,

2011, 500-507.

[7] Rahul, S., Upendra S., Emmanuel, C., and Prashant, S.

2010. Autonomic mix-aware provisioning for non-

stationary data center workloads. In Proceedings of the

IEEE/ACM International Conference on Autonomic

computing, 2010, 21-30.

 [8] Issam, A., and Derrick, K., 2012. Cost-Aware

Performance Modeling of Multi-Tier Web applications in

the Cloud. In proceedings of the international conference

networked digital technology 2012.

[9] Dutreilh, X., Rivierre, N., Moreau, A., Malenfant, J.,

Truck, I. 2010. From data center resource allocation to

control theory and back. In: Proceedings of the

Conference on Cloud Computing, 2010, 410- 417.

IJCATM : www.ijcaonline.org

