
International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.13, May 2015

14

Particle Swarm Optimization Algorithm for

Integer Factorization Problem (IFP)

Bhargab Choudhury

Department of Information Technology

North Eastern Hill University

Shillong 793022 India

Sangita Neog
Department of Information Technology

North Eastern Hill University

Shillong 793022 India

ABSTRACT

This paper presents particle swarm optimization (PSO)

method to find the prime factors of a composite number.

Integer factorization is a well known NP hard problem and

security of many cryptosystem is based on difficulty of

integer factorization. A particle swarm optimization algorithm

for integer factorization has been devised and tested on

different 100 numbers. It has been found that the PSO method

performs with little variability over swarm size.

General Terms

Swarm Intelligence, Cryptanalysis

Keywords

Legendre Congruence, PSO

1. INTRODUCTION
Number theory is one of the purest and oldest branches of

mathematics, but it has turned out to be one of the most useful

when it comes to computer security. In 1801 Gauss identified

primality testing and integer factorizing as the two most

fundamental problems. Integer factorization or prime

factorization is the decomposition of a composite number into

non-trivial divisors, which when multiplied together equals to

the original integer. Many cryptographic algorithms are based

on the difficulty of factoring large composite integer or a

related problem, e.g. RSA. The RSA [9] cryptosystem was

proposed in 1978 by R.L. Rivest, A. Shamir and L.

Adlenman, is the most well known public key cryptosystem.

It is widely used to secure the information in the insecure

channel [12]. It is also implemented in most web servers and

browsers, and present in most commercially available security

products. RSA algorithm uses a pair of keys to encrypt and

decrypt a message. One key is used to encrypt a message,

called public key and the other key is used to decrypt a

message, called private key. The security of RSA is based on

the difficulty of integer factorization. The integer factorization

problem (IFP) is a well-known topic of research within both

academics and industry. The mathematical definition of IFP is

given below:

Given N, find primes pj for i = 1, 2......., r with p1< p2<....<pr

and ej ε N for j = 1, 2,….,r such that n =p1
e1. p2

e2…..pr
er

2. LEGENDRE’S CONGRUENCE
If we have two integers x and y such that

x2≡y2 mod N, 0<x<y<N, x≠y, x+y≠N

then gcd(x-y, N) and gcd(x+y, N) are possibly nontrivial

factors of N, because N divides (x+y)(x-y), but N does not

divide (x-y) and (x+y). The congruence is often called

Legendre’s Congruence [13].

3. THE PSO APPROACH
Kennedy and Eberhart proposed particle swarm optimization

(PSO) [7] method based on social behavior of a flock of

migrating birds. Particles are abstract entities. The set of

particles is called a swarm. Each particle has position and

velocity and also equipped with a small memory comprising

its previous best position (pbest) and a global best position

(gbest). Particles are evaluated by a fitness function. The main

strength of PSO over other nature inspired computing is its

fast convergence. Information sharing mechanism in PSO is

one way. The gbest particle gives out the information to

others particles. Pseudo code of PSO [4] is given below.

For each particle

 Initialize particles position and velocity

End

Do

 For each particle

 Calculate fitness value

If fitness value is greater than the best

fitness value then set current value as the

new pbest

 End

Choose the particle with the best fitness value of all

the particles as the gbest

Calculate particle velocity

Calculate particle position

End

While maximum iteration or goal is not attained

Flow diagram illustrating the particle swarm optimization

algorithm is shown in Figure 1.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.13, May 2015

15

Fig 1: Flow chart of PSO

3.1 Initialization
Particles are initialized as a two dimensional vector X=(x1,

x2), where X takes a random integer value between 1 and N1/2

(N is the input number) such that x1<x2. Particle’s velocity

also initialized as a two dimensional vector V=(vx, vy), where

V takes a random integer value between 1 and (N-3)/10.

3.2 Fitness Function
Fitness function value gives the effectiveness of the particle in

the search space. The value of the fitness function indicates

the distance between the current position of the particle and its

solution. The fitness function is defined as:

f(x1, x2)=abs(x1
2-x2

2) mod N, 0<x<y<N, x≠y, x+y≠N

If f=0 for a particle, then that position of the particle is taken

as a solution.

3.3 Update Velocity and Position
The velocity, Vt and position, Xt+1 of the particle P at time t is

updated using the following formula [4]:

Vt+1=ω*Vt + c1*φ1*(pbestt-Xt) + c2*φ2*(gbestt-Xt)

Xt+1=Xt+vt+1

Where:

ω: The inertia weight ω controls the momentum of the

particle.

c1, c2: Acceleration coefficients

φ1, φ2: Two random variables in the interval [0, 1] which inject

the unpredictability of the particles movement

The first part in the velocity updating formula represents the

inertial velocity of the particle. A higher value of ω facilitates

global search while a lower value of ω facilitates local search

[10]. ω determines rate of contribution of previous velocity.

