
International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 17, May 2015

35

A Mixed Approach Scheduling Algorithm for Multicore
Automotive ECUs at Contingency Conditions

Geetishree Mishra

BMS College of Engineering, Bangalore, India,

K S Gurumurthy
Reva Institute of Technology, Bangalore, India

ABSTRACT
Automotive ECUs have been upgraded with multicore

processor implementation. It has the benefits of achieving

high computing power without increasing the clock speed.

System developers partition the automotive application tasks

to have parallelizability and avoid interference between

various software modules. Task intensive applications are

assigned to multiple CPU cores. To improve the performance

of such systems, there has to be an efficient task scheduler. In

this regard, the Automotive Open System Architecture

(AUTOSAR) suggests partitioned static priority scheduling

for parallelized software for the multicore ECUs. In this

approach, the difficulty lies with task clustering and

partitioning for specific cores. There is no exact criterion to be

followed to partition the tasks. Due to which cores are not

balanced with loads. Under contingency conditions, there are

chances of tasks missing deadlines. This paper addresses this

issue by exploring a mixed approach scheduling algorithm

which has features of both static and dynamic scheduling and

also few adaptations of partitioned and global scheduling.

With this algorithm, high load conditions under contingency

consequences are tested. This algorithm was run and tested

using a scheduling simulator with real time task models of

periodic tasks, angle synchronous interrupts and event

triggered interrupts. The performance parameters considered

here are, the % of core utilization, response time, deadlines

missing rate. It has been verified that, this proposed algorithm

is able to find a feasible schedule under various contingency

scenarios and contributes to improve the safety level of the

vehicle.

Key Words
ECU, Multicore, RTOS, Scheduling, OEM, AUTOSAR.

1. INTRODUCTION
Current trends in automotive industry have directed towards

introducing more sophisticated features and innovations in

vehicle electronics and software. Therefore demand on

computational resources is growing rapidly. In automotive

domain, multicore processors have been integrated into

electronic control units (ECUs) to run complex algorithms for

task intensive applications [1, 3]. Complex applications have

specific requirements on software and hardware. Automotive

Open System Architecture (AUTOSAR) is a standard to

manage the increasing complexity and defines a methodology

for efficient development of such parallelized systems [2].

Multicore implementation provides high level of software

integration, parallel computing and provides the safety

requirements of the system. Multicore improves the

performance of computationally intensive algorithms by

executing multiple independent threads of same application

parallely on different cores. Many different applications can

also be integrated into the same ECU sharing common

hardware resources. Safety critical functions can run on

multiple cores to provide a fault tolerant system. To optimize

the performance of such systems, there is always a need of an

efficient scheduler function of the real time operating system

embedded in the ECU. To ensure the deterministic behavior

of the safety critical systems, AUTOSAR suggests partitioned

static priority scheduling for multicore ECUs [2]. In this

approach, a feasible schedule is assured prior to run time for

periodic tasks but the identified issues are: partitioning of

tasks is the most tedious process and static priority scheduling

handles aperiodic and sporadic tasks inefficiently. As a

consequence, multicore processors are not utilized to their

maximum capabilities and it is difficult to meet the worst case

processing requirements [8]. In this paper, this issue has been

addressed by developing a mixed approach scheduling

algorithm in which dynamic scheduling approach has been

explored and few features of both partitioned and global

scheduling are utilized. This algorithm is tested at different

contingency conditions when multiple unexpected events

occur through hardware interrupts and are feasibly scheduled

along with the regular periodic tasks. This paper is organized

as follows: task model representative of time critical

automotive applications is stated in section 2. In section 3, the

current scenario of task scheduling in automotive domain is

presented. In section 4, the hybrid scheduling algorithm is

explained. In section 5, the evaluation of the algorithm

performance is presented through simulation studies. Section

6 presents the concluding remarks.

2. TASK MODEL
In this paper, we have considered application tasks of a tri

core engine control ECU to be scheduled at normal running

conditions of the vehicle, considering many sequential

processes run within these tasks. In automotive ECUs two

types of tasks are normally executed: the asynchronous or

time-triggered tasks, which are activated periodically by the

system tick and the synchronous or engine-triggered tasks,

which are invoked at the engine crank teeth position [4]. As a

result, the frequency of occurrence of engine-triggered task

varies with the speed of the engine. In this paper, the proposed

scheduler is tested with different task models considering the

real time behavior of the engine. The ith task is represented by

a three tuple Ti = (Ci, Ri, Pi). Quantities Ci, Ri, and Pi

correspond to the worst case execution time (WCET), the

releasing instant and the period of the task [5,6,7]. For all the

periodic tasks, deadline is equal to the period. Slack of a task

is the maximum amount of time it can be delayed for

execution before meeting its deadline. Slack is denoted by Si.

