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ABSTRACT 

This paper presents a robust unsupervised approach for 

extraction of data records from dynamic web pages using tag 

tree comparison. Extracting data records from the web pages 

involves following sequences. We first download the related 

web pages of interest on our system. Next we construct DOM 

trees for those pages using a parser. We then compare two or 

more web pages to eliminate the noisy unwanted data such as 

header, menu bar, navigation bar, advertisements, etc and find 

the region of interest called Data region or Object region. We 

then traverse subtrees of data region to detect individual data 

record and pull them in the XML file. The main contribution 

of this paper is in developing a fully unsupervised approach 

for extracting structured as well as semi-structured data 

records from the web pages. Our proposed system can extract 

data records from many commercial websites more precisely. 

Hence it can serve as a source for integrating information 

from various web sources which can be used for providing 

value added services such as comparative shopping, market 

intelligence, meta-querying and search.   
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1. INTRODUCTION 
The World Wide Web is perhaps the largest source of 

information. Today there are large numbers of web sites 

providing access to data records contained in the underlying 

database. These web sites typically implement some kind of 

html form that facilitates end user issuing queries against the 

underlying database. The query result is then embedded in 

HTML pages conforming to a certain fixed template and 

returned to the end user. Though human users can easily 

interpret the results returned by the query, they are not 

suitable for automatic processing. This is because of the fact 

that end result contains large amount of unrelated and noisy 

information such as header, menu bar, navigation bar, 

advertisements, copyright information, etc. Furthermore, the 

semantic meaning of different parts of an HTML document 

may be encoded in ways that do not correspond in a simple 

way to a structured representation of data [1]. 

Figure.1 gives an example of related web pages displaying list 

of books. The description of each book is a data record also 

referred to as object data or ODATA. Since related pages are 

generated by the same dynamic program, we can see that both 

the pages are completely similar, they differ only in the data 

values appearing in the data record. These collections of data 

records together form the data region also referred to as 

Object region or OREG 

 

Fig 1: Sample web pages displaying books information 

Due to the huge amount of web pages it is unreasonable to 

extract data records using manual or semi-automatic 

approach. Allowing software programs to access these 

structured data is useful for a variety of purposes [2]. For 

instance, it allows data integration applications to access the 

web information in a manner similar to database. It also 

allows information gathering applications to store the 

retrieved information maintaining its structure and, therefore, 

allowing more sophisticated processing. 

In this paper we present a novel technique for automatic 

extraction of data records from the related web pages. Since 

related pages from the any web site are normally generated by 

the same dynamic program or carefully maintained template, 

they tend to share similar structure [3]. It is thus possible to 

uncover the common structure containing the relevant object 

information in OREG by analyzing the pages in conjunction. 

Hence we can detect the OREG by comparing two or more 

related web pages. After detecting the OREG we mine 

individual data records and output them in the XML file. Our 

approach does not make any assumption about the structure of 

the web pages. We have also validated our technique on large 

number of commercial websites, obtaining very good results. 

The rest of this work is organized as follows: section 2 

introduces related work about extracting data record from the 

web pages. Section 3 presents the overall procedure for 

detection of OREG through the similarity calculations and 

extraction of ODATA from the OREG. We present and 

analyze the results of our experiments in section 4. Finally we 

conclude our work in Section 5. 

2. RELATED WORK 
There are many existing techniques for data record extraction 

in the form of wrappers. A wrapper is a program that extracts 

data from the web page and put them in the database. There 

are two main approaches for wrapper generation - wrapper 

induction and automatic extraction. The main problem with 

wrapper induction techniques as mentioned in [4], [5], [6] and 

[7] is that they require human labeling and cannot scale to 
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large web sites. Automatic extraction methods as mentioned 

in [8] and [9] are based on a set of heuristic rules, e.g., 

highest-count tags, repeating-tags and ontology-matching. 

However [10] shows that these methods produce poor result. 

Another problem with the existing automatic approaches is 

their assumption about the structure and layout of the web 

pages which does not always holds true. For instance, [11] 

assumes that the visual space between two data records in a 

page is always greater than any gap inside a data record. Also 

some approach [12] assumes that OREG appears in the center 

of the page which may not always hold true. Another 

approach [13] assumes that all the records have the same 

number of child nodes and hence data nodes. It also assumes 

that all the required attributes are listed in the first row of the 

table in the web page .The LBDRF technique [14] selects the 

data region with the specific html tags as its root which again 

is not applicable to all the web pages. Another novel approach 

[3] makes no assumption and scale well to large number of 

websites, but this approach is more complex and 

computationally more intensive. 

The above methods are inefficient and are based on many 

assumptions which do not always hold true for all the web 

pages. The proposed method does not make any such 

assumption and can scale well for most of the web pages. We 

take advantage of the structural information (the document 

object model, DOM, tree [15]) contained in web pages to 

locate relevant information. Also our procedure is automated 

and identifies data records from the collection of web pages 

easily. Furthermore, it does not require separate training, 

validation, and application phases, but simply operates on a 

collection of pages. 

