
International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.11, May 2015

20

Data Record Extraction using Tag Tree Comparison

Aleem Ansari

Shri Venkateshwara University
Gajraula

India

Hemlata Vasishtha, PhD
Shri Venkateshwara University

Gajraula
India

ABSTRACT

This paper presents a robust unsupervised approach for

extraction of data records from dynamic web pages using tag

tree comparison. Extracting data records from the web pages

involves following sequences. We first download the related

web pages of interest on our system. Next we construct DOM

trees for those pages using a parser. We then compare two or

more web pages to eliminate the noisy unwanted data such as

header, menu bar, navigation bar, advertisements, etc and find

the region of interest called Data region or Object region. We

then traverse subtrees of data region to detect individual data

record and pull them in the XML file. The main contribution

of this paper is in developing a fully unsupervised approach

for extracting structured as well as semi-structured data

records from the web pages. Our proposed system can extract

data records from many commercial websites more precisely.

Hence it can serve as a source for integrating information

from various web sources which can be used for providing

value added services such as comparative shopping, market

intelligence, meta-querying and search.

Keywords

Data Record Detection, Information Extraction, Automatic

Extraction, Web Mining, Semi-Structured data, Wrapper

Generation.

1. INTRODUCTION
The World Wide Web is perhaps the largest source of

information. Today there are large numbers of web sites

providing access to data records contained in the underlying

database. These web sites typically implement some kind of

html form that facilitates end user issuing queries against the

underlying database. The query result is then embedded in

HTML pages conforming to a certain fixed template and

returned to the end user. Though human users can easily

interpret the results returned by the query, they are not

suitable for automatic processing. This is because of the fact

that end result contains large amount of unrelated and noisy

information such as header, menu bar, navigation bar,

advertisements, copyright information, etc. Furthermore, the

semantic meaning of different parts of an HTML document

may be encoded in ways that do not correspond in a simple

way to a structured representation of data [1].

Figure.1 gives an example of related web pages displaying list

of books. The description of each book is a data record also

referred to as object data or ODATA. Since related pages are

generated by the same dynamic program, we can see that both

the pages are completely similar, they differ only in the data

values appearing in the data record. These collections of data

records together form the data region also referred to as

Object region or OREG

Fig 1: Sample web pages displaying books information

Due to the huge amount of web pages it is unreasonable to

extract data records using manual or semi-automatic

approach. Allowing software programs to access these

structured data is useful for a variety of purposes [2]. For

instance, it allows data integration applications to access the

web information in a manner similar to database. It also

allows information gathering applications to store the

retrieved information maintaining its structure and, therefore,

allowing more sophisticated processing.

In this paper we present a novel technique for automatic

extraction of data records from the related web pages. Since

related pages from the any web site are normally generated by

the same dynamic program or carefully maintained template,

they tend to share similar structure [3]. It is thus possible to

uncover the common structure containing the relevant object

information in OREG by analyzing the pages in conjunction.

Hence we can detect the OREG by comparing two or more

related web pages. After detecting the OREG we mine

individual data records and output them in the XML file. Our

approach does not make any assumption about the structure of

the web pages. We have also validated our technique on large

number of commercial websites, obtaining very good results.

The rest of this work is organized as follows: section 2

introduces related work about extracting data record from the

web pages. Section 3 presents the overall procedure for

detection of OREG through the similarity calculations and

extraction of ODATA from the OREG. We present and

analyze the results of our experiments in section 4. Finally we

conclude our work in Section 5.

2. RELATED WORK
There are many existing techniques for data record extraction

in the form of wrappers. A wrapper is a program that extracts

data from the web page and put them in the database. There

are two main approaches for wrapper generation - wrapper

induction and automatic extraction. The main problem with

wrapper induction techniques as mentioned in [4], [5], [6] and

[7] is that they require human labeling and cannot scale to

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.11, May 2015

21

large web sites. Automatic extraction methods as mentioned

in [8] and [9] are based on a set of heuristic rules, e.g.,

highest-count tags, repeating-tags and ontology-matching.

However [10] shows that these methods produce poor result.

