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ABSTRACT 

This paper presents particle swarm optimization (PSO) 

method to find the prime factors of a composite number. 

Integer factorization is a well known NP hard problem and 

security of many cryptosystem is based on difficulty of 

integer factorization. A particle swarm optimization algorithm 

for integer factorization has been devised and tested on 

different 100 numbers. It has been found that the PSO method 

performs with little variability over swarm size. 
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1. INTRODUCTION 
Number theory is one of the purest and oldest branches of 

mathematics, but it has turned out to be one of the most useful 

when it comes to computer security. In 1801 Gauss identified 

primality testing and integer factorizing as the two most 

fundamental problems. Integer factorization or prime 

factorization is the decomposition of a composite number into 

non-trivial divisors, which when multiplied together equals to 

the original integer. Many cryptographic algorithms are based 

on the difficulty of factoring large composite integer or a 

related problem, e.g. RSA. The RSA [9] cryptosystem was 

proposed in 1978 by R.L. Rivest, A. Shamir and L. 

Adlenman, is the most well known public key cryptosystem. 

It is widely used to secure the information in the insecure 

channel [12]. It is also implemented in most web servers and 

browsers, and present in most commercially available security 

products. RSA algorithm uses a pair of keys to encrypt and 

decrypt a message. One key is used to encrypt a message, 

called public key and the other key is used to decrypt a 

message, called private key. The security of RSA is based on 

the difficulty of integer factorization. The integer factorization 

problem (IFP) is a well-known topic of research within both 

academics and industry. The mathematical definition of IFP is 

given below: 

Given N, find primes pj for i = 1, 2......., r with p1< p2<....<pr 

and ej ε N for j = 1, 2,….,r such that n =p1
e1. p2

e2…..pr
er 

2. LEGENDRE’S CONGRUENCE 
If we have two integers x and y such that 

x2≡y2 mod N, 0<x<y<N, x≠y, x+y≠N 

then gcd(x-y, N) and gcd(x+y, N) are possibly nontrivial 

factors of N, because N divides (x+y)(x-y), but N does not 

divide (x-y) and (x+y). The congruence is often called 

Legendre’s Congruence [13]. 

3. THE PSO APPROACH 
Kennedy and Eberhart proposed particle swarm optimization 

(PSO) [7] method based on social behavior of a flock of 

migrating birds. Particles are abstract entities. The set of 

particles is called a swarm. Each particle has position and 

velocity and also equipped with a small memory comprising 

its previous best position (pbest) and a global best position 

(gbest). Particles are evaluated by a fitness function. The main 

strength of PSO over other nature inspired computing is its 

fast convergence. Information sharing mechanism in PSO is 

one way. The gbest particle gives out the information to 

others particles. Pseudo code of PSO [4] is given below. 

For each particle 

 Initialize particles position and velocity 

End 

Do 

 For each particle 

  Calculate fitness value 

If fitness value is greater than the best 

fitness value then set current value as the 

new pbest 

 End 

Choose the particle with the best fitness value of all 

the particles as the gbest  

Calculate particle velocity 

Calculate particle position 

End 

While maximum iteration or goal is not attained 

Flow diagram illustrating the particle swarm optimization 

algorithm is shown in Figure 1. 
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Fig 1: Flow chart of PSO 

3.1 Initialization 
Particles are initialized as a two dimensional vector X=(x1, 

x2), where X takes a random integer value between 1 and N1/2 

(N is the input number) such that x1<x2. Particle’s velocity 

also initialized as a two dimensional vector V=(vx, vy), where 

V takes a random integer value between 1 and (N-3)/10. 

3.2 Fitness Function 
Fitness function value gives the effectiveness of the particle in 

the search space. The value of the fitness function indicates 

the distance between the current position of the particle and its 

solution. The fitness function is defined as: 

f(x1, x2)=abs(x1
2-x2

2) mod N, 0<x<y<N, x≠y, x+y≠N 

If f=0 for a particle, then that position of the particle is taken 

as a solution. 

3.3 Update Velocity and Position 
The velocity, Vt and position, Xt+1 of the particle P at time t is 

updated using the following formula [4]: 

Vt+1=ω*Vt + c1*φ1*(pbestt-Xt) + c2*φ2*(gbestt-Xt) 

Xt+1=Xt+vt+1 

Where: 

ω: The inertia weight ω controls the momentum of the 

particle. 

c1, c2: Acceleration coefficients 

φ1, φ2: Two random variables in the interval [0, 1] which inject 

the unpredictability of the particles movement 

The first part in the velocity updating formula represents the 

inertial velocity of the particle. A higher value of ω facilitates 

global search while a lower value of ω facilitates local search 

[10]. ω determines rate of contribution of previous velocity. 

There are many inertia weight strategies in PSO. Banasal et. al 

[3] stated that Chaotic Inertia Weight is the best strategy for 

better accuracy and Random Inertia Weight strategy is best 

for better efficiency. The second part in the velocity updating 

formula is called cognition part and it represents personal 

experience of the particle [11]. The third part is called social 

part and it represents global experience of the particle [11]. 

3.4 Boundary Condition 
Boundary condition is an important part of PSO which 

restricts the particle to fly within the feasible space. There are 

many boundary conditions: absorbing, reflecting, invisible, 

damping [6]. We have developed a boundary condition 

utilizing the gbest at time t and the current position of the 

particle and set velocity equal to zero in that direction. It is 

represented as follows. 