There are many inertia weight strategies in PSO. Banasal et. al

[3] stated that Chaotic Inertia Weight is the best strategy for

better accuracy and Random Inertia Weight strategy is best

for better efficiency. The second part in the velocity updating

formula is called cognition part and it represents personal

experience of the particle [11]. The third part is called social

part and it represents global experience of the particle [11].

3.4 Boundary Condition
Boundary condition is an important part of PSO which

restricts the particle to fly within the feasible space. There are

many boundary conditions: absorbing, reflecting, invisible,

damping [6]. We have developed a boundary condition

utilizing the gbest at time t and the current position of the

particle and set velocity equal to zero in that direction. It is

represented as follows.

Xt+1=abs(R×(gbestt-Xt+1))+Xmin

Vt+1=0

Where:

R: A random number in the interval [0, 1]

Xmin: Lower bound of X

3.5 Neighborhood Policy
Inside the swarm a topology is defined. It is a set of links

between particles, saying “who informs whom”. The set of

particles that informs a particle is called its neighbourhood.

There are many neighbourhood topologies [8]: ring, fully

connected, mesh, star, and tree as shown in the Figure 2. We

have used fully connected topology, because the PSO provide

a faster convergence by focusing on the best position

encountered by all particles by taking the whole population as

its neighbors [1]. All nodes in this topology are directly

connected among each other.

Fig 2: (a) Ring topology (b) Fully connected topology (c)

Mesh topology (d) Star topology (e) Tree topology

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.13, May 2015

16

4. COMPUTATIONAL EXPERIENCE

4.1 Experimental Setup
The swarm size is taken to be 20, 30, 40, 50, and 60. In our

experiment three inertia weight strategies are considered-

constant inertia weight, random inertia weight [2], and chaotic

inertia weight [5]. The value of ω for constant inertia weight

strategies is set to 0.76. Random Inertia Weight and Chaotic

Inertia Weight are computed according to the equation (1) and

(2) respectively.

ω=0.5+Rand()/2 (1)

Where:

Rand(): Rand() is a random number within the range [0, 1]

ω=(ω1-ω2)×(MAXiter-iter)/MAXiter+ ω2×z (2)

Where:

ω1: Initial value of inertia weight

ω2: Final value of inertia weight

MAXiter: Maximum iterative time

iter: Current iterative time

z=4×z×(1-z), provided that initial value of z in the range (0, 1)

Values for ω1 and ω2 are set to 0.9 and 0.4 respectively. The

value of acceleration coefficient c1 and c2 are taken equal to

2.25. Maximum number of iteration is set to 50. For each

value of N, 50 independent runs are performed. We have

tested over 100 random numbers. The PSO is coded in C, and

run using an Intel Core 2 Duo 2.20 GHz PC with 3GB RAM.

4.2 Result and Analysis
The performance criteria [2]: Success Rate (SR) and Number

of Function Evaluation (NFE) are shown in the Table 1 and

Figure 4. The success rate is computed according to the

equation (3).

SR= Gtimes/Truns (3)

Where Gtimes is the total number of times the set goal was

reached over 50 independent runs and Truns is the total number

of independent runs.

The number of function evaluation is computed according to

the equation (4).

NEF= (Ssize×tavg)/SR (4)

Where Ssize is the swarm size and tavg is the average number of

iterations the set goal was reached over 50 independent runs.

The experiment result is shown at Table 1. Variation of SR,

average iterations and time with swarm size for Chaotic

Inertia Weight, Random Inertia Weight and Constant Inertia

Weight are shown in Figure 3-5. In Figure 3 it is observed that

SR increases with increase in swarm size and maximum SR is

observed in Random Inertia Weight Strategies. Figure 4

represent the variation of average iterations with respect to

swarm size. It is found that average iterations decrease with

increase in swarm size and minimum average iterations is

observed for Random Inertia Weight. Figure 5 represent the

variation of execution time with swarm size. It is found that

execution time increases with increase in swarm size and

minimum time is observed for Random Inertia Weight. As an

overall it is observed that PSO with Random Inertia Weight

perform outstanding comparing with Chaotic Inertia Weight

and Constant Inertia Weight.

