
International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.10, May 2015

12

Computational Orchestrator: A Super Class for

Matrix, Robotics and Control System Orchestration

Shweta Agrawal
Lecturer, SCSIT, DAVV,

Indore, 452001 India

Raj Kamal
Professor, MIST,

Indore, 453331 India

ABSTRACT
Orchestrator is a middleware which coordinates the sequence

of execution of distributed tasks. Numerous Orchestrators are

available for different applications. A composite Orchestrator

for the orchestration of matrix operations, robotic tasks and

control systems is does not exist. The paper proposes the

design and implementation of a composite Orchestrator. The

proposed Orchestrator is orchestrating matrix operations,

robotic tasks and tasks in control systems. It is implemented

as a super class of the different Orchestrators. Multithreading

and RMI in Java is used to implement the Orchestrator.

Keywords
Orchestrator, matrix operations, robots, NCS.

1. INTRODUCTION
Distributed computing has a number of advantages. It reduces

time complexity. It enables modular programming. It enables

reusability of components. The distributed computing is

applicable in almost all fields of engineering and science. It

includes web based applications, robotics and control systems.

An Orchestrator [1] [2] handles numerous issues of distributed

computing. The issues in distributed computing are

synchronization, timeouts, priority, failure of nodes.

There are numerous Orchestrators for orchestrating the WSs

and robotic tasks. Table 1 gives the description of earlier

proposed models for Orchestrators. The Orchestrators

described in the table are specifically designed for the WSs,

cloud computing or robotic tasks. The table also gives the

limitations of the earlier proposed models. The earlier

proposed models do not describe the timing relations in the

orchestration steps.

Table 1. Models of Orchestrator

S.No. Models Presented Features Limitation

1 Orchestrator model

for WSs [3] (Figure

1)

 Orchestration of the n number of

functioning WSs.

 Orchestrator invokes and WSs respond.

 Orchestrator decides the invoking

sequence of WSs according to the

application.

 Applicable to WSs.

 Timing relations are not

known.

2 Service Orchestrator

for improving the

QoS [4]

(Figure 2)

 Several services may provide the same

functionality, with different levels of

performance and reliability, and at

different costs.

 Figure 3.2 shows m ≥ 1 sets of concrete

services: The set CSi =

 , is comprised of ni ≥

1 concrete services that provide the same

abstract service.

 Applicable to WSs.

 Timing relations are not

known.

3 Orchestrator for WSs

handling [5]

(Figure3)

 The orchestration is performed using

XML schema.

 Figure 3.3 shows the model. Four types of

orchestration execution are:

 Sequential

 Parallel

 Conditional

 Looping

 Applicable to WSs.

 Timing relations are not

known.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.10, May 2015

13

4 Polyphony:

Orchestration

Framework for

Cloud

Computing [6]

 A component based framework, works for

cloud computing.

 OSGi framework is used to implement the

Polyphony.

 Applicable to cloud

computing.

5 Orchestrator for

robotic tasks [7]
 Framework uses object oriented approach.

 General Command Interpreter

decomposes a command into sub

commands.

 Subcommands are further decomposed

into sub subcommands.

 Process continues until the output

becomes a sequence of robot primitive

actions.

 Applicable to robotic tasks.

 Timing relations are not

known.

Fig 1: Functioning of Orchestrator for the web services [3]

Fig 2: Workflow of services in an Orchestrator [4]

Developer

User

Orchestrator

(Managing Workflow)

Internet

 . .

.

 . .

.

 . .

.

-

Get

Response
Get

Response
Get

Response

Initiate Initiate Initiate

Web

Service 2

Web

 Service n

Web

Service 1

Orchestrator

(Coordinator)

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.10, May 2015

14

 Fig 3: An Orchestrator framework for WS handlers [5]

Matrix operations are fundamental of many mathematical

calculations and require in problems of science and

engineering. Matrix multiplication and matrix inversion are

the most frequently used matrix operations. An Orchestrator

[1] [2] can be designed to find faster solutions of matrix

operations. There is no any Orchestrator model to orchestrate

the matrix operations.

