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ABSTRACT 
Automotive ECUs have been upgraded with multicore 

processor implementation. It has the benefits of achieving 

high computing power without increasing the clock speed. 

System developers partition the automotive application tasks 

to have parallelizability and avoid interference between 

various software modules. Task intensive applications are 

assigned to multiple CPU cores. To improve the performance 

of such systems, there has to be an efficient task scheduler. In 

this regard, the Automotive Open System Architecture 

(AUTOSAR) suggests partitioned static priority scheduling 

for parallelized software for the multicore ECUs. In this 

approach, the difficulty lies with task clustering and 

partitioning for specific cores. There is no exact criterion to be 

followed to partition the tasks. Due to which cores are not 

balanced with loads. Under contingency conditions, there are 

chances of tasks missing deadlines. This paper addresses this 

issue by exploring a mixed approach scheduling algorithm 

which has features of both static and dynamic scheduling and 

also few adaptations of partitioned and global scheduling. 

With this algorithm, high load conditions under contingency 

consequences are tested. This algorithm was run and tested 

using a scheduling simulator with real time task models of 

periodic tasks, angle synchronous interrupts and event 

triggered interrupts. The performance parameters considered 

here are, the % of core utilization, response time, deadlines 

missing rate. It has been verified that, this proposed algorithm 

is able to find a feasible schedule under various contingency 

scenarios and contributes to improve the safety level of the 

vehicle. 
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1. INTRODUCTION 
Current trends in automotive industry have directed towards 

introducing more sophisticated features and innovations in 

vehicle electronics and software. Therefore demand on 

computational resources is growing rapidly. In automotive 

domain, multicore processors have been integrated into 

electronic control units (ECUs) to run complex algorithms for 

task intensive applications [1, 3]. Complex applications have 

specific requirements on software and hardware. Automotive 

Open System Architecture (AUTOSAR) is a standard to 

manage the increasing complexity and defines a methodology 

for efficient development of such parallelized systems [2]. 

Multicore implementation provides high level of software 

integration, parallel computing and provides the safety 

requirements of the system. Multicore improves the 

performance of computationally intensive algorithms by 

executing multiple independent threads of same application 

parallely on different cores. Many different applications can 

also be integrated into the same ECU sharing common 

hardware resources. Safety critical functions can run on 

multiple cores to provide a fault tolerant system. To optimize 

the performance of such systems, there is always a need of an 

efficient scheduler function of the real time operating system 

embedded in the ECU. To ensure the deterministic behavior 

of the safety critical systems, AUTOSAR suggests partitioned 

static priority scheduling for multicore ECUs [2]. In this 

approach, a feasible schedule is assured prior to run time for 

periodic tasks but the identified issues are: partitioning of 

tasks is the most tedious process and static priority scheduling 

handles aperiodic and sporadic tasks inefficiently. As a 

consequence, multicore processors are not utilized to their 

maximum capabilities and it is difficult to meet the worst case 

processing requirements [8]. In this paper, this issue has been 

addressed by developing a mixed approach scheduling 

algorithm in which dynamic scheduling approach has been 

explored and few features of both partitioned and global 

scheduling are utilized. This algorithm is tested at different 

contingency conditions when multiple unexpected events 

occur through hardware interrupts and are feasibly scheduled 

along with the regular periodic tasks. This paper is organized 

as follows: task model representative of time critical 

automotive applications is stated in section 2. In section 3, the 

current scenario of task scheduling in automotive domain is 

presented. In section 4, the hybrid scheduling algorithm is 

explained. In section 5, the evaluation of the algorithm 

performance is presented through simulation studies. Section 

6 presents the concluding remarks.    