Another problem with the existing automatic approaches is

their assumption about the structure and layout of the web

pages which does not always holds true. For instance, [11]

assumes that the visual space between two data records in a

page is always greater than any gap inside a data record. Also

some approach [12] assumes that OREG appears in the center

of the page which may not always hold true. Another

approach [13] assumes that all the records have the same

number of child nodes and hence data nodes. It also assumes

that all the required attributes are listed in the first row of the

table in the web page .The LBDRF technique [14] selects the

data region with the specific html tags as its root which again

is not applicable to all the web pages. Another novel approach

[3] makes no assumption and scale well to large number of

websites, but this approach is more complex and

computationally more intensive.

The above methods are inefficient and are based on many

assumptions which do not always hold true for all the web

pages. The proposed method does not make any such

assumption and can scale well for most of the web pages. We

take advantage of the structural information (the document

object model, DOM, tree [15]) contained in web pages to

locate relevant information. Also our procedure is automated

and identifies data records from the collection of web pages

easily. Furthermore, it does not require separate training,

validation, and application phases, but simply operates on a

collection of pages.

3. DATA RECORD EXTRACTION
This work presents an unsupervised approach for extracting

data records from web pages. Extracting data records from the

web pages involves the following phrases: First we identify

the OREG containing the relevant data records. Second we

identify individual ODATA and output them in XML file. The

main contribution of this study is in developing a fully

automated approach for extracting data records from web

pages. Our approach can automatically extract data records

from complicated web pages, such as the technical

descriptions of digital cameras and personal computers

downloaded from manufacturers’ and vendors’ sites. We also

performed extensive experimental analysis to demonstrate that

our framework is effective in extracting data records from

web documents.

3.1 Outline of our Approach
One key function involved in our approach is how to detect

irrelevant components among similar web pages, and similar

component within the page itself (if they contain multiple

existing objects). We seek inspiration from the following

observations:

1. We observe that all pages about the same object such as

product description from a single website uses same template

for displaying informative content [3]. These pages also

contains similar irrelevant components i.e. header, navigation

bar, advertisement, etc. For example in figure 2 we can see

that the two web pages displays personal information about

two people, which are relevant content. However the header

and footer are irrelevant contents which are common in both

the web pages. This is because in most such cases, they are

generated by the same dynamic programs or templates that are

carefully maintained by the developers. Thus, we can make

use of the stable representation structure of the pages within a

web site to identify useful contents [3].

(a)

(b)

Fig 2: (a) Sample web pages displaying personal

information (b) HTML source of the web pages

2. After removing irrelevant content from the pages, we can

expect OREG to appear in a contiguous area on the screen as

well as in the raw source of web pages (e.g. tag tree).

3. If we compare the pages using html elements as unit we can

see that they differ in OREG which contains descriptions of

individual ODATA. Thus by devising suitable set of

similarity measures and content features we can easily

differentiate between irrelevant component on web pages as

having similar content and OREG containing product

description as having distinct content [3].

Based on the above observations, we devise the following

workflow to detect OREG and extract the corresponding

ODATA from complex structured or semi-structured web

pages.

1. We first download similar pages from a specific website,

we call this PSET.

2. We the compare each webpage pi with a set of similar web

pages PREL such that PREL ⊂ PSET. We use DOM tree of

web pages as the feature representation for similarity

calculation. HTML tag and texts are considered as content of

the node. Because pages similar to pi are generated using the

same template, they should have similar structures and many

common terms as a whole.

.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.11, May 2015

22

3. From DOM tree of the web pages, we can expect the

subtrees corresponding to irrelevant content to be similar

while those corresponding to OREG to have significant

difference as they represent different ODATA. In order to

identify OREG we calculate the novelty value for each node

as explained in the next section. The subtree that has

maximum novelties belongs to OREG [3].

4. Next we identify different ODATA within OREG. This is

done by traversing the subtrees within OREG. After

extracting each ODATA we output them in the XML file.

3.2 Detecting Object Region Using Similar

Web Pages
We first make use of Cobra parser (the one available at

http://sourceforge.net/projects/xamj) to generate the DOM

trees from the Web pages. Each node in this tree is an HTML

element. The OREG is a subtree containing individual

ODATA. The unique feature of OREG is that it is usually the

largest contiguous region in the web page having distinct

content which are used to represent different ODATA. Thus

for identifying OREG we define the concept of repeatability

for nodes in the DOM trees [3].

