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ABSTRACT 

In this paper we propose an approach to solve multi-objective 

structural design problem using basic t-norm based fuzzy 

optimization programming technique. Here a planer truss 

structural model in fuzzy environment has been developed. In 

this structural model formulation, the objective functions are 

the weight of the truss and the vertical deflection of loaded 

joint; the design variables are the cross-sections of 

the truss members; the constraints are the stresses in members. 

A classical truss optimization example is presented here in to 

demonstrate the efficiency of our propose optimization 

approach. The test problem includes a three-bar planar truss 

subjected to a single load condition. This approximation 

approach is used to solve this multi-objective structural 

optimization model. The model is illustrated with numerical 

examples.  
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1. INTRODUCTION 
Optimization is the process of minimizing or maximizing an 

objective function (e.g. cost, weight) of a structural system 

which has been frequently employed as the evaluation 

criterion in structural engineering applications. But in the 

practical optimization problems, usually more than one 

objective are required to be optimized, such as minimum mass 

or cost, maximum stiffness, minimum displacement at 

specific structural points, maximum natural frequency of free 

vibration, and maximum structural strain energy. This makes 

it necessary to formulate a multi-objective optimization 

problem. The first note on multi-objective optimization was 

given by Pareto; since then the determination of the 

compromise set of a multi-objective problem is called Pareto 

optimization. That is why the application of different 

optimization technique [5,19,20-24] to structural problems has 

attracted the interest of many researchers.  

In real life, the data cannot be recorded or collected precisely 

due to human errors or some unexpected situations. So one 

may consider ambiguous situations like vague parameters, 

non-exact objective and constraint functions in the problem 

and it may be classified as a non-stochastic imprecise model. 

Here fuzzy set theory may provide a method to describe or 

formulate this imprecise model. Zadeh [2] first gave the 

concept of fuzzy set theory for handling uncertainty that is 

due to imprecision rather than to randomness. Later on 

Bellman and Zadeh [3] used the fuzzy set theory to the 

decision making problem. Zimmermann [4] proposed a fuzzy 

multi-criteria decision making set, defined as the intersection 

of all fuzzy goals and their constraints.  

In practical, the problem of structural design may be formed 

as a typical non-linear programming problem with non-linear 

objective functions and constraints functions in fuzzy 

environment. Some researchers applied the fuzzy set theory to 

Structural model.  For example Wang et al. [1] first applied 

 -cut method to structural designs where the non-linear 

problems were solved with various design levels  , and then 

a sequence of solutions are obtained by setting different level-

cut value of  . Rao [14] applied the same  -cut method to 

design a four–bar mechanism for function generating problem 

.Structural optimization with fuzzy parameters was developed 

by Yeh et.al [7]. In 1989, Xu [6] used two-phase method for 

fuzzy optimization of structures. In 2004, Shih et.al [15] used 

level-cut approach of the first and second kind for structural 

design optimization problems with fuzzy resources .Shih et.al 

[16] develop an alternative  -level-cuts methods for 

optimum structural design with fuzzy resources in 2003. Dey 

et.at [5] optimize multi-objective structural model with fuzzy 

coefficient i.e. generalized fuzzy number and its total  -

integral value.  

Alsina et.al.  [8] introduced the t-norm into fuzzy set theory 

and suggested that the t-norms be used for the intersection of 

fuzzy sets. Different types of t-norms theory and their fuzzy 

inference methods were introduced by Gupta et.al.[9] .The 

extension of fuzzy implication operators and generalized 

fuzzy methods of cases were discussed by Ruan et.al. [10] 

.Pei et.al [11] introduced the extended t-norms and another 

kind of fuzzy universal algebras. Kaymak et.al. [12] use 

weighted extension of (Archimedean) fuzzy t-norms in 

optimization of various criteria model. Samanta et.al.[13] 

solve portfolio selection model using extended t-norm based 

fuzzy optimization technique.  

In this paper we propose an approach to solve multi-objective 

structural model using t-norms based fuzzy optimization 

programming technique. In this structural model formulation, 

the objective functions are the weight of the truss and the 

vertical deflection of loaded joint; the design variables are the 

cross-sections of the truss members; the constraints are the 

stresses in members. The test problem includes a three-bar 

planar truss subjected to a single load condition. This 
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approximation approach is used to solve this multi-objective 

structural optimization model.  