Xt+1=abs(R×(gbestt-Xt+1))+Xmin 

Vt+1=0 

Where: 

R: A random number in the interval [0, 1] 

Xmin: Lower bound of X 

3.5 Neighborhood Policy 
Inside the swarm a topology is defined. It is a set of links 

between particles, saying “who informs whom”. The set of 

particles that informs a particle is called its neighbourhood.  

There are many neighbourhood topologies [8]: ring, fully 

connected, mesh, star, and tree as shown in the Figure 2. We 

have used fully connected topology, because the PSO provide 

a faster convergence by focusing on the best position 

encountered by all particles by taking the whole population as 

its neighbors [1]. All nodes in this topology are directly 

connected among each other. 

 
Fig 2: (a) Ring topology (b) Fully connected topology (c) 

Mesh topology (d) Star topology (e) Tree topology 
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4. COMPUTATIONAL EXPERIENCE 

4.1 Experimental Setup 
The swarm size is taken to be 20, 30, 40, 50, and 60. In our 

experiment three inertia weight strategies are considered- 

constant inertia weight, random inertia weight [2], and chaotic 

inertia weight [5]. The value of ω for constant inertia weight 

strategies is set to 0.76. Random Inertia Weight and Chaotic 

Inertia Weight are computed according to the equation (1) and 

(2) respectively. 

ω=0.5+Rand()/2    (1) 

Where: 

Rand(): Rand() is a random number within the range [0, 1] 

ω=(ω1-ω2)×(MAXiter-iter)/MAXiter+ ω2×z (2) 

Where: 

ω1: Initial value of inertia weight 

ω2: Final value of inertia weight 

MAXiter: Maximum iterative time 

iter: Current iterative time 

z=4×z×(1-z), provided that initial value of z in the range (0, 1) 

Values for ω1 and ω2 are set to 0.9 and 0.4 respectively. The 

value of acceleration coefficient c1 and c2 are taken equal to 

2.25. Maximum number of iteration is set to 50. For each 

value of N, 50 independent runs are performed. We have 

tested over 100 random numbers. The PSO is coded in C, and 

run using an Intel Core 2 Duo 2.20 GHz PC with 3GB RAM. 

4.2 Result and Analysis 
The performance criteria [2]: Success Rate (SR) and Number 

of Function Evaluation (NFE) are shown in the Table 1 and 

Figure 4. The success rate is computed according to the 

equation (3). 

SR= Gtimes/Truns    (3) 

Where Gtimes is the total number of times the set goal was 

reached over 50 independent runs and Truns is the total number 

of independent runs. 

The number of function evaluation is computed according to 

the equation (4). 

NEF= (Ssize×tavg)/SR   (4) 

Where Ssize is the swarm size and tavg is the average number of 

iterations the set goal was reached over 50 independent runs. 

The experiment result is shown at Table 1. Variation of SR, 

average iterations and time with swarm size for Chaotic 

Inertia Weight, Random Inertia Weight and Constant Inertia 

Weight are shown in Figure 3-5. In Figure 3 it is observed that 

SR increases with increase in swarm size and maximum SR is 

observed in Random Inertia Weight Strategies. Figure 4 

represent the variation of average iterations with respect to 

swarm size. It is found that average iterations decrease with 

increase in swarm size and minimum average iterations is 

observed for Random Inertia Weight. Figure 5 represent the 

variation of execution time with swarm size. It is found that 

execution time increases with increase in swarm size and 

minimum time is observed for Random Inertia Weight. As an 

overall it is observed that PSO with Random Inertia Weight 

perform outstanding comparing with Chaotic Inertia Weight 

and Constant Inertia Weight. 

Table 1: Results Achieved from Experiments 

Swarm 

Size 

Success 

Rate (SR) 

Average 

Iterations 
NFE Time (S) 

Chaotic Inertia Weight 

20 0.347 17.839 1028.184 0.0502 

30 0.428 15.602 1093.598 0.0533 

40 0.544 14.287 1050.515 0.0551 

50 0.552 14.728 1334.058 0.0583 

60 0.613 14.788 1447.439 0.0598 

Random Inertia Weight 

20 0.405 18.016 888.679 0.0501 

30 0.486 16.724 1032.346 0.0538 

40 0.565 16.397 1160.850 0.0551 

50 0.575 14.187 1233.652 0.0580 

60 0.657 13.064 1193.059 0.0587 

Constant Inertia Weight 

20 0.394 17.084 867.208 0.0505 

30 0.489 14.089 864.356 0.0531 

40 0.548 15.844 1156.496 0.0560 

50 0.616 13.955 1132.711 0.0575 

60 0.632 15.213 1444.272 0.0609 

Fig 3: Variation of SR with swarm size 

 

 Fig 4: Variation of average iterations with swarm size 
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 Fig 5: Variation of time with swarm size 

5. CONCLUSION 
This paper presents a methodology involving particle swarm 

optimization to find the factors of an integer number. The 

particles are represented as integer particles and are guided 

using fitness function. The particle’s previous best (pbest) and 

global best (gbest) positions of the particles help the 

procedure to move towards the solution. The procedure follow 

fully connected neighbourhood topology. We have used a new 

boundary condition for finding the factors of an integer 

number. The procedure has been validated with 100 numbers 

of different sizes. From our experiment we can infer that our 

approach can find the factors of an integer number and good 

performance is observed for swarm size 50-60. The further 

works involve in scaling the procedure in tackling very large 

number and increasing success rate (SR). 
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