3. DATA RECORD EXTRACTION 
This work presents an unsupervised approach for extracting 

data records from web pages. Extracting data records from the 

web pages involves the following phrases: First we identify 

the OREG containing the relevant data records. Second we 

identify individual ODATA and output them in XML file. The 

main contribution of this study is in developing a fully 

automated approach for extracting data records from web 

pages. Our approach can automatically extract data records 

from complicated web pages, such as the technical 

descriptions of digital cameras and personal computers 

downloaded from manufacturers’ and vendors’ sites. We also 

performed extensive experimental analysis to demonstrate that 

our framework is effective in extracting data records from 

web documents. 

3.1 Outline of our Approach 
One key function involved in our approach is how to detect 

irrelevant components among similar web pages, and similar 

component within the page itself (if they contain multiple 

existing objects). We seek inspiration from the following 

observations:  

1. We observe that all pages about the same object such as 

product description from a single website uses same template 

for displaying informative content [3]. These pages also 

contains similar irrelevant components i.e. header, navigation 

bar, advertisement, etc. For example in figure 2 we can see 

that the two web pages displays personal information about 

two people, which are relevant content. However the header 

and footer are irrelevant contents which are common in both 

the web pages. This is because in most such cases, they are 

generated by the same dynamic programs or templates that are 

carefully maintained by the developers. Thus, we can make 

use of the stable representation structure of the pages within a 

web site to identify useful contents [3].  

 

(a) 

 

(b) 

Fig 2: (a) Sample web pages displaying personal 

information (b) HTML source of the web pages 

2. After removing irrelevant content from the pages, we can 

expect OREG to appear in a contiguous area on the screen as 

well as in the raw source of web pages (e.g. tag tree). 

3. If we compare the pages using html elements as unit we can 

see that they differ in OREG which contains descriptions of 

individual ODATA. Thus by devising suitable set of 

similarity measures and content features we can easily 

differentiate between irrelevant component on web pages as 

having similar content and OREG containing product 

description as having distinct content [3]. 

Based on the above observations, we devise the following 

workflow to detect OREG and extract the corresponding 

ODATA from complex structured or semi-structured web 

pages. 

1. We first download similar pages from a specific website, 

we call this PSET. 

2. We the compare each webpage pi with a set of similar web 

pages PREL such that PREL ⊂ PSET. We use DOM tree of 

web pages as the feature representation for similarity 

calculation. HTML tag and texts are considered as content of 

the node. Because pages similar to pi are generated using the 

same template, they should have similar structures and many 

common terms as a whole. 

. 
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3. From DOM tree of the web pages, we can expect the 

subtrees corresponding to irrelevant content to be similar 

while those corresponding to OREG to have significant 

difference as they represent different ODATA. In order to 

identify OREG we calculate the novelty value for each node 

as explained in the next section. The subtree that has 

maximum novelties belongs to OREG [3]. 

4. Next we identify different ODATA within OREG. This is 

done by traversing the subtrees within OREG. After 

extracting each ODATA we output them in the XML file. 

3.2 Detecting Object Region Using Similar 

Web Pages 
We first make use of Cobra parser (the one available at 

http://sourceforge.net/projects/xamj) to generate the DOM 

trees from the Web pages. Each node in this tree is an HTML 

element. The OREG is a subtree containing individual 

ODATA. The unique feature of OREG is that it is usually the 

largest contiguous region in the web page having distinct 

content which are used to represent different ODATA. Thus 

for identifying OREG we define the concept of repeatability 

for nodes in the DOM trees [3]. 

Definition 1: To define repeatability, we first define node 

similarity. Two nodes n1 (with tag tag1 and text text1) and n2 

(with tag tag2 and text text2) in parse tress T1 and T2 

respectively are similar if they have same tags and text 

content. Thus we can define similarity as: 

                                                         

 

              
                                     

                                    
                                              

       

 

                

 
 
 

 
 
                                      
                                  
                                 
                                
                                                 

                                 

  

Definition 2: Suppose nodes n1 and n2 are in parse trees T1 

and T2 respectively, we define the repeatability of node n1 

with respect to T2 as:   

            
            

          

                                      

where parent(.) denotes the parent node of n; From Definition 

2, two nodes will have high repeatability if they have similar 

tag and text content. 

Definition 3: The novelty of node n1 is defined as: 

                                                                                  

Definition 4: If tree(n) is a subtree rooted at node n1 in DOM 

tree T1, the novelty of tree(n1) is the weighted sum of the 

novelties of  its child nodes, namely, 

                                                    

 where child(n1) is the child of node n1. Thus 

tree(child(n1)) is the subtree rooted at the child(ren) of n1. 

N(tree(n1)) is calculated recursively based on formula (4). 

Thus N(tree(n1)) is the sum of the novelties of all the 

involved nodes. Typically, the subtree corresponding to 

OREG will have the highest tree novelty value. Based on 

Definition (4), we expect the parent and higher level nodes of 

subtree to have the largest tree novelty value among its 

siblings. For example we can see that in figure 3 the novelty 

of tree body node is highest because it comes from the sum of 

its child nodes. 