The remainder of this paper is organized in the following way. 

In section 2, we discuss about structural optimization model. 

In section 3, we discuss about mathematics Prerequisites. In 

section 4, we discuss about t-norm and extended n-ary t-

norms. In section 5, we discuss about the basic t-norm and 

their generalization with weight factors. In section 6, we 

discuss about weighted fuzzy aggregation. In section 7, we 

proposed the technique to solve multi-objective non-linear 

programming problem using extended t-norm based fuzzy 

optimization. In section 8, we solve multi-objective structural 

model using extended t-norms based fuzzy optimization. In 

section 9, numerical solution of structural model of three bar 

truss and compared results by using different extended 

weighted t-norms. Finally we draw conclusions in section 10. 

2. MULTI-OBJECTIVE STRUCTURAL 

MODEL 
In the design of optimal structure i.e. lightest weight of the 

structure and minimum deflection of loaded joint that satisfies 

all stress constraints in members of the structure. To bar truss 

structure system the basic parameters (including the elastic 

modulus, material density, the maximum allowable stress, 

etc.) are known and the optimization’s target is that identify 

the optimal bar truss cross-section area so that the structure is 

of the smallest total weight, the minimum nodes displacement, 

in a given load conditions.  

The multi-objective Structural model can be expressed as 

                
0

min max

( )

( )

( ) [ ]

minimize WT A

minimize A

subject to A

A A A



 

 

                                 (1) 

where  1 2, ,.....,
T

nA A A A are design variables for the cross 

section, n is the group number of design variables for the 

cross section bar, 
1

n

i i i
i

WT A L


 is the total weight of the 

structure, ( )A  is the deflection of loaded joint iL , iA and 

i  were the bar length, cross section area, and density of the 

thi  group bars respectively. ( )A is the stress constraint and

 0 is maximum allowable stress of the group bars under 

various conditions, minA  and maxA  are the minimum and 

maximum cross section area respectively. 

3. PREREQUISITE MATHEMATICS 

3.1 Fuzzy Set 
Let X is a set (space), with a generic element of X denoted by 

x  , that is ( )X x  .Then a Fuzzy set (FS) is defined as 

  , ( ) :AA x x x X   where : [0,1]
A

X   is the 

membership function of FS A . ( )
A

x  is the degree of 

membership of the element x  to the set A . 

 

3.2  -Level Set or  -cut of a Fuzzy Set 

The  -level set of the fuzzy set A  of X is a crisp set A

that contains all the elements of  X that have membership 

values  greater than or equal to   i.e. 

 : ( ) , , [0,1]
A

A x x x X      . 

 

3.3  -Level Set or  -cut of a Fuzzy Set 

The  -level set  of the fuzzy set A  of X is a crisp set A

that contains all the elements of  X that have membership 

values  greater than or equal to   i.e. 

 : ( ) , , [0,1]
A

A x x x X      . 

3.4 Convex Fuzzy Set 

A fuzzy set A of the universe of discourse X  is convex if 

and only if for all 1 2,x x  in X , 

       1 2 1 21 min ,
A A A

x x x x        when 0 1  . 

3.5 Normal Fuzzy Set 

A fuzzy set A  of the universe of discourse X  is called a 

normal fuzzy set implying that there exist at least one x X  

such that   1
A

x  . 

4. QUASI T-NORM 
Let      : 0,1 0,1 0,1T    be a function satisfying the 

following axioms 

a)      , , , , 0,1T a b T b a a b    

b)        , , , , , , , 0,1T T a b c T a T b c a b c    

c)    , ,T a b T a c with  , , 0,1b c a b c    

d)    0,0 0, 1,1 1T T   

4.1  T-Norm 
A quasi-triangular norm T is called a triangular norm (or t-

norm) if it satisfies  

 ,1 ; [0,1]T a a a    

4.2  Extended n-ary quasi-t-norms 
For the purpose of operations of multiple fuzzy sets, it is 

useful to define the notation of multi-dimensional t-norms. 

Let  0,1
n

 be an n-dimensional cube and  1 2 3, , ,..., ,nx x x x

   1 2, ,....., 0,1
n

nz z z  . 