To speedup matrix multiplication, there has been a great deal

of interest in developing parallel formulations of various

algorithms. There are many parallel architectures [8-10]

available for speeding up the computation.

Networked Control Systems (NCS) consists of sensors,

actuators and controllers [11] .NCS are used in automation of

distributed systems. Orchestrator can be used to automate the

functioning of NCS. No any models of Orchestrator are

proposed in this area.

A common Orchestrator architecture is required, which can

orchestrate the matrix operations, robotic tasks and control

systems. The paper proposes a common Orchestrator

architecture named as Computational Orchestrator

(CompOrch). CompOrch orchestrates the matrix operations,

robotic task and application of control systems.

2. CompOrch ARCHITECTURE
Figure 4 shows the layered architecture for CompOrch.

Application user is on the upper most layers. Application user

can choose any Orchestrator to work with. The job of

CompOrch is to coordinate with various Orchestrators.

Various Orchestrators include IOrch, IOrchE, MOrch, ROrch

and COrch. The introduction of these Orchestrators is given in

next section.

CompOrch creates the object of specified Orchestrator and

invokes the controlling method of the Orchestrator. Once the

object has been created and controlling method has been

called, the individual Orchestrator grabs the control of

execution.

The called Orchestrator establishes the connection with

remote services. The job of called Orchestrator is to

coordinate with various events. The events may be termed as

to send signal, to receive signal, to generate control code

according to user specification. The last layer is of actual

service or hardware. The CompOrch integrates and

coordinates the actual service or hardware.

Fig 4: Layered architecture of CompOrch

 3. INTRODUCTION TO

ORCHESTRATORS EXTENDED

FROM THE CompOrch
CompOrch extends to five Orchestrators. The extended

Orchestrators are as follows:

IOrch finds the inverse of a given square matrix through

Cramer’s rule. IOrch orchestrates two services. One for

calculating determinant of matrix, other for calculating minor

Orchestrator

Parallel Communication

Serial Communication

H
an

d
ler

4

H
an

d
ler

5

H
an

d
ler

6

H
an

d
ler

7

Looping

Communication with

conditions

Handler 9

Handler 10

C

Handler 1 Handler 2 Handler3

Handler 8

Application User

MOrch, IOrch, IOrchE, ROrch, COrch

C
o

m
p

O
rch

In
d

iv
id

u
al

O
rch

estrato
rs

Coordinating various Orchestrators, Providing

parameters for network connection

Coordinate objects and handling events

(Send signal, receive signals and generate control

code

Establish Network Connection

Hardware Services/ Software Services

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.10, May 2015

15

matrix for the given row and column number. IOrch

orchestrates the sequence of calculating minor and

determinants.

IOrchE is an extension of IOrch. Four services are

implemented in IOrchE. As calculating determinant is more

time consuming as compare to calculating minor of matrices.

One service is implemented for minor and three services are

implemented for determinant. IOrchE Orchestrates the

execution sequence of these four services for calculating the

inverse of a given matrix.

MOrch orchestrates the matrix multiplication. The algorithm

used for matrix multiplication is Strassen’s algorithm. Seven

servers are implemented. The servers execute the seven

equations of Strassen’s algorithm. The task of MOrch is to

orchestrate all the seven services to find the multiplication of

two square matrices.

ROrch orchestrates multiple moving robots. Robots can move

in any direction and in any order. Robots can be invoked in

sequential, parallel or in hybrid manner. User can enter the

codes for deciding the sequence and direction of movement.

COrch shows the design of Orchestrator to handle the

software complexity of NCS. The COrch orchestrates an

example of NCS. The example taken is Collision detection

and avoidance system in multiple moving robots. COrch also

decides the invoking sequence of robots from sequential,

parallel or hybrid Execution.