2. TASK MODEL 
In this paper, we have considered application tasks of a tri 

core engine control ECU to be scheduled at normal running 

conditions of the vehicle, considering many sequential 

processes run within these tasks. In automotive ECUs two 

types of tasks are normally executed: the asynchronous or 

time-triggered tasks, which are activated periodically by the 

system tick and the synchronous or engine-triggered tasks, 

which are invoked at the engine crank teeth position [4]. As a 

result, the frequency of occurrence of engine-triggered task 

varies with the speed of the engine. In this paper, the proposed 

scheduler is tested with different task models considering the 

real time behavior of the engine. The ith task is represented by 

a three tuple Ti = (Ci, Ri, Pi). Quantities Ci, Ri, and Pi 

correspond to the worst case execution time (WCET), the 

releasing instant and the period of the task [5,6,7].  For all the 

periodic tasks, deadline is equal to the period. Slack of a task 

is the maximum amount of time it can be delayed for 

execution before meeting its deadline. Slack is denoted by Si.  

Si= Pi – RET; where RET= remaining execution time of a 

task. Aperiodic tasks included in the task model to verify the 

performance at contingency conditions.  

3. EXISTING TASK SCHEDULING 

METHOD 
Applications with deterministic realtime requirements, such as 

for automotives mission critical systems, impose severe 

constraints on the design and implementation of real-time 

system software and its functions. Automotive safety critical 

applications such as anti lock braking system (ABS), electric 

power steering (EPS), electronic stability program (ESP), 

traction control system, collision avoidance system or engine 

control unit must function reliably with the temperature or 

pressure swing within the vehicle or even when exposed to 
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harsh environments [4]. The real time system software should 

have failsafe features to handle such situations. Scheduling of 

safety critical application tasks is an important functionality of 

RTOS, majorly contributes to achieve real time requirements. 

AUTOSAR suggests partitioned static priority scheduling to 

achieve time deterministic behavior of safety critical 

applications [2,3]. It is the distributed scheduling method used 

in automotive domain wherein, tasks are partitioned and 

scheduled separately for individual core. In this method, 

related tasks or interrupt service routines are clustered and 

allocated to a defined core. For example, the basic software 

and complex device drivers are partitioned for one core and 

engine crank teeth angle synchronous tasks are for another 

core [4]. But this partitioning of tasks being a tedious process 

and there is no availability of optimum task partitioning 

scheme, computing cores are underutilized. Also static 

priority algorithms though provide feasible schedule for 

periodic tasks of hard deadlines with low run time overhead, 

they are inefficient to schedule at heavy load conditions and 

also aperiodic tasks whose characteristics are not known prior 

to run time. Even though multicore processor offers 

parallelizability in the hardware, the computing cores are not 

optimally utilized. These are the motivating factors for further 

research on task scheduling for multicore automotive ECUs. 

These issues have been addressed in this paper by developing 

a mixed approach scheduling algorithm and verifying its 

performance in various contingency conditions. 

3.1 Basic Multicore System 
In Fig.1, the tricore system has separate level 1 caches for 

each core, but share a common level 2 cache, memory 

controller, interrupt subsystem and I/O subsystem. The 

implementation of multiple cores incurs greater design 

complexity both for hardware and software. Applications 

running on different cores need to have efficient interprocess 

communication (IPC) mechanisms, shared-memory data 

structures, appropriate synchronization mechanism and 

primitives for shared resources protection [9].  

 
Fig.1 A generic multicore system 

There are three multiprocessing modes: offered by multicore 

processors: symmetric, asymmetric and partitioned. In 

automotive domain, partitioned approach is used. By which, 

an application is strictly bound to one core and cannot 

leverage to others even if they are idle. This approach is 

adopted looking into the safety criticalities of automotive 

applications. In automotive domain, AUTOSAR is the driving 

architecture for multicore software design. The partition 

multiprocessing mode is suggested by AUTOSAR and 

supported by the system software. The task scheduling 

function of system software needs to be optimized to enhance 

the performance of multicore ECUs. As all the computing 

cores are not utilized to their maximum capabilities, there 

should be an adaptive method of scheduling considering the 

interprocess dependency so that, utilization of cores is 

improved and at the same time safety criticalities of the 

applications are not affected [10].  