A mapping    : 0,1 0,1
n

T   is called an n-dimensional 

quasi-t-norm if it satisfies the following conditions: 

a)  1 1 1,......, , , ,.....,i i i nT x x x x x 

 1 1 1 1 1,......, , , ,...., , , ,...,i j i j i j nT x x x x x x x x     

b)   1 1 1 2 1,..... , , ,.....,n n n nT T x x x x x  

  1 1 1 2 1,..... , , ,.....,n n n nT x x T x x x    

c) For    1 2 1 2, ,...., , ,.....,n nx x x z z z 

   1 2 1 2, ,...., , ,.....,n nT x x x T z z z  with ,i ix z for 

some i  and i ix z  for some , 1,2,3,..., .i i n  

d)    0,....,0 0, 1,.....,1 1T T   
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4.3 Extended n-ary t-norms 
An n-dimensional quasi-t-norm T is called n-dimensional t-

norm if it satisfies 

                        
 1,1,....,1, ,1,.....,1i iT x x   

Due to associative law it is easy to extend a triangular norm T 

into n arguments. The n-ary operation nT  on  0,1  satisfies 

the following properties 

(i)    1 2 1 2, ,....., , ,.....,n n n nT x x x T x x x    where  is a 

permutation of  1,2,...,n                                (Commutativity)                                                                                                               

(ii)  1 2, ,.....,n nT x x x  

  1 1 2 1, ,...., , ,....., ,...i i n i i j nT x x x T x x x                                        

  1 1 2 1, ,...., , ,......,n j j j nT T x x x x x             (Associativity) 

(iii)   'n i ii N x x     

   ' ' '
1 2 1 2, ,....., , ,.......,n n n nT x x x T x x x              (Monotonocity) 

(iv)  1 2 1 1, ,...., ,1, ,....,n i i nT x x x x x   

 1 2 1 1, ,...., , ,....,i i nT x x x x x                            (Identity law) 

A t-norm nT  is said to be continuous if T is continuous 

function on  0,1 . From the above, we may call nT  is an 

extension of triangular norm.  

5. BASIC BINARY T-NORMS AND 

THEIR GENERALIZATION WITH 

WEIGHT FACTORS 
Minimum t-norm:    , min ,MT a b a b and extension in n-

ary of this t-norm    1 2 1 2, ,...., min , ,......M n nT x x x x x x
 
and 

extended form with weights the above t-norm 

   1 1 2 2 1 1 2 2, ; , ;.....; , min , ,......,W
M n n n nT x W x W x w W x W x W x  

Probabilistic t-norm:  , .PT a b a b
 
and extension in n-ary of 

this t-norm  1 2 1 2
1

, ,...., .......
n

P n n i
i

T x x x x x x x


  and 

extended form with weights the above t-norm 

 1 1 2 2
1

, ; , ;.....; , i
n WW

P n n i
i

T x W x W x W x


  

Lukasiewicz t-norm (bounded t-norm): 

   , max 0, 1LT a b a b    and extension in n-ary of this t-

norm  1 2
1

, ,...., max 1,0
n

L n i
i

T x x x x n


 
   

 
 and 

extended form with weights the above t-norm 

   1 1 2 2
1

, ; , ;.....; , max 1 ,0 .
nW

L n n i i
i

T x W x W x W W x n


 
   

 
  

6. WEIGHTED FUZZY AGGREGATION 
Weighted Aggregation has been used quite extensively 

especially in fuzzy decision-making, where the weights are 

used to represent the relative importance the decision maker 

attaches to different decision criterion (goals or constraints). 

Weighted aggregation of fuzzy sets by using t-norms has been 

considered first by Yager [17]. He proposed to modify the 

membership functions with the associated weight factors 

before the fuzzy aggregation. The weighted aggregation is 

then the aggregation of the modified membership functions. 

A general form of this idea gives the weighted aggregation 

function [18] 

 ,D x W     

        1 1 2 2, , , ,......., ,k kT I x W I x W I x W   
             (2) 

Where W is a vector of weight factor  0,1iW  1,2,...,i k  

associated with the aggregated membership function  i x . 

T is t-norm and I is a function of two variables that 

transforms the membership functions with 

1
1, 0

k

i i
i

W W


  . 