4. GENERAL ARCHITECTURE OF

CompOrch
Figure 5 shows a general architecture of CompOrch. It is

based on a service based system described by C. Grunske et

al. [4]. Assume m sets of services for orchestration. Assume

that each set has p, q or r number of services. The

Orchestrator has k stages of services. An extended

Orchestrator overrides the values of p, q, r, m and k as per the

workflow pattern. The earlier described system [4] did not

represent the timings of execution of each service. CompOrch

shows the timings of execution of each service.

Assume t1, t2...tn are the initiation time of different tasks. t1 is

the start orchestration time .t2, t3... tn are the initiation timings

at stages 1, 2,…. k.

The time relation t2 < t3<... tn says that at one stage all services

are initiated in parallel and at different stages services are

initiated in sequential manner.

Similarly, t2 = t3 = ... tn, means all stages are initiated in

parallel manner.

Table 2 gives the meaning of symbols used in architecture of

CompOrch.

Fig 5: General architecture of CompOrch

t1

--

--

--

Orchestrator for Matrix operations (distributed services)/ Orchestrator for robotic task/

Orchestrator for control systems

CompOrch

-

-

-

tn

t3

t2

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Calinescu,%20Radu.QT.&searchWithin=p_Author_Ids:37312613800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Calinescu,%20Radu.QT.&searchWithin=p_Author_Ids:37312613800&newsearch=true

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.10, May 2015

16

Table 2. Symbol used in general architecture of CompOrch

Symbol used Meaning

 First service of set one at stage one

 pth service of set one at stage one

 qth service of set two at stage one

 rth service of set m at stage one.

 First service of set one at stage two

 pth service of set one at stage two

 qth service of set two at stage two

 rth service of set m at stage two.

 First service of set one at stage k

 pth service of set one at stage k

 qth service of set two at stage k

 rth service of set m at stage k

5. ComputationalOrchestrator: A

SUPER CLASS
ComputationalOrchestrator is a super class of described five

Orchestrators. All five Orchestrators are extending the

ComputationalOrchestrator class. The Orchestrators are using

a specific interface to connect with the remote machine.

As all Orchestrators are using RMI for communicating with

remote machines. So the CompOrch provides the parameters

for functioning with the RMI. The Orchestrators are

overriding the parameters of CompOrch.

Figure 6 shows the extension of CompOrch for the distributed

computing. Matrix operations are implemented to represent

the distributed computing.

Fig 6: CompOrch’s extension for distributed computing

Figure 7 shows the extension of CompOrch for Robots. The

Orchestrator for robotic tasks extends the

CompOrch. There are n robots. Orchestrator sends and

receives signals. It then controls the movement of robots.

Fig 7: CompOrch’s extension for controlling movement of

robots

Figure 8 shows the extension of CompOrch for control

systems. The n control systems may be there, Orchestrator

controls the functioning of multiple control systems by

initiating messages in sequential, parallel or in hybrid manner.

CompOrch provides the network communication parameters

to the control system Orchestrator.

--

Response

Response

Initiate Initiate

Response

Initiate

Interface for

Control Systems

CompOrch Super Class of

Orchestrator

Orchestrator

for Control Systems

Control

System 2

Control

System n

Control

System 1

-

Response

Response

Initiate
Initiate

Response

Initiate

Orchestrator for

Distributed Computing

(Matrix inversion and

Matrix multiplication)

Service 1
Service 2 Service n

Interface for Distributed

Computing

CompOrch Super

Class of Orchestrator

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.10, May 2015

17

Fig 8: CompOrch’s extension for control systems

6. IMPLEMENTATION
The CompOrch is implemented using Java multithreading and

RMI. Following steps describe the workflow in CompOrch:

Step1: All servers are RMI server. They are binding their

lookup name with an RMI registry. The servers execute

various services. The services are determinant, minor and

robotic movement.

Step2: User gives the input to the CompOrch for the type of

orchestration, whether Mathematical orchestration, robotic

orchestration or control system orchestration.

Step3: CompOrch creates the object of specified Orchestrator.

Step4: CompOrch invokes the method of specified

Orchestrator.

Step5: The specified Orchestrator is an RMI client and

extending to CompOrch. It makes connection with the

appropriate server by matching the lookup name.