Si= Pi – RET; where RET= remaining execution time of a

task. Aperiodic tasks included in the task model to verify the

performance at contingency conditions.

3. EXISTING TASK SCHEDULING

METHOD
Applications with deterministic realtime requirements, such as

for automotives mission critical systems, impose severe

constraints on the design and implementation of real-time

system software and its functions. Automotive safety critical

applications such as anti lock braking system (ABS), electric

power steering (EPS), electronic stability program (ESP),

traction control system, collision avoidance system or engine

control unit must function reliably with the temperature or

pressure swing within the vehicle or even when exposed to

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 17, May 2015

36

harsh environments [4]. The real time system software should

have failsafe features to handle such situations. Scheduling of

safety critical application tasks is an important functionality of

RTOS, majorly contributes to achieve real time requirements.

AUTOSAR suggests partitioned static priority scheduling to

achieve time deterministic behavior of safety critical

applications [2,3]. It is the distributed scheduling method used

in automotive domain wherein, tasks are partitioned and

scheduled separately for individual core. In this method,

related tasks or interrupt service routines are clustered and

allocated to a defined core. For example, the basic software

and complex device drivers are partitioned for one core and

engine crank teeth angle synchronous tasks are for another

core [4]. But this partitioning of tasks being a tedious process

and there is no availability of optimum task partitioning

scheme, computing cores are underutilized. Also static

priority algorithms though provide feasible schedule for

periodic tasks of hard deadlines with low run time overhead,

they are inefficient to schedule at heavy load conditions and

also aperiodic tasks whose characteristics are not known prior

to run time. Even though multicore processor offers

parallelizability in the hardware, the computing cores are not

optimally utilized. These are the motivating factors for further

research on task scheduling for multicore automotive ECUs.

These issues have been addressed in this paper by developing

a mixed approach scheduling algorithm and verifying its

performance in various contingency conditions.

3.1 Basic Multicore System
In Fig.1, the tricore system has separate level 1 caches for

each core, but share a common level 2 cache, memory

controller, interrupt subsystem and I/O subsystem. The

implementation of multiple cores incurs greater design

complexity both for hardware and software. Applications

running on different cores need to have efficient interprocess

communication (IPC) mechanisms, shared-memory data

structures, appropriate synchronization mechanism and

primitives for shared resources protection [9].

Fig.1 A generic multicore system

There are three multiprocessing modes: offered by multicore

processors: symmetric, asymmetric and partitioned. In

automotive domain, partitioned approach is used. By which,

an application is strictly bound to one core and cannot

leverage to others even if they are idle. This approach is

adopted looking into the safety criticalities of automotive

applications. In automotive domain, AUTOSAR is the driving

architecture for multicore software design. The partition

multiprocessing mode is suggested by AUTOSAR and

supported by the system software. The task scheduling

function of system software needs to be optimized to enhance

the performance of multicore ECUs. As all the computing

cores are not utilized to their maximum capabilities, there

should be an adaptive method of scheduling considering the

interprocess dependency so that, utilization of cores is

improved and at the same time safety criticalities of the

applications are not affected [10].

3.2 Partition static priority scheduling

Partition Static Priority Scheduling Algorithm

1 Initialize global queue and local queue1, local queue2 & local queue3.

2 On tasks activation:

3 Add tasks to global queue

4 For Ti; where i = 1 to n; n= no. of tasks in global queue at „t‟

5 Partition tasks(Pi) {

 (i) Group tasks of periods within a fixed bound into task clusters.

(ii) Identify a core for a cluster.

(iii) Allocate the task clusters that have a locality constraint

 to the corresponding queue.

(iv) Map the task clusters to the identified local queues.

 {add to local queue1,2 & 3} // Pi= period of the task

10 For Li; where i = 1 to n; n= no. of queues

11 Sort (tasks) // descending order of priority

Pr1>Pr2>…..PrN // Pr = assigned priority

12 Allocate CPU to the task with Pr1.

13 If the running task is not the task at the queue_head,{Preempt the running task}

14 If interrupt occurs,

(i) Map the interrupt to a core.

(ii) Schedule as per sorted priority.

