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ABSTRACT 

Random numbers are sequences of integers which show 

absolutely no relation to each other anywhere in the sequence. 

Pseudo random numbers (PRNs) are random numbers which 

can be generated deterministically. Pseudo random numbers 

are widely used in cryptographic protocols to provide secrecy. 

A wide variety of pseudo random number generators 

(PRNGs) were proposed earlier which exhibit characteristics 

of PRNG and generate pseudo random numbers. In this paper, 

we propose a temporal based algorithm to generate pseudo 

random numbers. Our algorithm utilizes dynamic system 

clock and product of two large prime numbers generated 

randomly. Using dynamic system clock, we ensure that the 

seed is obtained from entropy source of some physical 

phenomenon and product of large prime numbers generated 

randomly ensure randomness of generated numbers. Our 

algorithm is easy to implement on any computing device and 

can be used for generating sequence of pseudo random 

numbers for desired purpose. 

General Terms 

Pseudo Random Generators, Pseudo Random Number 

Generation Algorithm. 

Keywords 

Random Number Generation, Pseudo Random Numbers, 

Cryptography. 

1. INTRODUCTION 
Group of numbers or sequences of integers which show 

absolutely no relation to each other anywhere in the sequence 

are considered to be random numbers. Use of random 

numbers drives the attention of many researchers. Many 

network security algorithms and protocols based on 

cryptography make use of random binary numbers. In 

gambling, random number generation plays a vital role 

towards hitting the odd. Designing a good random number 

generator (RNG) is need of an hour, because it is an important 

cryptographic primitive widely used for one time pad [1], key 

generation [2] and authentication protocol [3]. The security of 

random number generators relies on the assumption that 

future values in the random number sequence can’t be 

predicted from the observed sequence. The generation of high 

quality randomness is vital and cornerstone of many 

cryptographic random data generators and the importance of 

careful design of cryptographic random data generators 

cannot be underestimated. 

Broadly, RNGs are classified into two categories namely true 

random number generators (TRNG) and PRNG based on their 

application to cryptography. TRNG extracts the randomness 

from some physical phenomenon having some entropy 

source. PRNG expands a key (seed) into a long sequence of 

random bits based on a deterministic algorithm. It is 

convenient for a PRNG to be seeded again, i.e., one can bring 

additional source of entropy after pseudo random bits have 

been generated. Instead throwing away the current state of 

PRNG, re- seeding combines the current state of the PRNG 

with the new seeding material and thus makes PRNG a 

deterministic generator. The question comes in the mind why 

should we bother about random number generation as it is 

merely a call away because RNG are built into most of 

compilers. Unfortunately, these random number generators 

are not secure enough for cryptographic applications and 

probably not even very random. Good PRNGs must be 

cryptographically secure, a property that is often satisfied, if it 

passes the standard battery of NIST tests [4]. 

The PRNG proposed in this paper is a novel temporal based 

pseudo random number generator where randomness is 

extracted using dynamic system clock/time and large prime 

numbers chosen randomly. The equation to obtain PRNG bits 

are calculated under modulo operation of group under N 

where N=P*Q and P, Q are large prime numbers of 160 bits 

generated randomly. As the seed in the proposed algorithm is 

taken from dynamic system clock/time, which is more 

preferred in PRNGs when the seed is taken from entropy 

source of physical phenomenon. The proposed algorithm does 

not produce repeated sequences for a definite period based on 

frequency of execution. Moreover the proposed algorithm is 

deterministic in nature because it depends on Dynamic 

System clock.  

2. BACKGROUND AND 

CLASSIFICATION 
Random Numbers are generally classified into two broad 

categories namely true random numbers (TRNs) and pseudo 

random numbers (PRNs).  

2.1 True Random Numbers  

Irrespective of the importance of random number generation, 

surprisingly few TRNGs have been reported. Mostly there are 

three commonly used techniques in the literature, namely 

oscillator sampling, direct amplification and discrete time 

chaos. In 1984, Fairfield, Mortenson and Coulhart [5] 

developed the first RNG based on Oscillator phase noise. In 

2001, Stojanovski et. al. [6] implemented an analog chaos 

based RNG in a 0.8 µm CMOS process utilizing switched 

current techniques. Petrie et. al., combined oscillator 

sampling, direct amplification and discrete time chaos to 

produce an analog VLSI chip which was robust to power 

supply noise and substrate signal coupling [7]. 
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2.1.1 Features of True Random Numbers: 
 Generation by physical phenomena having some 

entropy source 

 Generation is limited by the speed with which entropy 

harvests 

 Randomness – The sequence should be random as 

defined statistically. 

o Uniformity - The distribution of bits in the sequence 

should be uniform i.e., the frequency of occurrence 

of ones and zeros should be approximately equal. 

o Independence - No one subsequence in the 

sequence can be inferred from the others. 