Step6: The specified Orchestrator asks to the user about mode

of execution and the appropriate data for orchestration.

Step7: The specified Orchestrator starts the mentioned

execution (sequential, parallel or hybrid) after taking inputs

from user.

Step8: The specified Orchestrator displays the results after

completing the mentioned orchestration.

Step9: CompOrch is ready to accept another type of

orchestration.

6.1 Class Diagram For CompOrch
Figure 9 shows the class diagram for the CompOrch.

 The main class is the ComputationalOrchestrator

class .It provides interface to user. The class

ComputationalOrchestrator represents to the

CompOrch.

 The ComputationalOrchestrator class uses four main

classes of four Orchestrators.

 RMIClientMath for IOrch and IOrchE.

 StrassenClient for MOrch.

 RoboClient for ROrch.

 ControlClient for COrch.

Fig 9: Class Diagram for CompOrch

The described classes of Orchestrators are using RMI servers

for initiating distributed node operations. All four classes are

using the java.rmi.Naming class to search the server with the

help of lookup name of server. There are several attributes

and methods in represented classes, only few of them are

shown in the diagram to keep the diagram simple. Table 3

gives the description of all packages, classes and interfaces

used in CompOrch.

Response

Response

Initiate Initiate

Response

Initiate

Interface

for

Robotics

CompOrch Super

Class of

Orchestrator

Orchestrator
for Robots

Robot 2

or

Message 2

Robot n

or

Message n

Robot 1

or

Message 1

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.10, May 2015

18

Table 3. Packages, classes, interfaces used in CompOrch

S. No. Orchestrator

Name

Class Name Interface Package name Packages used

1 Comput-ational-

Orches-trator

Computational-

Orchestrator

(super class)

 Orches-trator orchestrator.inverse,

orchestrator.strasen,

orchestrator.RoboRMI,

orchestrator.ControlRobo,java.r

mi, java.rmi.registry,

java.util,java.io,java.text.

2 Inverse-

Orchestra-tor

and Inverse-

Orchestra-torE

RMIClientMath,

RMIServer,

RMIServer_2,

RMIServer_3,

RmiServerCo.

Comatrix-

Interface,

Method-Impl.

Inverse java.rmi,java.rmi.registry,

java.util,java.io,java.text,

orchestrator,Jama.LUDecomposi

tionJama.Matrix,java.net,

3 Math-Orchestra-

tor

StrasenClient,

StrasenServer1,

StrasenServer2,

StrasenServer3,

StrasenServer4,

StrasenServer5,

StrasenServer6,

StrasenServer7,

Strasen-Interface1,

Strasen-Interface2,

Strasen-Interface3,

Strasen-Interface4,

Strasen-Interface5,

Strasen-Interface6,

Strasen-Interface7.

Strasen java.io,java.util,java.rmi,java.rmi

.registry,orchestrator,

4 Robo-Orchestra-

tor

RoboClient,

RoboServer,

RoboServer2,

RoboServer3

Robo-Interface1,

Robo-Interface2,

Robo-Interface3,

Robo-RMI java.rmi,java.rmi.registry,java.uti

l,java.io,java.text,orchestrator,

gnu.io,java.net.

5 Control-

Orchestra-tor

 ControlClient,

ControlServer1,

ControlServer2

Control-Interface1,

Control-Interface2

Control-Robo java.rmi,java.rmi.registry,java.ut

il,java.io,java.text,orchestrator

gnu.io, java.net.

7. FEATURES OF CompOrch

ARCHITECTURE
Various Orchestrators are available commercially. These are

designed for specific applications. ePolicy security

Orchestrator [12] orchestrates the security layer. IBM smart

cloud Orchestrator [13] orchestrates the computing nodes at

clouds. But a composite Orchestrator for the mathematical

applications, robots and control systems is not available.

Proposed CompOrch is a common architecture of

Orchestrator. It is the super class for the orchestration of

matrix operations, robots and control systems. It extends to

the Orchestrators orchestrating the matrix operations, moving

robots and collision detection in moving robots.

