
International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.13, May 2015

23

A Novel Unpredictable Temporal based Pseudo

Random Number Generator

Aqeel Khalique
Jamia Hamdard

Hamdard University

New Delhi

Auqib Hamid Lone
Jamia Hamdard

Hamdard University

New Delhi

Syed Shahabuddin Ashraf
Jamia Hamdard

Hamdard University

New Delhi

ABSTRACT

Random numbers are sequences of integers which show

absolutely no relation to each other anywhere in the sequence.

Pseudo random numbers (PRNs) are random numbers which

can be generated deterministically. Pseudo random numbers

are widely used in cryptographic protocols to provide secrecy.

A wide variety of pseudo random number generators

(PRNGs) were proposed earlier which exhibit characteristics

of PRNG and generate pseudo random numbers. In this paper,

we propose a temporal based algorithm to generate pseudo

random numbers. Our algorithm utilizes dynamic system

clock and product of two large prime numbers generated

randomly. Using dynamic system clock, we ensure that the

seed is obtained from entropy source of some physical

phenomenon and product of large prime numbers generated

randomly ensure randomness of generated numbers. Our

algorithm is easy to implement on any computing device and

can be used for generating sequence of pseudo random

numbers for desired purpose.

General Terms

Pseudo Random Generators, Pseudo Random Number

Generation Algorithm.

Keywords

Random Number Generation, Pseudo Random Numbers,

Cryptography.

1. INTRODUCTION
Group of numbers or sequences of integers which show

absolutely no relation to each other anywhere in the sequence

are considered to be random numbers. Use of random

numbers drives the attention of many researchers. Many

network security algorithms and protocols based on

cryptography make use of random binary numbers. In

gambling, random number generation plays a vital role

towards hitting the odd. Designing a good random number

generator (RNG) is need of an hour, because it is an important

cryptographic primitive widely used for one time pad [1], key

generation [2] and authentication protocol [3]. The security of

random number generators relies on the assumption that

future values in the random number sequence can’t be

predicted from the observed sequence. The generation of high

quality randomness is vital and cornerstone of many

cryptographic random data generators and the importance of

careful design of cryptographic random data generators

cannot be underestimated.

Broadly, RNGs are classified into two categories namely true

random number generators (TRNG) and PRNG based on their

application to cryptography. TRNG extracts the randomness

from some physical phenomenon having some entropy

source. PRNG expands a key (seed) into a long sequence of

random bits based on a deterministic algorithm. It is

convenient for a PRNG to be seeded again, i.e., one can bring

additional source of entropy after pseudo random bits have

been generated. Instead throwing away the current state of

PRNG, re- seeding combines the current state of the PRNG

with the new seeding material and thus makes PRNG a

deterministic generator. The question comes in the mind why

should we bother about random number generation as it is

merely a call away because RNG are built into most of

compilers. Unfortunately, these random number generators

are not secure enough for cryptographic applications and

probably not even very random. Good PRNGs must be

cryptographically secure, a property that is often satisfied, if it

passes the standard battery of NIST tests [4].

The PRNG proposed in this paper is a novel temporal based

pseudo random number generator where randomness is

extracted using dynamic system clock/time and large prime

numbers chosen randomly. The equation to obtain PRNG bits

are calculated under modulo operation of group under N

where N=P*Q and P, Q are large prime numbers of 160 bits

generated randomly. As the seed in the proposed algorithm is

taken from dynamic system clock/time, which is more

preferred in PRNGs when the seed is taken from entropy

source of physical phenomenon. The proposed algorithm does

not produce repeated sequences for a definite period based on

frequency of execution. Moreover the proposed algorithm is

deterministic in nature because it depends on Dynamic

System clock.

2. BACKGROUND AND

CLASSIFICATION
Random Numbers are generally classified into two broad

categories namely true random numbers (TRNs) and pseudo

random numbers (PRNs).

2.1 True Random Numbers

Irrespective of the importance of random number generation,

surprisingly few TRNGs have been reported. Mostly there are

three commonly used techniques in the literature, namely

oscillator sampling, direct amplification and discrete time

chaos. In 1984, Fairfield, Mortenson and Coulhart [5]

developed the first RNG based on Oscillator phase noise. In

2001, Stojanovski et. al. [6] implemented an analog chaos

based RNG in a 0.8 µm CMOS process utilizing switched

current techniques. Petrie et. al., combined oscillator

sampling, direct amplification and discrete time chaos to

produce an analog VLSI chip which was robust to power

supply noise and substrate signal coupling [7].