Definition 1: To define repeatability, we first define node

similarity. Two nodes n1 (with tag tag1 and text text1) and n2

(with tag tag2 and text text2) in parse tress T1 and T2

respectively are similar if they have same tags and text

content. Thus we can define similarity as:

Definition 2: Suppose nodes n1 and n2 are in parse trees T1

and T2 respectively, we define the repeatability of node n1

with respect to T2 as:

where parent(.) denotes the parent node of n; From Definition

2, two nodes will have high repeatability if they have similar

tag and text content.

Definition 3: The novelty of node n1 is defined as:

Definition 4: If tree(n) is a subtree rooted at node n1 in DOM

tree T1, the novelty of tree(n1) is the weighted sum of the

novelties of its child nodes, namely,

 where child(n1) is the child of node n1. Thus

tree(child(n1)) is the subtree rooted at the child(ren) of n1.

N(tree(n1)) is calculated recursively based on formula (4).

Thus N(tree(n1)) is the sum of the novelties of all the

involved nodes. Typically, the subtree corresponding to

OREG will have the highest tree novelty value. Based on

Definition (4), we expect the parent and higher level nodes of

subtree to have the largest tree novelty value among its

siblings. For example we can see that in figure 3 the novelty

of tree body node is highest because it comes from the sum of

its child nodes.

Definition 5: OREG for parse tree tree(n0) is the subtree

tree(ni) existing in the path from n0 to the leaf with maximal

novelty [3].

Fig 3: A sketch of tree novelty distribution.

We design an algorithm to detect OREG based on the above

discussion.

DetectOREG(ParseTree T0, ParseTree T1)

{

 For each node n1 in parse tree T0

 {

 Initialize maximum similarity, maxsim=0;

 For each node n2 in parse tree T1

 {

 Calculate Similarity

 simval = (sim(n1,n2)+ ((sim(pn1,pn2))));

 if (simval>maxsim)

 {

 (maxsim = simval);

 }

 }

 Set novelty of node n1, nov = (4 - maxsim);

 }

 Recursively calculate tree novelty for each node n1

inparse tree T0.

 Traverse the parse tree T0 till we get only one subtree

(OREG) having many child subtrees with non-zero novelties.

}

3.3 Detecting Object Data from the Object

Region
We know that ODATA occurs in the subtrees of the root of

OREG. The root of each ODATA has non-zero novelty

because it is the summation of novelties from child node(s)

which are mostly non-zero as they represent distinct values of

individual data record. Hence we traverse each subtree with

non-zero novelty to extract the data record. We also know that

noisy data items will have zero novelties and hence they can

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.11, May 2015

23

be excluded. Following is the algorithm for extracting

ODATA from an OREG.

ExtractODATA(DataRegionParseTree T0)

{

 For each node n1 in parse tree T0

 {

 Detect immediate child nodes CNodes of node

n1 with non-zero novelties.

 For each child node cn in CNodes

 {

Traverse all child nodes of cn using

 Depth First Search algorithm.

Extract each text node with non-zero novelty.

 }

 }

}

We can also make the algorithm computationally faster for

subsequent pages by noting the position of the root of the

OREG. Thus for the remaining pages we can make all the

computation only for the nodes that falls below the root of the

OREG.

4. EXPERIMENT
The proposed work is has been implemented and tested using

java. To analyze the validity and performance of our

algorithm we made it to pass through various set of web pages

downloaded from different websites.

Figure .4 shows sample input web pages from Amazon

website and the extracted datasets.

Fig 4: Extracted records from Amazon website.

We can see in the figure .4 that the algorithm extracted only

three records and not four. Reason is the third record (marked

in red) is common in both the pages. However algorithm will

extract the record in next page comparisons. The positive side

we can see in the above output is that the algorithm extracts

all the records correctly.

We use the standard metrics recall and precision. Recall is

computed as the ratio between the number of relevant records

extracted by the system and the total number of records that

should have been extracted. Precision is computed as the ratio

between the number of relevant records extracted and the total

number of records extracted by the system. These are the most

important metrics in what refers to web data extraction

applications because they measure the system performance at

the end of the whole process.

Figure 5 shows precision and recall achieved by our technique

on different websites.

Fig 5: Precision and Recalls for Pages from different

websites.

As seen the case with Amazon website in figure .4, the reason

for low recall is that the same record is repeated on other

pages. The system however extracts the records with high

precision.