In the partition static priority scheduler, there are three main

functions. One is to partition the tasks into task clusters and

map to the predefined core. Second one is to sort the tasks in

descending order of their assigned priority and allocate CPU

to the highest priority task for execution. Third one is preempt

the running task if required. Regular crank teeth synchronous

tasks are invoked through interrupts and interrupts are

basically assigned with higher priority. They are also pre-

partitioned and scheduled along with periodic tasks following

the same mechanism. In any contingency condition, when

multiple events occur and invoke simultaneous interrupts of

relatively higher assigned priority, the running tasks are

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 17, May 2015

37

mostly preempted to cater to these interrupts [11]. As a result

of which, some of the low priority tasks miss their deadlines.

4. A NOVEL MIXED APPROACH

SCHEDULING ALGORITHM
In the proposed mixed approach scheduling algorithm, the

three main logic used are for task distribution, task pre-

emption and task migration. To get feasible schedule for more

number of tasks, migration from one core to other is allowed.

This reduces the number of pre-emption also. As pre-emption

incurs more overhead than migration, inclusion of migration

logic is an advantage of the proposed algorithm. The tasks

after being admitted to the global queue get distributed to the

three local queues passing through the distribution logic.

Slack, the difference between period and WCET of a task is

the utilised parameter here. As it is the maximum duration any

task can be delayed without missing the deadline, it is

exploited in this algorithm to make a sequence of execution,

to find out the possibility of missing deadline being in a queue

and get migrated or pre-empt a running task. The task with

least remaining slack is always scheduled first [12]. The crank

teeth synchronous tasks get invoked by interrupts but have

periodicity. So they are scheduled along with other periodic

tasks. In contingency conditions when multiple interrupts

come simultaneously, their criticalities are checked and tasks

are sorted according to descending order of their criticalities.

If number of interrupts are more than the number of cores,

pre-empt all the running tasks and get the high severity

interrupts executed. If the checked criticalities are within the

set threshold, they can be scheduled passing through the slack

sorting process.

Mixed approach Scheduling Algorithm Pseudocode

1 Initialize global queue and local queue1, local queue2 & local queue3.

2 On task activation:

3 Globalqueue.Add(task)

4 For Ti; where i = 1 to n; n= no. of tasks in global queue

 { Compute(slack);}

 Sort(slack); // ascending order of slack at globalqueue.

7 Distribute(tasks) // To local queues

 As n/2,((n – (n/2))/2 and remaining to local queue1, 2 and 3 sequentially.

8 For Li; where i= 1 to n //n=3, no.of local queues.

9 {Sort(remaining slack)} // in ascending order at localqueue

10 If(!Task(queuehead) = Task.running)

 {Preempt(tasks)}

12 If (Sn < ∑RET (Tj)); j varies from 1 to n-1 // RET = remaining execution time

 {Migrate (tasks)} // Sn= remaining slack of „nth‟ task.

13 If(Interrupt){

 {Calculate (load) // at each queue.

Localqueue.Add(Interrupt) // with least load

If(criticality>threshold)

{Preempt(running task)}

Calculate(slack) // remaining slack.

Sort(queue) // ascending order of remaining slack

Schedule(least slack)}

14 If number of interrupts > m at „t‟ // m=no. of cores.

{sort(criticality) } // descending order of assigned criticality

Preempt(all running tasks)

Schedule(interrupts) // „m‟ interrupts with high criticality

5. RESULTS AND DISCUSSIONS
In this paper, the proposed mixed approach scheduling

algorithm is compared with the existing approach of partition

static priority scheduling algorithm. A tricore processor and

three different task models representative of engine control

unit functionalities were used in simulation. Each model has

ten numbers of periodic tasks denoted as T1 to T10. To

represent the contingency scenario, five aperiodic tasks are

included which are denoted as A1 to A5. The performance

parameters are: core utilization, average response time and

missed deadline. To run and validate the algorithms, a

multiprocessor scheduling simulator is used that gives a Gantt

chart for each core as the result.

The Gantt charts for task model M1, M2 and M3 are shown in

fig.2. In every model, numberings 1 & 2 are for results of

partition static scheduler and 3, 4 & 5 are for results of mixed

approach scheduler. In every task model, due to strict

partitioning, no task is going to Core 3 with partition static

scheduler. The aperiodic tasks used in every model to test the

contingency condition have deadlines which come under the

partition of Core 1. As a result, these aperiodic tasks having

higher priority than other periodic tasks are scheduled first

pre-empting the running task in core 1. Since all are scheduled

for execution in one core, the consequence is deadline missing

of many tasks. So to get better results in these critical

situations, the task partitioning method should be modified to

be more flexible else there will be hazardous failure of the

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 17, May 2015

38

system. In the mixed approach scheduling, tasks are

distributed to all the cores depending on the number of tasks

released. All the cores are utilized both for periodic and

aperiodic tasks. So core utilization is improved with better

response time of the tasks and there is no missing of

deadlines. As the result shows in fig.2, for partition static

scheduler, core 1 & 2 are highly loaded always and core 3 is

idle and remains in sleep mode and it wakes up only when

loads get transferred to it from other cores in heavy load

conditions. There is an upper bound of total work load to have

feasible schedule for both the algorithms discussed in section

6.