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.13, May 2015

24

2.1.1 Features of True Random Numbers:
 Generation by physical phenomena having some

entropy source

 Generation is limited by the speed with which entropy

harvests

 Randomness – The sequence should be random as

defined statistically.

o Uniformity - The distribution of bits in the sequence

should be uniform i.e., the frequency of occurrence

of ones and zeros should be approximately equal.

o Independence - No one subsequence in the

sequence can be inferred from the others.

 Unpredictability - True random numbers are

statistically independent of other numbers in the

sequence and therefore unpredictable.

 Uses - gambling, modeling & simulation, security

algorithms & protocols

 Examples - radioactive decay, keystroke timing,

patterns, disk electrical activity, mouse movements,

and instantaneous values of the system clock.

Typically used for technical purposes - atmospheric noise,

thermal noise, electromagnetic or quantum phenomena

Figure 1: True Random Number Generator

2.2 Pseudo Random Numbers
Generation of PRNG’s starts way back when output of Linear

Feedback Shift Register was used for producing random

binary sequences [8]. In 1986, Wolfran [9] proposed a method

to generate Random numbers by connected cellular

automata’s. In 2002 P. Martin [10], evaluated different

PRNG’s implementation on FPGA’s. In 2001, Robert K

Watkins [11] introduced another FPGA implementation of

PRNG, their design used genetic algorithm to generate set of

PRNG’s.

2.2.1 Features of Pseudo Random Numbers

 Generated by mathematical/computational algorithms

 Randomness – The sequence should appear random

even though it is deterministic.

o Uniformity - The frequency of occurrence of ones

and zeros should be approximately equal.

o Scalability - If a sequence is random, then any

extracted subsequence should also be random.

o Consistency - The generator should behave

consistently based on starting values.

 Unpredictability – Pseudo random numbers should

exhibit unpredictability.

o Forward unpredictability - If the seed is unknown

the next sequence should be unpredictable even

though previous sequences are known.

o Backward unpredictability – It should not be

feasible to determine the seed from any generated

sequences.

 Seed must be secure or it can be generated from

entropy source of any physical phenomenon.

 Uses - modeling & simulation, cryptography, security

algorithms & protocols.

Figure 2: Pseudo Random Number Generator

2.3 Importance of Random Numbers

Random numbers are widely used in various industries

including gambling, online betting, security applications,

session management, financial transaction security,

cryptographic applications, algorithmic research, modeling &

simulation, network protocols.

3. GENERATION METHODS

3.1 Hardware based generators
Hardware based RNGs use entropy source as seed from some

physical phenomenon to generate random numbers which are

called true random numbers. They are primarily used in

modeling, simulation and gambling. The entropy source for

hardware based generators can be time difference between

emissions during radioactive decay, thermal noise from

electronic component, frequency instability of running

oscillator, atmospheric noise, any video input etc.

Generators based on the radioactive decay and thermal noise

have to be built externally to the device using the random bits

and thus can be manipulated by some adversaries. Generators

based on oscillators and capacitors can be built on VLSI

devices and can be enclosed in tamper resistant hardware and

hence secured from active adversaries.

3.2 Software based generators
Designing a random bit generator in software is even more

difficult than doing so in hardware. Processes upon which

software random bit generators may be based include system

clock, time difference between key presses, input/output

buffers etc.

The behavior of such processes can vary considerably

depending on various factors such as the computer hardware

or platform on which they are implemented. It may also be

difficult to prevent an adversary from observing or

manipulating these processes. For example, if an adversary

has an idea about a particular time at which random sequence

is being generated, then he can guess the content of the

system clock at that time with a high degree of accuracy. A

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.13, May 2015

25

well designed software random bit generator should utilize

good sources of randomness which are available.

4. POPULAR PRNGs REVIEW
In this section we review the theoretical principles, algorithms

and properties of PRNGs that are mostly based on algebraic

concepts and are used as building blocks for the PRNGs

implementations in various programming languages. We will

use this review as reference when stating the theoretical

PRNG of each implementation in applicable analysis sections.

4.1 Blum Blum Shub (BBS)
Blum Blum Shub (BBS) is a PRNG proposed in 1986 by

Lenore Blum, Manuel Blum and Michael Shub [12] that is

derived from Michael O. Rabin's oblivious transfer mapping.