 Unpredictability - True random numbers are 

statistically independent of other numbers in the 

sequence and therefore unpredictable. 

 Uses - gambling, modeling & simulation, security 

algorithms & protocols 

 Examples - radioactive decay, keystroke timing, 

patterns, disk electrical activity, mouse movements, 

and instantaneous values of the system clock. 

Typically used for technical purposes - atmospheric noise, 

thermal noise, electromagnetic or quantum phenomena 

 

Figure 1: True Random Number Generator 

2.2 Pseudo Random Numbers 
Generation of PRNG’s starts way back when output of Linear 

Feedback Shift Register was used for producing random 

binary sequences [8]. In 1986, Wolfran [9] proposed a method 

to generate Random numbers by connected cellular 

automata’s. In 2002 P. Martin [10], evaluated different 

PRNG’s implementation on FPGA’s. In 2001, Robert K 

Watkins [11] introduced another FPGA implementation of 

PRNG, their design used genetic algorithm to generate set of 

PRNG’s. 

2.2.1 Features of Pseudo Random Numbers 

 Generated by mathematical/computational algorithms 

 Randomness – The sequence should appear random 

even though it is deterministic. 

o Uniformity - The frequency of occurrence of ones 

and zeros should be approximately equal. 

o Scalability - If a sequence is random, then any 

extracted subsequence should also be random. 

o Consistency - The generator should behave 

consistently based on starting values. 

 Unpredictability – Pseudo random numbers should 

exhibit unpredictability. 

o Forward unpredictability - If the seed is unknown 

the next sequence should be unpredictable even 

though previous sequences are known. 

o Backward unpredictability – It should not be 

feasible to determine the seed from any generated 

sequences. 

 Seed must be secure or it can be generated from 

entropy source of any physical phenomenon. 

 Uses - modeling & simulation, cryptography, security 

algorithms & protocols. 

 

Figure 2: Pseudo Random Number Generator 

2.3 Importance of Random Numbers 

Random numbers are widely used in various industries 

including gambling, online betting, security applications, 

session management, financial transaction security, 

cryptographic applications, algorithmic research, modeling & 

simulation, network protocols. 

3. GENERATION METHODS 

3.1 Hardware based generators 
Hardware based RNGs use entropy source as seed from some 

physical phenomenon to generate random numbers which are 

called true random numbers. They are primarily used in 

modeling, simulation and gambling. The entropy source for 

hardware based generators can be time difference between 

emissions during radioactive decay, thermal noise from 

electronic component, frequency instability of running 

oscillator, atmospheric noise, any video input etc. 

Generators based on the radioactive decay and thermal noise 

have to be built externally to the device using the random bits 

and thus can be manipulated by some adversaries. Generators 

based on oscillators and capacitors can be built on VLSI 

devices and can be enclosed in tamper resistant hardware and 

hence secured from active adversaries. 

3.2 Software based generators 
Designing a random bit generator in software is even more 

difficult than doing so in hardware. Processes upon which 

software random bit generators may be based include system 

clock, time difference between key presses, input/output 

buffers etc. 

The behavior of such processes can vary considerably 

depending on various factors such as the computer hardware 

or platform on which they are implemented. It may also be 

difficult to prevent an adversary from observing or 

manipulating these processes. For example, if an adversary 

has an idea about a particular time at which random sequence 

is being generated, then he can guess the content of the 

system clock at that time with a high degree of accuracy. A 
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well designed software random bit generator should utilize 

good sources of randomness which are available.  

4. POPULAR PRNGs REVIEW 
In this section we review the theoretical principles, algorithms 

and properties of PRNGs that are mostly based on algebraic 

concepts and are used as building blocks for the PRNGs 

implementations in various programming languages. We will 

use this review as reference when stating the theoretical 

PRNG of each implementation in applicable analysis sections.  

4.1 Blum Blum Shub (BBS) 
Blum Blum Shub (BBS) is a PRNG proposed in 1986 by 

Lenore Blum, Manuel Blum and Michael Shub [12] that is 

derived from Michael O. Rabin's oblivious transfer mapping. 