Fig.2 Gantt charts for model 1, 2 & 3

6. EVALUATION OF MIXED

APPROACH ALGORITHM IN

CONTINGENCY CONDITIONS
For performance evaluation of the proposed mixed approach

algorithm compared to existing partition static priority

algorithm, three parameters are considered in this paper: CPU

utilization, average response time and deadline missing rate.

6.1 CPU utilization
The total CPU utilization required by a task model is µ =
 Ci/Pi,𝑛
𝑖=1 Where „n‟= no. of tasks [1,3,4]For task model 1,

utilization µ is 2.3, for task model 2, µ is 2.5 and for task

model 3, it is 2.7 considering both periodic and aperiodic

tasks in contingency conditions. Each task model has run with

both the partition and mixed approach scheduling algorithms.

Table 1 gives the utilization percentage of each core for each

task model tested on both the algorithms. Utilization of each

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 17, May 2015

39

core is calculated for the simulation duration. As it is clearly

shown in the table 1, for partition static priority scheduling,

there is load imbalance across the three cores and in mixed

approach scheduler, all the three cores are utilized as a result

of task migration and work load distribution across the cores.

6.2 Average response time
Response time of a task is: (Rt) = ET+WT, where ET=

execution time and WT= waiting time from its release till

completion in any occurring instance. Average response time

is the sum of response times of all scheduled tasks divided by

the number of tasks scheduled, that is: Avg Rt = Rt/n𝑛
𝑖=1 ,

Where n = no. of tasks scheduled [3]. Table.2 shows the

comparison for both the algorithms. Comparisons are shown

separately for periodic and aperiodic tasks. It is clearly

observed from the comparison that, in mixed approach

scheduler, all the periodic tasks are feasibly scheduled with

less average response time along with the critical aperiodic

tasks whereas in partition static scheduler low priority tasks

are preempted for which average response time for periodic

tasks is delayed by the scheduling duration of aperiodic tasks.

6.3 Deadline missing rate
Deadline of periodic tasks is assumed as equal to its period

and it is defined as a task parameter for aperiodic tasks. For

each of the scheduling algorithms, with the imposition of

contingency conditions, the number of periodic tasks missing

their deadlines on every task model within the simulation

duration was observed. It was observed that, as the workload

demand exceeds 60% for a task model, for partitioned static

priority scheduling (PSPS), there is exponential missing rate

of deadlines. Another important aspect is, in PSPS, the

priorities are assigned based on rate monotonic approach

(RMA) and the worst case bound in RMA is: µ < n(21/n-1)

[12], where µ is the utilization of the task set and „n‟ is the

number of tasks in the task set. As for simulation, ten number

of tasks are considered in the task models, the upper bound of

utilization µ is 71%. In contingency conditions, when high

criticality higher priority tasks are invoked, only those higher

priority tasks meet their deadlines those have utilization

within this bound. For all the three task models, the average

utilization of the tasks should be restricted to the range of 0.1≤

[1/n(∑ Ci/Pi)] ≤ 0.2 where n is the number of tasks under test

and „i‟ varies from 1 to n. Experiments show that, mixed

approach scheduling (MAS) algorithm provides a feasible

schedule for the task models with 80% utilization of each core

at any given time and deadline missing rate is 20-40% of the

waiting task as the utilization goes beyond 80%.

Table.1 Comparison of CPU utilization

CPU Utilization

 Partition Static Priority Scheduler Hybrid Scheduler

Task Model Core1 Core2 Core3 Core1 Core2 Core3

M1 88% 84% 0 46% 74% 72%

M2 96% 82% 0 60% 70% 72%

M3 100% 56% 0 64% 76% 66%

Table. 2 Comparison of average response time

Average Response Time (Avg.Rt)

 Partition Static Priority Scheduler Mixed approach Scheduler

Task Models PTask ATask PTask ATask

M1 9.2ms 4ms 2.5ms 5ms

M2 10.1ms 4ms 4ms 5ms

M3 15ms/8tasks 4ms 3.7ms 5.2ms

Fig.2 Comparison of deadline missing rate between PSPS & MAS algorithms.