7. MATHEMATICAL ANALYSIS 

7.1 General Fuzzy Non-linear 

Programming (FNLP) Technique to solve 

Multi-Objective Non-Linear Programming 

Problem (MONLP): 
A Multi-Objective Non-Linear Programming (MONPL) or 

Vector Minimization problem (VMP) may be taken in the 

following form: 

     1 2( ) [ ( ), ( ),......... ( )]TkMin f x f x f x f x                             (3) 

subject to 

 : ( ) 1,2,3,....,n
j jx X x R g x or or b for j m         

and ( 1,2,3,...., )i i il x u i n                   

Zimmermann (1978) showed that fuzzy programming 

technique can be used to solve the multi-objective 

programming problem. 

To solve MONLP problem, following steps are used: 

Step 1: Solve the MONLP (3) as a single objective non-linear 

programming problem using only one objective at a time and 

ignoring the others, these solutions are known as ideal 

solution. 

Step 2: From the result of step 1, determine the corresponding 

values for every objective at each solution derived. With the 

values of all objectives at each ideal solution, pay-off matrix 

can be formulated as follows: 

Here 1x  2x , 3x ,….., kx are the ideal solutions of the 

objectives 1( )f x , 2( )f x ,….., ( )kf x  respectively. 

So  1 2max ( ), ( ),......, ( )k
r r r rU f x f x f x    and  

*( )r
r rL f x  

for 1,2,....,r k  

 1( )f x  2( )f x  …. ( )kf x  

1x  
* 1

1 ( )f x  
1

2 ( )f x  …. 1( )kf x  

2x  
2

1 ( )f x  
* 2
2 ( )f x  …. 2( )kf x  

…. …. …. …. …. 

kx  1 ( )kf x  2 ( )kf x  ….. *( )k
kf x  
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Where rU and rL  be upper and lower bounds of the 
thr

objective function ( )rf x  for 1,2,3,........,r k . 

Step 3: Using aspiration level of each objective of the 

MONLP (3) may be written as follows: 

Find x so as to satisfy   

  ( )r rf x L with tolerance  r r rP U L  for 1,2,3,........,r k  

    x X .    ( 1,2,3,...., )i i il x u i n    

Here objective functions of (3) are considered as fuzzy 

constraints. These types of fuzzy constraints can be quantified 

by eliciting a corresponding membership function: 

 

0 ( )

( )
( ( )) ( ) ,

1 ( )

r r

r r
r r r r r

r r

r r

if f x U

U f x
f x if L f x U

U L

if f x L



 

 

  





                 (4) 

                       for 1,2,3,...,r k                           

  
Figure 1: Membership function for objective functions 

( )rf x
 

After determining the different membership functions of 

objective functions, one can adopt following types of fuzzy 

decision using (2)   

i) According to the extension of the weighted Zadeh’s 

minimum t-norm operator  

  

1

,

, 0, 1;

r r r

k

r r

r

Maximize

subject to W f x

x X W W



 





  

                                    (5)  

ii)  According to the extension of the weighted bounded t-

norm operator 

  

  
1

1

( ; ) max 1,0

0 1,

, 0, 1;

k
A

r r rD

r

r r

k

r r

r

Maximize x W W f x k

subject to f x

x X W W

 







  
   

  

 

  





    (6) 

iii)  According to the extension of the weighted Probabilistic 

t-norm operator 

   

  
1

1

( ; )

0 1,

, 0, 1;

rWk
P

r rD

r

r r

k

r r

r

Maximize x W f x

subject to f x

x X W W

 









 

  





                           (7) 

Step 4: Solving any one among five equations (5 to 7) we will 

get optimal solution of (3). 

7.2. Complete Optimal Solution 
*x is said to be a complete optimal solution to the MONLP 

(3) if and only if there exists x X such that    *
r rf x f x  

for 1,2,...,r k  and for all x X .However, when the 

objective functions of the MONLP conflict with each other, a 

complete optimal solution does not always exist and hence the 

Pareto Optimality Concept arises and it is defined as follows. 

7.3. Pareto Optimal Solution 
*x is said to be a Pareto optimal solution to the MONLP (3) if 

and only if there does not exist another x X such that 

   *
r rf x f x  for all 1,2,...,r k and    *

j jf x f x  for 

at least one j  1,2,...,j k . 