There are numerous advantages of a super class for the

composite architecture: provides single interface for the

multiple type of applications, extended Orchestrator can also

work independently, services of extended Orchestrator can

also work independently, provides service reusability,

provides fault tolerance, Easy to use mechanism, provides

high level of abstraction, provides hierarchal structure for

Orchestrators and creates objects of specified Orchestrator

and work with them.

8. CONCLUSION
The paper described a composite architecture of Orchestrator.

Different layers in the architecture and class diagram are

implemented and described. The features and steps in

functioning of CompOrch are described. The CompOrch

extends to Orchestrators in different applications describe in

chapters four, five and six.

9. REFERENCES
[1] N. Viswanadham, Kameshwaran, “Orchestrating a

Network of Activities in the Value Chain,” 5th Annual

IEEE Conference on Automation Science and

Engineering Bangalore, India, pp. 501-506, August 22-

25, 2009.

[2] BPEL basics for java handlers, available at

http://www.activevos.com/indepth/c_technology/bPELF

orJavaDevelopers

[3] Kareliotis Christos, Vassilakis Costas, Georgiadis

Panayiotis, “Enhancing BPEL scenarios with Dynamic

Relevance-Based Exception Handling,” IEEE

International Conference on Web Services (ICWS 2007),

pp. 751-758, July 2007.

[4] R.Calinescu, ,Grunske Lars Kwiatkowska, Marta Z.

Mirandola, Raffaela Tamburrelli, Giordano, “Dynamic

QoS Management and Optimization in Service-Based

Systems,” IEEE Transactions on Software Engineering,

Vol. 37, No.3, pp. 387-409,2011.

[5] Beytullah Yildiz, Geoffrey Fox, Shrideep Pallickara, “An

Orchestration for Distributed Web Service Handlers,”

ICIW 2008, Third International Conference on Internet

and Web Applications and Services, pp.638-643, 2008.

[6] Shams, Khawaja S, Powell, Mark W. Crockett, Tom M.

Norris, Jeffrey S. Rossi, Ryan Soderstrom, “Polyphony :

a workflow orchestration framework for Cloud

Computing,” 2nd International Symposium on Cloud

Computing (Cloud 2010), Melbourne, Victoria,

Australia, May 17-20, 2010.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Calinescu,%20Radu.QT.&searchWithin=p_Author_Ids:37312613800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Grunske,%20Lars.QT.&searchWithin=p_Author_Ids:37297169700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kwiatkowska,%20Marta%20Z..QT.&searchWithin=p_Author_Ids:37271265100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mirandola,%20Raffaela.QT.&searchWithin=p_Author_Ids:37313448700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tamburrelli,%20Giordano.QT.&searchWithin=p_Author_Ids:37313447100&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No.10, May 2015

19

[7] Fumio, O., Jun'ichiro, O., Kunikatsu, T., “An Action

Framework for Robots based on Distributed Knowledge

Base,” IEEE/SICE International Symposium on System

Integration, pp.77-82, 4 Dec. 2008.

[8] S.G.Akl., “The Design and Analysis of Parallel

Algorithms” Prentice-Hall, 1989.

[9] Jarle Berntsen, “Communication efficient matrix

multiplication on hypercube,” Journal on Parallel

Computing, Vol. 12, No. 3, pp. 335-342. 1989.

[10] D.P. Bertsekas, J.N. Tsitsilk, “Parallel and Distributed

Computation: Numerical Methods,” Prentice Hall,

Englewood, Cliffis, 1989.

[11] Wang, Fei-Yue, Liu, Derong (Eds.), “Networked Control

Systems Theory and Applications,” Springer publication,

2008.

[12] McAfee ePolicy Orchestrator (ePO), Available at:

http://www.mcafee.com/in/products/epolicy-

orchestrator.aspx

[13] IBM Cloud Orchestrator, Available at:

http://www3.ibm.com/software/products/en/smart

cloudorchestrator

IJCATM : www.ijcaonline.org