0

20

40

60

80

Deadline missing
rate(%) PSPS
Deadline missing
rate(%) MAS

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 17, May 2015

40

7. CONCLUSION
In multicore automotive ECUs, the currently used task

scheduling algorithm is partition static priority scheduling

where the tasks are strictly partitioned into clusters based on

their periods before execution in a selected core. As a result of

which, CPU cores are not utilized to their maximum

capabilities in normal running conditions [3,8]. In this paper, a

mixed approach scheduling algorithm is proposed for

multicore automotive ECUs. Both the algorithms have been

tested for three periodic task models representatives of Engine

Control ECU functionalities. For verifying the performance of

these algorithms at various contingency conditions, aperiodic

tasks have been introduced in the task models. It has been

verified that, this proposed algorithm has considerable

improvements over the existing partitioned static priority

scheduler based on the performance parameters such as: CPU

core utilization, average response time of tasks and deadline

missing rate. In the proposed algorithm, tasks are distributed

among the cores to utilize the availability and are allowed to

migrate from one queue to another. The average response time

of tasks is reduced and all the tasks meet their deadlines. In

this algorithm, all the cores share the total workload at any

scheduling instant so higher utilization is achieved with

increase in work load. With these performance improvements,

this proposed algorithm has comparatively more migration

overhead. At contingency severity consequences, the

migration of time critical tasks should be bounded to ensure

meeting the deadlines which could be considered as future

work on this algorithm.

8. REFERENCES

[1] ”Multicore Scheduling in Automotive ECUs” By

Aurelien Monot, Nicolas Navet, Francoise Simonot,

Bernard Bavoux, Embedded Real Time Software and

Systems- ERTSS May 2010.

[2] AUTOSAR version 4.2.1, www.autosar.org

[3] “Multi-source and multicore automotive ecus: Os

protection mechanisms and scheduling” By N. Navet, A.

Monot, B. Bavoux, and F. Simonot-Lion.. In Proc.of

IEEE Int‟l Symposium on Industrial Electronics, Jul.

2010.

[4] “A Case Study in Embedded Systems Design: An Engine

Control Unit” , By Tullio Cuatto, Claudio Passerone,

Claudio Sanso E, Francesco Gregoretti, Attila JuresKa,

Alberto Sangiovanni, Design Automation for Embedded

Systems, Vol, 6, 2000.

[5] “Dynamic Scheduling for Emergency Tasks on

Distributed Imaging Satellites with Task Merging.” By

Jianjiang Wang; Xiaomin Zhu; Dishan Qiu; Yang L T,

Parallel and Distributed Systems, IEEE Transactions,

June 2013.

[6] “Harmonic Aware Multicore Scheduling for fixed

priority real time systems.” By Ming Fan; Geng Quan,

Parallel and Distributed Systems, IEEE Transactions.

March 2013.

[7] “Improvement of Real time Multicore Schedulability

with forced Non Preemption.” By Jinkyu Lee; Shin K G ,

Parallel and Distributed Systems, IEEE Transactions.

Jan 2014.

[8] “Dynamic Scheduling Strategies for Avionics Mission

Computing” By David L. Levine, Christopher D. Gill

and Douglas C. Schmidt, Proceedings of Digital

Avionics Systems Conference, 17th IEEE, Nov 1998.

[9] “Dynamic Task Scheduling on Multicore Automotive

ECUs”By Geetishree Mishra, K S Gurumurthy,

International Journal of VLSI design & Communication

Systems (VLSICS), DOI: 10.5121/vlsic.2014.5601,

Vol.5, No.6, December 2014.

[10] “Task Scheduling of Real-time Systems on Multi-Core

Architectures” By Pengliu Tan, 2009 Second

International Symposium on Electronic Commerce and

Security IEEE, DOI 10.1109/ISECS.2009.161.

[11] ”Demand-based Schedulability Analysis for Real Time

Multicore Scheduling” By Jinkyu Lee, Insik Shin,

Journal of Systems and Software ELSEVIER October

2013.

[12] “Load-prediction Scheduling Algorithm for Computer

Simulation of Electrocardiogram in Hybrid

Environments” By Wenfeng Shen, Zhaokai Luo, Daming

Wei, Weimin Xu, Xin Zhu, Journal of Systems and

Software ELSEVIER January 2015

IJCATM : www.ijcaonline.org

http://www.autosar.org/