Definition 5: OREG for parse tree tree(n0) is the subtree 

tree(ni) existing in the path from n0 to the leaf with maximal 

novelty [3]. 

 

Fig 3: A sketch of tree novelty distribution. 

We design an algorithm to detect OREG based on the above 

discussion. 

DetectOREG(ParseTree T0, ParseTree T1) 

{ 

    For each node n1 in parse tree T0 

        { 

 Initialize maximum similarity, maxsim=0; 

 For each node n2 in parse tree T1 

 { 

     Calculate Similarity 

     simval = (sim(n1,n2)+ ( (sim(pn1,pn2))) ); 

     if (simval>maxsim) 

     { 

         (maxsim = simval); 

      } 

 } 

 Set novelty of node n1, nov = (4 - maxsim); 

        } 

        Recursively calculate tree novelty for each node n1 

inparse tree T0. 

        Traverse the parse tree T0 till we get only one subtree 

(OREG) having many child subtrees with non-zero novelties. 

} 

 

3.3 Detecting Object Data from the Object 

Region 
We know that ODATA occurs in the subtrees of the root of 

OREG. The root of each ODATA has non-zero novelty 

because it is the summation of novelties from child node(s) 

which are mostly non-zero as they represent distinct values of 

individual data record. Hence we traverse each subtree with 

non-zero novelty to extract the data record. We also know that 

noisy data items will have zero novelties and hence they can 
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be excluded. Following is the algorithm for extracting 

ODATA from an OREG. 

ExtractODATA(DataRegionParseTree T0) 

{ 

    For each node n1 in parse tree T0 

    { 

        Detect immediate child nodes CNodes of node  

n1 with non-zero novelties. 

       For each child node cn in CNodes 

        { 

Traverse all child nodes of cn using 

 Depth First Search algorithm. 

Extract each text node with non-zero novelty. 

        } 

    } 

} 

 
We can also make the algorithm computationally faster for 

subsequent pages by noting the position of the root of the 

OREG. Thus for the remaining pages we can make all the 

computation only for the nodes that falls below the root of the 

OREG. 

4. EXPERIMENT 
The proposed work is has been implemented and tested using 

java. To analyze the validity and performance of our 

algorithm we made it to pass through various set of web pages 

downloaded from different websites. 

Figure .4 shows sample input web pages from Amazon 

website and the extracted datasets. 

 

Fig 4: Extracted records from Amazon website. 

We can see in the figure .4 that the algorithm extracted only 

three records and not four. Reason is the third record (marked 

in red) is common in both the pages. However algorithm will 

extract the record in next page comparisons. The positive side 

we can see in the above output is that the algorithm extracts 

all the records correctly. 

We use the standard metrics recall and precision. Recall is 

computed as the ratio between the number of relevant records 

extracted by the system and the total number of records that 

should have been extracted. Precision is computed as the ratio 

between the number of relevant records extracted and the total 

number of records extracted by the system. These are the most 

important metrics in what refers to web data extraction 

applications because they measure the system performance at 

the end of the whole process.  

 

Figure 5 shows precision and recall achieved by our technique 

on different websites. 

 

Fig 5: Precision and Recalls for Pages from different 

websites. 

As seen the case with Amazon website in figure .4, the reason 

for low recall is that the same record is repeated on other 

pages. The system however extracts the records with high 

precision.  

The tests performed with these pages were used to adjust our 

algorithm. Our algorithm is able to extract the data record 

from all above web pages efficiently. However we found that 

the algorithm gives wrong output if the data region contains 

only single data record. The reason is that the algorithm 

assumes that data region always has two or more subtrees 

with non-zero tree novelties and hence two or more data 

records. The algorithm also gives wrong output when each 

data record is displayed in single cell of rows of table. In this 

case it consider entire table row as a single data record and 

hence displays multiple records as a single record. 

5. CONCLUSION 
In this paper we proposed a robust unsupervised approach for 

extracting data records from the web pages. The proposed 

method does not make any strict assumption about the 

structure or layout of the web page and hence can scale well 

for almost all websites. Also the number of comparisons made 

in proposed approach is significantly lesser than the other 

approaches. The practical implementation of the proposed 

work has few limitations. Its working is dependent on the 

output of the parser. We know that under some situation the 

parser is unable to generate the correct node list which is used 

for further processing.  

The future work would be to overcome the limitations of the 

proposed work’s implementation by adapting it to better 

parser(s). We need to find or develop correct parsers for 

parsing the webpage so that we can get more accuracy in 

detecting OREG and hence ODATA. Proper identification of 

individual data records displayed in individual cells of table 

rows also needs to be handled properly. Extracting data fields 

from the data records contained in the data region will be the 

next step in our future work. We also need to integrate the 

extracted data from different websites into a single collection. 

This collection of data can then be used for various 

Knowledge Discovery Applications such as making 

comparative study of products or services from various 

companies, smart shopping, etc. 
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