3.2 Partition static priority scheduling 

Partition Static Priority Scheduling Algorithm 

1 Initialize global queue and local queue1, local queue2 & local queue3. 

2 On tasks activation: 

3 Add tasks to global queue 

4 For Ti; where i = 1 to n; n= no. of tasks in global queue at „t‟ 

5     Partition tasks(Pi) { 

 (i) Group tasks of periods within a fixed bound into task clusters. 

(ii) Identify a core for a cluster. 

(iii) Allocate the task clusters that have a locality constraint 

     to the corresponding queue. 

(iv) Map the task clusters to the identified local queues. 

              {add to local queue1,2 & 3}    // Pi= period of the task   

10 For Li; where i = 1 to n; n= no. of queues 

11     Sort (tasks)            // descending order of priority 

Pr1>Pr2>…..PrN      // Pr =  assigned priority 

12     Allocate CPU to the task with Pr1.     

13 If the running task is not the task at the queue_head,{Preempt the running task} 

14 If  interrupt occurs, 

(i) Map the interrupt to a core. 

(ii) Schedule as per sorted priority. 

In the partition static priority scheduler, there are three main 

functions. One is to partition the tasks into task clusters and 

map to the predefined core. Second one is to sort the tasks in 

descending order of their assigned priority and allocate CPU 

to the highest priority task for execution. Third one is preempt 

the running task if required. Regular crank teeth synchronous 

tasks are invoked through interrupts and interrupts are 

basically assigned with higher priority. They are also pre-

partitioned and scheduled along with periodic tasks following 

the same mechanism. In any contingency condition, when 

multiple events occur and invoke simultaneous interrupts of 

relatively higher assigned priority, the running tasks are 
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mostly preempted to cater to these interrupts [11]. As a result 

of which, some of the low priority tasks miss their deadlines. 

4. A NOVEL MIXED APPROACH 

SCHEDULING ALGORITHM 
In the proposed mixed approach scheduling algorithm, the 

three main logic used are for task distribution, task pre-

emption and task migration. To get feasible schedule for more 

number of tasks, migration from one core to other is allowed. 

This reduces the number of pre-emption also. As pre-emption 

incurs more overhead than migration, inclusion of migration 

logic is an advantage of the proposed algorithm. The tasks 

after being admitted to the global queue get distributed to the 

three local queues passing through the distribution logic. 

Slack, the difference between period and WCET of a task is 

the utilised parameter here. As it is the maximum duration any 

task can be delayed without missing the deadline, it is 

exploited in this algorithm to make a sequence of execution, 

to find out the possibility of missing deadline being in a queue 

and get migrated or pre-empt a running task. The task with 

least remaining slack is always scheduled first [12]. The crank 

teeth synchronous tasks get invoked by interrupts but have 

periodicity. So they are scheduled along with other periodic 

tasks. In contingency conditions when multiple interrupts 

come simultaneously, their criticalities are checked and tasks 

are sorted according to descending order of their criticalities. 

If number of interrupts are more than the number of cores, 

pre-empt all the running tasks and get the high severity 

interrupts executed. If the checked criticalities are within the 

set threshold, they can be scheduled passing through the slack 

sorting process.  

 

Mixed approach Scheduling Algorithm Pseudocode 

1 Initialize global queue and local queue1, local queue2 & local queue3. 

2 On task activation: 

3     Globalqueue.Add(task) 

4          For Ti; where i = 1 to n;   n= no. of tasks in global queue 

        { Compute(slack);} 

         Sort(slack);       // ascending order of slack at globalqueue. 

7      Distribute(tasks)              // To local queues 

   As n/2,( (n – (n/2))/2 and remaining to local queue1, 2 and 3 sequentially. 

8          For Li; where i= 1 to n     //n=3, no.of local queues. 

9          {Sort(remaining slack )}            // in ascending order at localqueue 

10                   If(!Task(queuehead) = Task.running) 

                      {Preempt(tasks)} 

12                   If (Sn <  ∑RET (Tj)); j varies from 1 to n-1    // RET = remaining execution time 

                       {Migrate (tasks)}                                      // Sn= remaining slack of „nth‟ task. 

13 If(Interrupt){ 

     {Calculate (load)                            // at each queue. 