BBS generates the sequence of random numbers using the

deterministic expression:

xn+1 = xn
2 mod M

where, M = p*q, product of two large primes p and q.

x0 should be an integer such that gcd (x0, M) =1

x0 ≠ 0 and x0 ≠ 1

p ≡ 3 (mod 4)

q ≡ 3 (mod 4)

BBS generator is very slow. However, there is a proof

reducing its security to the computational difficulty of

computing modular square roots. When the primes are chosen

appropriately distinguishing the output bits from random

should be at least as difficult as factoring M.

4.2 Linear Congruential Generator (LCG)

A linear congruential generator (LCG) is an algorithm that

yields a sequence of pseudo-randomized numbers calculated

with a discontinuous piecewise linear equation. LCG was

developed by D. H. Lehmer in 1949 [13]. The method

represents one of the oldest and best-known pseudorandom

number generator algorithms. LCG is defined by the

recurrence relation:

xn+1 = (axn + c) mod m

where, x0 is the initial value (seed) for n ≥ 0 and 0 ≤ x0 < m

a, c and m are constants

a is the multiplier and 0 < a < m

c is the increment and 0 ≤ c < m

The requirement constraints for initializing these values are

such that c and m are relatively prime.

LCG generates sequence of maximum periodic length m and

it strongly depends on the initialization values including seed.

4.3 Linear Feedback Shift Register (LFSR)
Linear Feedback Shift Register (LFSR) [14] is a shift register

whose input bit is a linear function of the previous state.

LFSR are prominent building blocks in many cryptographic

fields such as stream ciphers. They are mostly used as they

are easy to implement in hardware, produce sequences of

larger period, have good statistics properties and can be

analyzed using algebraic techniques.

LFSR has three functional components: a shift register, a

linear feedback function and a clock which times (seeds)

when the shift occurs. The shift register is a sequence of bits

generated at that particular time. Each time an output bit is

needed, the generator is stepped by shifting all the bits 1

position to the right. The new left-most bit (input bit) is

computed as a function of the other bits in the register. The

output bit is the bit in stage 0 (least significant bits). The

feedback function is XOR operation of bits in the registers.

Figure 3 shows an example configuration of LFSR [15].

Figure 3: Linear Feedback Shift Register

5. A NOVEL UNPREDICTABLE

TEMPORAL BASED PSEUDO RANDOM

NUMBER GENERATOR

We proposed a novel temporal based pseudo random number

generator which utilizes dynamic system clock and product of

two large prime numbers generated randomly. By using

dynamic system clock, we ensured that the seed is obtained

from entropy source of some physical phenomenon and

product of large prime numbers generated randomly ensured

randomness of generated numbers.

5.1 Algorithm

We generated random binary sequences by using the

algorithm given below:

Function Prime (integer Limit)

INPUT: Limit → A positive Integer.

OUTPUT: Prime → A List of Prime Numbers from 1 to

Limit -1.

Variable isPrime → Boolean

Variable Prime → List of Integers

Loop i from 1 to Limit - 1

isPrime = True

Loop j from 2 to i - 1

If (i mod j) == 0

isPrime = False

 End if

End Loop

If isPrime = True

add i to List Prime

 End if

End Loop

Function ModFun(List Prime)

INPUT: List Prime → List of Prime Numbers

OUTPUT: N → Number modulo Function

Variable rnd → new Random()

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.13, May 2015

26

Variable nextval → rnd.Next (n1, n2)

// n1 and n2 are relatively prime

Variable Limit1 → nextval * (Prime.count/nextval)

Variable Limit2 → Limit1 - ((Prime.count/nextval)

Variable P → Prime.item (Limit1 – 1)

Variable Q → Prime.item (Limit2 - 1)

Variable N → P * Q

Function RndToken(integer N)

INPUT: N → Number for Modulo Operation

OUTPUT: RndToken → Random Token or Random

Number

Variable RndToken → ((System clock Ticks + 1) * (System

clock hour + 1) * a) Mod N

// a and N are relatively prime

Figure 4: Flow Diagram of Algorithm

6. TEST RESULTS AND ANALYSIS

The algorithm was implemented and executed on Intel i3 2.4

Ghz processor with 4 GB RAM. It generates sequence of

binary random numbers which satisfies above mentioned

properties of pseudo random numbers. NIST has mentioned a

test suite for testing 15 tests mentioned in the document [4].