8. FUZZY PROGRAMMING 

TECHNIQUE IN MULTI-OBJECTIVE 

MODEL 
To solve the above MOSOP (1), step 1 of (7.1) is used. After 

that according to step 2 pay-off matrix formulated as follows:  

 

 After that according to step 2, the bounds of objective are 

1 1,U L  for weight function ( )WT A
 
(where 1 1( )L WT A U  ) 

and the bounds of objective are 2 2,U L  for deflection function 

 A
 
(where  2 2L A U  ) are identified. 

Above MOSOPP reduces to a FMOSOPP as follows; 

Find A  

Such that  

  1WT A L  with maximum allowable tolerance 

 1 1 1P U L   

  2A L   with maximum allowable tolerance 

 2 2 2P U L   

0

min max

( ) [ ]A

A A A

 

 
 

 ( )WT A  ( )A  

1A  * 1*( )WT A  1*( )A  

2A  2*( )WT A  * 2*( )A  

rL  
rU

 

( )rf x

 
0 

1 

( ( ))r rf x
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Here for simplicity linear membership functions 

  WT WT A  and
 

  A   for the objective functions 

 WT A  and  A  respectively are defined as follows;

                  

 

 
 

 

1

1

1 1

1 1

1

1

0

WT

if WT A L

U WT A
WT A if L WT A U

U L

if WT A U



 

  

   
 

 

                   

 

    

  

 

 
 

 

2

2

2 2'

2 2

2

1

0

if A L

U A
A if L A U

U L

if A U






  



 

  

   
 

 

 After determining the different membership functions for each 

of the objective functions, one can adopt following three types 

fuzzy decision using t-norms are

 

i) According to the extension of the weighted Zadeh’s 

minimum t-norm operator 

maximize   (8)

  
     1 2

min max

1 2 1 2

, ,

( ) [ ],

,

0, 0, 1;

WT

subject to

W WT A W A

A

A A A

W W W W

    

 

 



 

   

 

ii)  According to the extension of the weighted bounded t-

norm operator 

      1 2 1,0WTmaximize W WT A W A                    (9) 

   

     

min max

1 2 1 2

0 1, 0 1,

( ) [ ],

,

0, 0, 1;

WT

subject to

WT A A

A

A A A

W W W W

  

 

   



 

   

                    

 

iii)  According to the extension of the weighted Probabilistic 

t-norm operator 

       
1 2W W

WTmaximize WT A A                           (10) 

 

 

     

min max

1 2 1 2

0 1, 0 1,

( ) [ ],

,

0, 0, 1;

WT

subject to

WT A A

A

A A A

W W W W

  

 

   



 

   

 

Solving any one among five equations (8) to (10) we will get 

optimal solution of (1). 

9. NUMERICAL SOLUTION OF A 

MULTI-OBJECTIVE STRUCTURAL 

OPTIMIZATION MODEL OF A THREE 

BAR TRUSS 
A well-known three bar [16] planar truss structure is 

considered. The design objective is to minimize weight of the 

structural  1 2,WT A A  and minimize the vertical deflection 

 1 2,A A  at loading point of a statistically loaded three-bar 

planar truss subjected to stress  1 2,i A A constraints on each 

of the truss members 1,2,3i  . 

 

Figure 2: Design of the three-bar planar truss 

 

The multi-objective optimization problem can be stated as 

follows:                       

   

 
 

 
 

 

   

   

1 2 1 2

1 2

1 2

1 2

1 1 2 2
1 2 1

2 1 2
1 2

2
3 1 2 2

1 2 1

min max

, 2 2 ,

, ,
2

2
, ,

2 2

, ,
2

, ,
2 2

, 1,2.

T

T

C

i i i

minimze WT A A L A A

PL
minimize A A

E A A

P A A
Subject to A A

A A A

P
A A

A A

PA
A A

A A A

A A A i





 

 

 

 





 



 


 


  

             (11)                           

The input data for MOSOP (11) is given in table 1. 