BBS generates the sequence of random numbers using the 

deterministic expression: 

xn+1 = xn
2 mod M 

where,  M = p*q, product of two large primes p and q.  

x0 should be an integer such that gcd (x0, M) =1 

x0 ≠ 0 and x0 ≠ 1 

p ≡ 3 (mod 4) 

q ≡ 3 (mod 4) 

BBS generator is very slow. However, there is a proof 

reducing its security to the computational difficulty of 

computing modular square roots. When the primes are chosen 

appropriately distinguishing the output bits from random 

should be at least as difficult as factoring M. 

4.2 Linear Congruential Generator (LCG)  

A linear congruential generator (LCG) is an algorithm that 

yields a sequence of pseudo-randomized numbers calculated 

with a discontinuous piecewise linear equation. LCG was 

developed by D. H. Lehmer in 1949 [13]. The method 

represents one of the oldest and best-known pseudorandom 

number generator algorithms. LCG is defined by the 

recurrence relation: 

xn+1 = (axn + c) mod m 

where, x0 is the initial value (seed) for n ≥ 0 and 0 ≤ x0 < m 

a, c and m are constants 

a is the multiplier and 0 < a < m 

c is the increment and 0 ≤ c < m 

The requirement constraints for initializing these values are 

such that c and m are relatively prime.  

LCG generates sequence of maximum periodic length m and 

it strongly depends on the initialization values including seed. 

4.3 Linear Feedback Shift Register (LFSR) 
Linear Feedback Shift Register (LFSR) [14] is a shift register 

whose input bit is a linear function of the previous state. 

LFSR are prominent building blocks in many cryptographic 

fields such as stream ciphers. They are mostly used as they 

are easy to implement in hardware, produce sequences of 

larger period, have good statistics properties and can be 

analyzed using algebraic techniques.  

LFSR has three functional components: a shift register, a 

linear feedback function and a clock which times (seeds) 

when the shift occurs. The shift register is a sequence of bits 

generated at that particular time. Each time an output bit is 

needed, the generator is stepped by shifting all the bits 1 

position to the right. The new left-most bit (input bit) is 

computed as a function of the other bits in the register. The 

output bit is the bit in stage 0 (least significant bits). The 

feedback function is XOR operation of bits in the registers. 

Figure 3 shows an example configuration of LFSR [15]. 

 

Figure 3: Linear Feedback Shift Register 

5. A NOVEL UNPREDICTABLE 

TEMPORAL BASED PSEUDO RANDOM 

NUMBER GENERATOR 

We proposed a novel temporal based pseudo random number 

generator which utilizes dynamic system clock and product of 

two large prime numbers generated randomly. By using 

dynamic system clock, we ensured that the seed is obtained 

from entropy source of some physical phenomenon and 

product of large prime numbers generated randomly ensured 

randomness of generated numbers. 

5.1 Algorithm 

We generated random binary sequences by using the 

algorithm given below: 

Function Prime (integer Limit) 

INPUT: Limit → A positive Integer. 

OUTPUT: Prime → A List of Prime Numbers from 1 to 

Limit -1. 

Variable isPrime → Boolean 

Variable Prime → List of Integers 

Loop i from 1 to Limit - 1 

isPrime = True 

Loop j from 2 to i - 1 

If (i mod j) == 0  

isPrime = False 

 End if 

End Loop 

If isPrime = True 

add i to List Prime 

 End if 

End Loop 

 

Function ModFun(List Prime) 

INPUT: List Prime → List of Prime Numbers 

OUTPUT: N → Number modulo Function 

Variable rnd → new Random( ) 
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Variable nextval → rnd.Next (n1, n2)   

// n1 and n2 are relatively prime 

Variable Limit1 → nextval * (Prime.count/nextval) 

Variable Limit2 → Limit1 - ((Prime.count/nextval) 

Variable P → Prime.item (Limit1 – 1) 

Variable Q → Prime.item (Limit2 - 1) 

Variable N → P * Q 

 

Function RndToken(integer N) 

INPUT: N → Number for Modulo Operation 

OUTPUT: RndToken → Random Token or Random 

Number 

Variable RndToken → ((System clock Ticks + 1) * (System 

clock hour + 1) * a) Mod N 

// a and N are relatively prime 

 

 

Figure 4: Flow Diagram of Algorithm 

6. TEST RESULTS AND ANALYSIS 

The algorithm was implemented and executed on Intel i3 2.4 

Ghz processor with 4 GB RAM. It generates sequence of 

binary random numbers which satisfies above mentioned 

properties of pseudo random numbers. NIST has mentioned a 

test suite for testing 15 tests mentioned in the document [4]. 

For many of the tests in this test suite, the assumption has 

been made that the size of the sequence is large up to the 

order of 103 to 107. We had tested our binary random numbers 

on several test suites which are discussed in the following 

section.  