For many of the tests in this test suite, the assumption has

been made that the size of the sequence is large up to the

order of 103 to 107. We had tested our binary random numbers

on several test suites which are discussed in the following

section.

Frequency Test: Frequency Test determines number of

zeroes and ones in a sequence. The test assesses the ratio of

number of zeroes and number of ones and requirement for

passing the test is that the ratio should be approximately

unity.

Frequency Test within a Block: Frequency Test within a

Block determines the frequency of ones in an M-bit block.

The test assesses that for M-bit block the frequency of ones

should be approximately M/2.

Runs Test: Runs Test determines the total number of runs

(uninterrupted sequence of identical bits) in the sequence. The

test assesses the oscillation between zeroes and ones in the

sequence.

Test for the Longest Run of Ones in a Block: Test for the

Longest Run of Ones in a Block determines longest run of

ones in M-bit block. The test assesses whether the length of

the longest run of ones within the tested sequence is

consistent with the length of the longest run of ones in the

sequence.

Non-Overlapping Template Matching Test: Non-

Overlapping Template Matching Test determines the number

of occurrences of pre-specified target strings. The test

assesses and detects generators that produce too many

occurrences of a given non-periodic (aperiodic) pattern. It

uses a M-bit window of string sequence to search for specific

pattern. If the pattern is not found, the window slides one bit

position. If the pattern is found, the window is reset to the bit

after the found pattern and the search resumes.

Overlapping Template Matching Test: Overlapping

Template Matching test determines the number of

occurrences of pre-specified target strings. It uses a M-bit

window of string sequence to search for specific pattern. If

the pattern is not found, the window slides one bit position. If

the pattern is found, the window slides only one bit and the

search resumes.

Maurer’s “Universal Statistical” Test: Maurer’s “Universal

Statistical” Test determines number of bits between matching

patterns. The test assesses whether or not the sequence can be

significantly compressed without loss of information. If the

sequence can be compressed significantly it is considered to

be non-random.

Cumulative Sums Test: Cumulative Sums Test determines

the cumulative sum of bits in the sequence. The adjusted

weights of -1, +1 are given to zeroes and ones respectively.

The test assesses whether the cumulative sum for random

sequence is too large or too small.

We have tabulated the test result for a sample of random

sequences generated by our algorithm. Table 1 shows the

binary sequences and their result for respective test suites. We

have restricted our test compliance to six test suites for

conciseness of this work. Any sequence which satisfies the

requirement of passing the corresponding test as specified by

NIST test suite [4] has been marked as “” in the respective

cells. However, if it fails to satisfy, a “” has been marked in

the cells corresponding to the tests. Figure 5 shows numerical

analysis of the test results pertaining to random sequences

generated. The graph in Figure 5 has random sequences on x-

axis and discrete values of corresponding tests on y-axis

calculated as specified by NIST test suite [4] with

approximation. Each sequence has been presented for six tests

using histograms. Therefore, for every sequence six

histograms represent discrete values on y-axis. For instance,

first sequence “1010101001010101010010” holds a value of

0.91 for Frequency Test, 0.8 for Frequency Test within a

Block, 0.6 for Runs Test, 0.8 for Longest Run of Ones in a

Block, 0.9 for Non-Overlapping Template Matching Test, 0.6

for Overlapping Template Matching Test, 0.9 for Maurer’s

“Universal Statistical” Test, 0.045 for Cumulative Sums Test.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.13, May 2015