 

Solution: According to step 2 pay off matrix is formulated as 

follows; 

 

 

 

 

 

 

 

Here 1 19.14214U  , 1 2.638958L  , 2 14.64102U  ,

2 1.656854L  , Here linear membership function for the 

objective functions 1 2( , )WT A A  and 1 2( , )A A is defined as 

follows:

    

 1 2( , )WT A A  1 2( , )A A  

1A  2.638958  14.64102  

2A  19.14214  1.656854  



International Journal of Computer Applications (0975 – 8887) 

Volume 117 – No.12, May 2015 

25 

     

1 2

1 2

1 2
1 2

1 2

( ( , ))

1 ( , ) 2.638958

19.14214 ( , )
2.638958 ( , ) 19.14214

16.503182

0 ( , ) 19.14214

WT WT A A

if WT A A

WT A A
if WT A A

if WT A A

 





 


 

                

 
Figure 3: membership for objective weight function 

 1 2,WT A A

          

1 2

1 2

1 2
1 2

1 2

( ( , ))

1 ( , ) 1.656854

14.64102 ( , )
1.656854 ( , ) 14.64102

12.984166

0 ( , ) 14.64102

A A

if A A

A A
if A A

if A A
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












 


 

        
      

 

Figure 4: Rough sketch of membership for objective 

deflection functions  1 2,A A   

Table 1: input data for MOSOP (11) is given as follows: 

Applied load P
 

 KN  

Material density 


 

 3/KN m  

Length L
 

 m  

Maximum 

allowable   

tensile  

stress T  
 

 2/KN m  

Maximum 

allowable 

compressive 

stress C  
 

 2/KN m  

Young’s 

modulus E
 

 2/KN m  

min
iA and 

max
iA of cross 

section of bars 

 4 210 m
 

20  100  1  20  15  82 10  

min
1 0.1A 

 
max
1 5A 

 
min
2 0.1A 

 
max
2 5A   

 
Comparison of optimal solution of MOSOP (11) based on different method 

Table 2: Optimal results for equal importance on Structural Weight and Deflection i.e 1 2 0.5W W   

Aggregation 4 2
1 10A m  

4 2

2 10A m    2
1 2, 10WT A A KN    7

1 2, 10A A m   

Minimum 0.5946284 3.470668 5.152531 3.634451 

 Bounded  0.5995886 3.789756 5.485649 3.356204 

Probabilistic 0.5980010 3.682555 5.373957 3.444760 

 
For equal importance, the extension of the weighted Minimum t-norm operator gives minimum structural weight where as the 

extension of the weighted Bounded t-norm operator gives minimum deflection.  

Table 3: Optimal results for with more importance on Structural Weight i.e 1 0.6W   and 2 0.4W   

Aggregation 4 2
1 10A m  

4 2

2 10A m    2

1 2, 10WT A A KN    7

1 2, 10A A m   

Minimum 0.5955749 1.782032 4.528824 4.296216 

Bounded 0.5858620 3.003582 4.660650 4.137730 

Probabilistic 0.5876100 3.088338 4.750350 4.036181 

 

For more importance on Structural Weight, the extension of the Minimum t-norm operator gives minimum weight. 

 

1.656854
 

14.64102
 

1 2( , )A A  0 

1 

1 2( ( , ))A A 

 

2.638958
 

19.14214
 

 1 2,WT A A  0 

1 

1 2( ( , ))WT WT A A
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Table 4: Optimal results for with more importance on deflection i.e 1 0.4W   and 2 0.6W   

Aggregation 4 2
1 10A m  

4 2

2 10A m    2

1 2, 10WT A A KN    7

1 2, 10A A m   

Minimum 1.327236 5.000000 6.507334 2.714185 

Bounded 0.6111046 4.752674 6.481139 2.727620 

Probabilistic 0.6071258 4.377513 6.094724 2.942100 

 

For more importance on deflection, the extension of the weighted Minimum t-norm operator gives minimum deflection. 

10. CONCLUSIONS 
In this paper, we have proposed a multi-objective structural 

optimization model. Here binary t-norms are expressed into 

extended n-ary t-norms and discussed their basic properties. 

The said model is converted into an equivalent single 

objective problem and it is solved by using t-norms based 

fuzzy decision making technique.  A main advantage of the 

proposed method is that it allows the user to concentrate on 

the actual limitations in a problem during the specification of 

the flexible objectives. This approximation method can be 

applied to optimize different models in various fields of 

engineering and sciences. 
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