Localqueue.Add(Interrupt)                // with least load 

If(criticality>threshold) 

{Preempt(running task)} 

Calculate(slack)                                // remaining slack. 

Sort(queue)                                      // ascending order of remaining slack 

Schedule(least slack)} 

14 If number of interrupts  > m at „t‟     // m=no. of cores. 

{sort(criticality) }                             // descending order of assigned criticality 

Preempt(all running tasks) 

Schedule(interrupts)                       // „m‟ interrupts with high criticality 

 

 

5. RESULTS AND DISCUSSIONS 
In this paper, the proposed mixed approach scheduling 

algorithm is compared with the existing approach of partition 

static priority scheduling algorithm. A tricore processor and 

three different task models representative of engine control 

unit functionalities were used in simulation. Each model has 

ten numbers of periodic tasks denoted as T1 to T10. To 

represent the contingency scenario, five aperiodic tasks are 

included which are denoted as A1 to A5. The performance 

parameters are: core utilization, average response time and 

missed deadline. To run and validate the algorithms, a 

multiprocessor scheduling simulator is used that gives a Gantt 

chart for each core as the result.  

The Gantt charts for task model M1, M2 and M3 are shown in 

fig.2. In every model, numberings 1 & 2 are for results of 

partition static scheduler and 3, 4 & 5 are for results of mixed 

approach scheduler. In every task model, due to strict 

partitioning, no task is going to Core 3 with partition static 

scheduler. The aperiodic tasks used in every model to test the 

contingency condition have deadlines which come under the 

partition of Core 1. As a result, these aperiodic tasks having 

higher priority than other periodic tasks are scheduled first 

pre-empting the running task in core 1. Since all are scheduled 

for execution in one core, the consequence is deadline missing 

of many tasks. So to get better results in these critical 

situations, the task partitioning method should be modified to 

be more flexible else there will be hazardous failure of the 
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system. In the mixed approach scheduling, tasks are 

distributed to all the cores depending on the number of tasks 

released. All the cores are utilized both for periodic and 

aperiodic tasks. So core utilization is improved with better 

response time of the tasks and there is no missing of 

deadlines. As the result shows in fig.2, for partition static 

scheduler, core 1 & 2 are highly loaded always and core 3 is 

idle and remains in sleep mode and it wakes up only when 

loads get transferred to it from other cores in heavy load 

conditions. There is an upper bound of total work load to have 

feasible schedule for both the algorithms discussed in section 

6. 

 

 

                   

Fig.2 Gantt charts for model 1, 2 & 3 

6. EVALUATION OF MIXED 

APPROACH ALGORITHM IN 

CONTINGENCY CONDITIONS 
For performance evaluation of the proposed mixed approach 

algorithm compared to existing partition static priority 

algorithm, three parameters are considered in this paper: CPU 

utilization, average response time and deadline missing rate. 

6.1 CPU utilization  
The total CPU utilization required by a task model is µ =
 Ci/Pi,𝑛
𝑖=1   Where „n‟= no. of tasks [1,3,4]For task model 1, 

utilization µ is 2.3, for task model 2, µ is 2.5 and for task 

model 3, it is 2.7 considering both periodic and aperiodic 

tasks in contingency conditions. Each task model has run with 

both the partition and mixed approach scheduling algorithms.  

Table 1 gives the utilization percentage of each core for each 

task model tested on both the algorithms. Utilization of each 
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core is calculated for the simulation duration. As it is clearly 

shown in the table 1, for partition static priority scheduling, 

there is load imbalance across the three cores and in mixed 

approach scheduler, all the three cores are utilized as a result 

of task migration and work load distribution across the cores. 

6.2 Average response time 
Response time of a task is: (Rt) = ET+WT, where ET= 

execution time and WT= waiting time from its release till 

completion in any occurring instance. Average response time 

is the sum of response times of all scheduled tasks divided by 

the number of tasks scheduled, that is: Avg Rt =  Rt/n𝑛
𝑖=1   , 

Where n = no. of tasks scheduled [3]. Table.2 shows the 

comparison for both the algorithms. Comparisons are shown 

separately for periodic and aperiodic tasks. It is clearly 

observed from the comparison that, in mixed approach 

scheduler, all the periodic tasks are feasibly scheduled with 

less average response time along with the critical aperiodic 

tasks whereas in partition static scheduler low priority tasks 

are preempted for which average response time for periodic 

tasks is delayed by the scheduling duration of aperiodic tasks.  