27

Figure 5: Numerical Analysis of Test Results

0

0.2

0.4

0.6

0.8

1

1.2

Frequency Test Frequency Test within a Block

Runs Test Test for the Longest Run of Ones in a Block

Non-Overlapping Template Matching Test Overlapping Template Matching Test

Maurer’s “Universal Statistical” Test Cumulative Sums Test

Table 1: Test Suite of the Proposed Algorithm

Binary Random Sequence

F
re

q
u

en
cy

 T
es

t

F
re

q
u

en
cy

 T
es

t

w
it

h
in

 a
 B

lo
ck

R
u

n
s

T
es

t

T
es

t
fo

r
th

e

L
o

n
g

es
t

R
u

n
 o

f

O
n

es
 i

n
 a

 B
lo

ck

N
o

n
-

O
v

er
la

p
p

in
g

T
em

p
la

te

M
a

tc
h

in
g

 T
es

t

O
v

er
la

p
p

in
g

T
em

p
la

te

M
a

tc
h

in
g

 T
es

t

M
a

u
re

r’
s

“
U

n
iv

er
sa

l

S
ta

ti
st

ic
a

l”
 T

es
t

C
u

m
u

la
ti

v
e

S
u

m
s

T
es

t

1010101001010101010010        

0001001010010010101001        

1010101000001001001010        

1010001000010010101010        

0100101010100101000101        

1010010101010101010101        

0101010100100001010101        

1010100100101010010001        

1010010101010101010100        

0101010101001010101010        

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.13, May 2015

28

7. CONCLUSION
PRNGs are widely used in various security, cryptographic and

networking protocols. In this paper, we proposed a novel

algorithm for generating pseudo random numbers using

dynamic system clock as entropy source from physical

phenomenon and product of large prime numbers which

determine our seed (initial value). We also formulated an

expression through which binary sequences of random

numbers are generated. This algorithm can be easily

implemented on any computing device and can be utilized to

serve the requirement of a pseudo random number generator.

Also, this algorithm is far simpler and at the same time

generates sequence of pseudo random numbers in binary form

which fulfill randomness and unpredictability. The scope of

temporal based pseudo random numbers can be utilized in

several different application domains for random number

generations. The unpredictability aspect of true randomness

can be achieved by utilizing any entropy source from physical

phenomenon. In future, other physical phenomenon can be

utilized in several existing random number generating

algorithms.

8. ACKNOWLEDGMENTS
We thank our friends for motivation and support in presenting

this paper.

9. REFERENCES

[1] Schneier, B. 1996. Applied Cryptography. John Wiley &

Sons. 2nd Edition.

[2] Ramaswamy, R. 1989. Application of key generation and

distribution algorithm for secure communication in open

system interconnection architecture. In Proceedings of

International Carnahan Conference on Security

Technology.

[3] Rinne, T., Ylonen, T., Kivinen, T. and Sami, M.S. 2002.

SSH Authentication Protocol. Network Working Group,

Internet Draft. IETF.

[4] Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.,

Leigh, S., Levenson, M., Vangel, M., Banks, D.,

Heckert, A., Dray, J. and Vo S. 2010. A statistical test

suite for random and pseudorandom number generators

for cryptographic applications. NIST Special Publication

800-22.

[5] Fair, R.C., Mortenson, R.L. and Coulthart, K. B. 1984.

An LSI Random Number Generator (RNG). Advances in

Cryptography: Proceedings of Crypto 84. Vol. 196.

[6] Stojanovski, T., Pil, J. and Kocarev L. 2001. Chaos-

based random number generators. Part II: practical

realization. Circuits and Systems I: Fundamental Theory

and Applications, IEEE Transactions. Vol. 48.

[7] Petrie, C. S. and Connelly J. 2000. A noise-based IC

random number generator for applications in

cryptography. IEEE Transactions on Circuits and

Systems. Vol.47.

[8] Knuth, D. 1981. The Art of Computer Programming.

Addison-Wesley.

[9] Wolfram, S. 1986. Random sequence generation by

cellular automata. Advances in Applied Mathematics.

Vol. 7.

[10] Martin, P. 2002. An analysis of random number

generators for a hardware implementation of genetic

programming using FPGAs and Handel-C. Proceedings

of the Genetic and Evolutionary Computation

Conference.

[11] Watkins, R. K., Isaacs, J. C. and Foo S. Y. 2001.

Evolvable random number generators: A schemata-based

approach. Genetic and Evolutionary Computation

Conference Late Breaking Papers.

[12] Blum, L., Blum, M. and Shub M. 1986. A simple

unpredictable pseudo-random number generator. SIAM

Journal on computing. Vol. 15.

[13] Lehmer, D. H. 1949. Mathematical methods in large-

scale computing units. 2nd Symposium on Large-Scale

Digital Calculating Machinery. pp. 141-146.

[14] Klein, A. 2013. Stream Ciphers. Chapter 2: Linear

Feedback Shift Registers.

[15] Aviv Sinai, 2011. Pseudo Random Number Generators in

Programming Languages:

http://portal.idc.ac.il/en/schools/cs/research/documents/si

nai_2011.pdf

IJCATM : www.ijcaonline.org