Table 1: Results Achieved from Experiments

Swarm

Size

Success

Rate (SR)

Average

Iterations
NFE Time (S)

Chaotic Inertia Weight

20 0.347 17.839 1028.184 0.0502

30 0.428 15.602 1093.598 0.0533

40 0.544 14.287 1050.515 0.0551

50 0.552 14.728 1334.058 0.0583

60 0.613 14.788 1447.439 0.0598

Random Inertia Weight

20 0.405 18.016 888.679 0.0501

30 0.486 16.724 1032.346 0.0538

40 0.565 16.397 1160.850 0.0551

50 0.575 14.187 1233.652 0.0580

60 0.657 13.064 1193.059 0.0587

Constant Inertia Weight

20 0.394 17.084 867.208 0.0505

30 0.489 14.089 864.356 0.0531

40 0.548 15.844 1156.496 0.0560

50 0.616 13.955 1132.711 0.0575

60 0.632 15.213 1444.272 0.0609

Fig 3: Variation of SR with swarm size

 Fig 4: Variation of average iterations with swarm size

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.13, May 2015

17

 Fig 5: Variation of time with swarm size

5. CONCLUSION
This paper presents a methodology involving particle swarm

optimization to find the factors of an integer number. The

particles are represented as integer particles and are guided

using fitness function. The particle’s previous best (pbest) and

global best (gbest) positions of the particles help the

procedure to move towards the solution. The procedure follow

fully connected neighbourhood topology. We have used a new

boundary condition for finding the factors of an integer

number. The procedure has been validated with 100 numbers

of different sizes. From our experiment we can infer that our

approach can find the factors of an integer number and good

performance is observed for swarm size 50-60. The further

works involve in scaling the procedure in tackling very large

number and increasing success rate (SR).

6. REFERENCES
[1] Abraham, S., Sanyal, S., and Sanglikar, M. 2010. Particle

Swarm Optimization Based Diophantine Equation

Solver, International Journal of Bio-Inspired

Computation 2(2), 100-114

[2] Arasomwan, M. A. and Adewumi, O. A. 2014. An

Investigation into the Performance of Particle Swarm

Optimization with Various Chaotic Maps, 2014. Hindawi

Publishing Corporation Mathematical Problems in

Engineering Volume 2014, Article ID 178959, 17 pages.

[3] Bansal, J. C., Singh, P. K., Saraswat, M., Verma, A.,

Jadon, S. S., & Abraham, A. (2011, October). Inertia

weight strategies in particle swarm optimization. In

Nature and Biologically Inspired Computing (NaBIC),

2011 Third World Congress on (pp. 633-640). IEEE.

[4] Das, S., Abraham, A., and Konar, A. 2008. Particle

swarm optimization and differential evolution

algorithms: technical analysis, applications and

hybridization perspectives. In Advances of

Computational Intelligence in Industrial Systems (pp. 1-

38). Springer Berlin Heidelberg.

[5] Feng, Y., Teng, G. F., Wang, A. X., & Yao, Y. M. (2007,

September). Chaotic inertia weight in particle swarm

optimization. In Innovative Computing, Information and

Control, 2007. ICICIC'07. Second International

Conference on (pp. 475-475). IEEE.

[6] Huang, T., and Mohan, A. S. 2005. A hybrid boundary

condition for robust particle swarm optimization.

Antennas and Wireless Propagation Letters, IEEE, 4,

112-117.

[7] Kennedy, J. 2010. Particle swarm optimization. In

Encyclopedia of Machine Learning (pp. 760-766).

Springer US.

[8] Medina, A. J. R., Pulido, G. T., and Ramírez-Torres, J.

G. 2009. A Comparative Study of Neighborhood

Topologies for Particle Swarm Optimizers. In IJCCI (pp.

152-159).

[9] Rivest, R. L., Shamir, A., & Adleman, L. (1978). A

method for obtaining digital signatures and public-key

cryptosystems. Communications of the ACM, 21(2),

120-126.

[10] Shi, Y., & Eberhart, R. C. (1999). Empirical study of

particle swarm optimization. In Evolutionary

Computation, 1999. CEC 99. Proceedings of the 1999

Congress on (Vol. 3). IEEE.

[11] Sun, J., Lai, C. H., & Wu, X. J. (2011). Particle Swarm

Optimisation: Classical and Quantum Perspectives. CRC

Press.

[12] Vignesh, R. S., Sudharssun, S., & Kumar, K. J. (2009,

December). Limitations of quantum & the versatility of

classical cryptography: a comparative study. In

Environmental and Computer Science, 2009. ICECS'09.

Second International Conference on (pp. 333-337).

IEEE.

[13] Yan, S. Y. 2002. Number theory for computing. Springer

Science & Business Media.

IJCATM : www.ijcaonline.org