6.3 Deadline missing rate 
Deadline of periodic tasks is assumed as equal to its period 

and it is defined as a task parameter for aperiodic tasks. For 

each of the scheduling algorithms, with the imposition of 

contingency conditions, the number of periodic tasks missing 

their deadlines on every task model within the simulation 

duration was observed. It was observed that, as the workload 

demand exceeds 60% for a task model, for partitioned static 

priority scheduling (PSPS), there is exponential missing rate 

of deadlines. Another important aspect is, in PSPS, the 

priorities are assigned based on rate monotonic approach 

(RMA) and the worst case bound in RMA is: µ < n(21/n-1) 

[12], where µ is the utilization of the task set and „n‟ is the 

number of tasks in the task set. As for simulation, ten number 

of tasks are considered in the task models, the upper bound of 

utilization µ is 71%. In contingency conditions, when high 

criticality higher priority tasks are invoked, only those higher 

priority tasks meet their deadlines those have utilization 

within this bound. For all the three task models, the average 

utilization of the tasks should be restricted to the range of 0.1≤ 

[1/n( ∑ Ci/Pi)] ≤ 0.2 where n is the number of tasks under test 

and „i‟ varies from 1 to n. Experiments show that, mixed 

approach scheduling (MAS) algorithm provides a feasible 

schedule for the task models with 80% utilization of each core 

at any given time and deadline missing rate is 20-40% of the 

waiting task as the utilization goes beyond 80%. 

Table.1 Comparison of CPU utilization 

CPU Utilization 

 Partition Static Priority Scheduler Hybrid Scheduler 

Task Model Core1 Core2 Core3 Core1 Core2 Core3 

M1 88% 84% 0 46% 74% 72% 

M2 96% 82% 0 60% 70% 72% 

M3 100% 56% 0 64% 76% 66% 

Table. 2 Comparison of average response time 

Average Response Time (Avg.Rt) 

 Partition Static Priority Scheduler Mixed approach Scheduler 

Task Models PTask ATask PTask ATask 

M1 9.2ms 4ms 2.5ms 5ms 

M2 10.1ms 4ms 4ms 5ms 

M3 15ms/8tasks 4ms 3.7ms 5.2ms 

 

 
 

Fig.2 Comparison of deadline missing rate between PSPS & MAS algorithms. 
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7.  CONCLUSION 
In multicore automotive ECUs, the currently used task 

scheduling algorithm is partition static priority scheduling 

where the tasks are strictly partitioned into clusters based on 

their periods before execution in a selected core. As a result of 

which, CPU cores are not utilized to their maximum 

capabilities in normal running conditions [3,8]. In this paper, a 

mixed approach scheduling algorithm is proposed for 

multicore automotive ECUs. Both the algorithms have been 

tested for three periodic task models representatives of Engine 

Control ECU functionalities. For verifying the performance of 

these algorithms at various contingency conditions, aperiodic 

tasks have been introduced in the task models. It has been 

verified that, this proposed algorithm has considerable 

improvements over the existing partitioned static priority 

scheduler based on the performance parameters such as: CPU 

core utilization, average response time of tasks and deadline 

missing rate. In the proposed algorithm, tasks are distributed 

among the cores to utilize the availability and   are allowed to 

migrate from one queue to another. The average response time 

of tasks is reduced and all the tasks meet their deadlines. In 

this algorithm, all the cores share the total workload at any 

scheduling instant so higher utilization is achieved with 

increase in work load. With these performance improvements, 

this proposed algorithm has comparatively more migration 

overhead. At contingency severity consequences, the 

migration of time critical tasks should be bounded to ensure 

meeting the deadlines which could be considered as future 

work on this algorithm. 
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