Frequency Test: Frequency Test determines number of 

zeroes and ones in a sequence. The test assesses the ratio of 

number of zeroes and number of ones and requirement for 

passing the test is that the ratio should be approximately 

unity. 

Frequency Test within a Block: Frequency Test within a 

Block determines the frequency of ones in an M-bit block. 

The test assesses that for M-bit block the frequency of ones 

should be approximately M/2. 

Runs Test: Runs Test determines the total number of runs 

(uninterrupted sequence of identical bits) in the sequence. The 

test assesses the oscillation between zeroes and ones in the 

sequence. 

Test for the Longest Run of Ones in a Block: Test for the 

Longest Run of Ones in a Block determines longest run of 

ones in M-bit block. The test assesses whether the length of 

the longest run of ones within the tested sequence is 

consistent with the length of the longest run of ones in the 

sequence. 

Non-Overlapping Template Matching Test: Non-

Overlapping Template Matching Test determines the number 

of occurrences of pre-specified target strings. The test 

assesses and detects generators that produce too many 

occurrences of a given non-periodic (aperiodic) pattern. It 

uses a M-bit window of string sequence to search for specific 

pattern. If the pattern is not found, the window slides one bit 

position. If the pattern is found, the window is reset to the bit 

after the found pattern and the search resumes. 

Overlapping Template Matching Test: Overlapping 

Template Matching test determines the number of 

occurrences of pre-specified target strings. It uses a M-bit 

window of string sequence to search for specific pattern. If 

the pattern is not found, the window slides one bit position. If 

the pattern is found, the window slides only one bit and the 

search resumes. 

Maurer’s “Universal Statistical” Test: Maurer’s “Universal 

Statistical” Test determines number of bits between matching 

patterns. The test assesses whether or not the sequence can be 

significantly compressed without loss of information. If the 

sequence can be compressed significantly it is considered to 

be non-random. 

Cumulative Sums Test: Cumulative Sums Test determines 

the cumulative sum of bits in the sequence. The adjusted 

weights of -1, +1 are given to zeroes and ones respectively. 

The test assesses whether the cumulative sum for random 

sequence is too large or too small. 

We have tabulated the test result for a sample of random 

sequences generated by our algorithm. Table 1 shows the 

binary sequences and their result for respective test suites. We 

have restricted our test compliance to six test suites for 

conciseness of this work. Any sequence which satisfies the 

requirement of passing the corresponding test as specified by 

NIST test suite [4] has been marked as “” in the respective 

cells. However, if it fails to satisfy, a “” has been marked in 

the cells corresponding to the tests. Figure 5 shows numerical 

analysis of the test results pertaining to random sequences 

generated. The graph in Figure 5 has random sequences on x-

axis and discrete values of corresponding tests on y-axis 

calculated as specified by NIST test suite [4] with 

approximation. Each sequence has been presented for six tests 

using histograms. Therefore, for every sequence six 

histograms represent discrete values on y-axis. For instance, 

first sequence “1010101001010101010010” holds a value of 

0.91 for Frequency Test, 0.8 for Frequency Test within a 

Block, 0.6 for Runs Test, 0.8 for Longest Run of Ones in a 

Block, 0.9 for Non-Overlapping Template Matching Test, 0.6 

for Overlapping Template Matching Test, 0.9 for Maurer’s 

“Universal Statistical” Test, 0.045 for Cumulative Sums Test.
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Figure 5: Numerical Analysis of Test Results
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1010101001010101010010         

0001001010010010101001         

1010101000001001001010         

1010001000010010101010         

0100101010100101000101         

1010010101010101010101         

0101010100100001010101         

1010100100101010010001         

1010010101010101010100         

0101010101001010101010         
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7. CONCLUSION 
PRNGs are widely used in various security, cryptographic and 

networking protocols. In this paper, we proposed a novel 

algorithm for generating pseudo random numbers using 

dynamic system clock as entropy source from physical 

phenomenon and product of large prime numbers which 

determine our seed (initial value). We also formulated an 

expression through which binary sequences of random 

numbers are generated. This algorithm can be easily 

implemented on any computing device and can be utilized to 

serve the requirement of a pseudo random number generator. 

Also, this algorithm is far simpler and at the same time 

generates sequence of pseudo random numbers in binary form 

which fulfill randomness and unpredictability. The scope of 

temporal based pseudo random numbers can be utilized in 

several different application domains for random number 

generations. The unpredictability aspect of true randomness 

can be achieved by utilizing any entropy source from physical 

phenomenon. In future, other physical phenomenon can be 

utilized in several existing random number generating 

algorithms.  
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