The tests performed with these pages were used to adjust our

algorithm. Our algorithm is able to extract the data record

from all above web pages efficiently. However we found that

the algorithm gives wrong output if the data region contains

only single data record. The reason is that the algorithm

assumes that data region always has two or more subtrees

with non-zero tree novelties and hence two or more data

records. The algorithm also gives wrong output when each

data record is displayed in single cell of rows of table. In this

case it consider entire table row as a single data record and

hence displays multiple records as a single record.

5. CONCLUSION
In this paper we proposed a robust unsupervised approach for

extracting data records from the web pages. The proposed

method does not make any strict assumption about the

structure or layout of the web page and hence can scale well

for almost all websites. Also the number of comparisons made

in proposed approach is significantly lesser than the other

approaches. The practical implementation of the proposed

work has few limitations. Its working is dependent on the

output of the parser. We know that under some situation the

parser is unable to generate the correct node list which is used

for further processing.

The future work would be to overcome the limitations of the

proposed work’s implementation by adapting it to better

parser(s). We need to find or develop correct parsers for

parsing the webpage so that we can get more accuracy in

detecting OREG and hence ODATA. Proper identification of

individual data records displayed in individual cells of table

rows also needs to be handled properly. Extracting data fields

from the data records contained in the data region will be the

next step in our future work. We also need to integrate the

extracted data from different websites into a single collection.

This collection of data can then be used for various

Knowledge Discovery Applications such as making

comparative study of products or services from various

companies, smart shopping, etc.

6. REFERENCES
[1] Breuel, Thomas. 2003. Information extraction from

HTML documents by structural matching. U.S. Patent

Application 10/248,681.

[2] Álvarez, M., Pan, A., Raposo, J., Bellas, F., & Cacheda,

F. 2010. Finding and extracting data records from web

pages. Journal of Signal Processing Systems, 59(1), 123-

137.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.11, May 2015

24

[3] Ye, S., & Chua, T. S. 2006. Learning object models from

semistructured web documents. Knowledge and Data

Engineering, IEEE Transactions on, 18(3), 334-349.

[4] Hsu, C. N., & Dung, M. T. 1998. Generating finite-state

transducers for semi-structured data extraction from the

web. Information systems, 23(8), 521-538.

[5] Kushmerick, N. 2000. Wrapper induction: Efficiency and

expressiveness. Artificial Intelligence, 118(1), 15-68.

[6] Muslea, I., Minton, S., & Knoblock, C. 1999. A

hierarchical approach to wrapper induction. In

Proceedings of the third annual conference on

Autonomous Agents (pp. 190-197). ACM.

[7] Pinto, D., McCallum, A., Wei, X., & Croft, W. B. 2003.

Table extraction using conditional random fields. In

Proceedings of the 26th annual international ACM

SIGIR conference on Research and development in

informaion retrieval (pp. 235-242). ACM.

[8] Embley, D. W., Jiang, Y., & Ng, Y. K. 1999. Record-

boundary discovery in Web documents. In ACM

SIGMOD Record (Vol. 28, No. 2, pp. 467-478). ACM.

[9] Buttler, D., Liu, L., & Pu, C. 2001. A fully automated

object extraction system for the World Wide Web. In

Distributed Computing Systems, 2001. 21st International

Conference on. (pp. 361-370). IEEE.

[10] Liu, B., Grossman, R., & Zhai, Y. 2003. Mining data

records in Web pages. In Proceedings of the ninth ACM

SIGKDD international conference on Knowledge

discovery and data mining (pp. 601-606). ACM.

[11] Zhai, Y., & Liu, B. 2006. Structured data extraction from

the web based on partial tree alignment. Knowledge and

Data Engineering, IEEE Transactions on, 18(12), 1614-

1628.

[12] Dong, Y., & Li, Q. 2009. A Robust Approach of

Automatic Web Data Record Extraction. Journal of

Computer Information Systems, 5(6), 1757-1766.

[13] Sharma, A. K. 2011. Hidden Web Data Extraction Using

Dynamic Rule Generation. International Journal on

Computer Science & Engineering, 3(8).

[14] Hong-ping, C., Wei, F., Zhou, Y., Lin, Z., & Zhi-Ming,

C. 2009. Automatic Data Records Extraction from List

Page in Deep Web Sources. In Information Processing,

2009. APCIP 2009. Asia-Pacific Conference on (Vol. 1,

pp. 370-373). IEEE.

[15] Marini, J. 2002. Document Object Model. McGraw-Hill,

Inc.

IJCATM : www.ijcaonline.org

