
International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 1, May 2015

6

Pattern Discovery Text Mining for Document

Classification

Mustafa M. Shaikh
IT Department

Dr.D.Y.Patil Institute of
Engineering and Technology,

Ambi, Pune

Ashwini A. Pawar
IT Department

Dr.D.Y.Patil Institute of
Engineering and Technology,

Ambi, Pune

Vibha B. Lahane
Asst. Professor, IT Department

Dr.D.Y.Patil Institute of
Engineering and Technology,

Ambi, Pune

ABSTRACT

In text documents data mining techniques have been

discovered for mining useful patterns. But there are some

questions, how to properly use and update discovered patterns

is still an open research issue, specifically in the text mining.

Therefore most existing text mining methods have used

term-based approaches but they all suffer from the problems

of polysemy (multiple meaning word) and synonymy(same

meaning word).This is the literature survey paper with

proposed system develops innovative and successful pattern-

based technique which contains the processes of pattern

taxonomy, pattern deploying and gradually developing pattern

,to improve the effectiveness of using and updating researched

patterns for finding applicable and interesting data with

effectual patterns as per the users requirements. In this paper

user is also getting the meaningful information without wrong

meaning problem.

General Terms
Text mining, information filtering, Pattern Mining, Data

Mining, pattern evolving, Text Classification.

Keywords
D-matrix ,Pattern Taxonomy

1. INTRODUCTION
Text mining is the discovery of interesting information in

word documents. It is a stimulating issue to find precise

information in text documents to help users to find what they

want. Many applications, such as market analysis and

business managing, can profit by the use of the data and facts

extracted from a large amount of data. Knowledge discovery

can be effectively use and update discovered patterns and

apply it to field of text mining .Data mining is therefore an

essential step in the process of knowledge discovery in

databases, which means data mining is having all methods of

knowledge discovery process and presenting modeling phase

that is application of methods and algorithm for calculation of

search pattern or models. These techniques include

association rule mining(ASM), frequent item set

mining(FIM), sequential pattern mining(SPM), maximum

pattern mining(MPM) and closed pattern mining(CPM).

Utmost of them are projected for the determination of

developing efficient mining algorithms to find particular

patterns within a equitable and tolerable time structure. With a

great number of patterns engendered by using the data mining

methods, how to effectively exploit these patterns is still an

exposed research issue.

2. BASIC CONCEPTS
Taxonomy of entities for search engines is designed to

improve significance [17]in perpendicular search. Taxonomies

of objects are trees whose nodes are labeled with entities

which expect to occur in a web exploring request. These trees

are used to compare keywords from search query with the

keywords from answers (or snippets).Taxonomies, thesauri

and concept hierarchies are crucial components for many

applications of Natural Language processing, Information

Retrieval and information management. Though, construction,

regulation and handling taxonomies and ontologies is rather

costly since a lot of manual processes are essential. A number

of studies projected the programmed construction of

taxonomies based on verbal resources and or statistical

machine learning Web mining is one of the methods to form

search engine taxonomies for net search. The taxonomy

building procedure starts from the kernel objects and mines

accessible source areas for new objects linked with these seed

objects. New objects are molded by put on the machine

learning to the present net search results for standing objects

to form harmonies among them. These unity words then form

parameters of present objects, and are revolved into new

objects at the next learning repetition.

3. SYSTEM ARCHITECTURE

4. PROPOSED WORK
Research project selection is an important task for government

and private research funding organizations. When a great

number of research applications are received, it is mutual to

cluster them conferring to their resemblances in research

domains. The clustered proposals are then allotted to the

suitable specialists for peer analysis. Present procedures for

clustering proposals are built on manual toning of related

research domain areas and/or keywords.[13] However, the

exact research domain areas of the offers cannot often be

exactly nominated by the candidates due to their particular

views and possible misapprehensions. So, rich info in the

http://en.wikipedia.org/wiki/Information_Retrieval
http://en.wikipedia.org/wiki/Information_Retrieval
http://en.wikipedia.org/wiki/Information_Retrieval
http://en.wikipedia.org/wiki/Knowledge_Management
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Machine_learning

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 1, May 2015

7

applications’ full text can be used efficiently. Text-mining

approaches have been projected to solve the problem by

automatically categorizing text documents, largely in English.

4.1 Preprocessing
All words passes to pre-processing step. Inappropriate terms

are removed there. This procedure is also called as

tokenization procedure. It contains two types of processes

such as stop list elimination, stem word elimination.

A). Stop List Elimination: Stop words are words which are

cleaned out proceeding to, or afterward, treating of natural

language data. They typically comprise prepositions, articles,

and so on. There is no specific list of stop words for all

applications and these stop words are controlled by the human

but not automated. It saves the system assets. Stop word has

list of arguments. That are considered as inappropriate and

then it is eliminated .It consists of (a, an, the) articles, (for, in,

at, etc.) preposition, etc.

B). Stem word removal: Stemming is the process for

reducing inflected (or sometimes derived) words to their stem

base or root form. It generally a written word forms. In this

preprocess the text documents have to be processed using the

Porter stemmer. It removes the Suffix’s of the words these

words are useful in the text mining for clustering the text

documents in the text mining process users collects the

documents and each documents are composed into the set of

terms or words the words having stem have a same meaning

in stem process the suffixes of the words, singular and plural

words are considered into a one single word for meaning full

text clustering process.

4.2 Pattern Taxonomy Model

Users assume that all documents are split into paragraphs. So

a given document A yields a set of paragraphs PS(A). Let B

be a teaching set of docs, which contains a set of docs, B;. Let

C= {c1, c2, …,cn} be a set of terms (or keywords) which can

be extracted from the set of documents, B

T1:A set of paragraphs

Paragraphs Terms

Ap1 c1 c2

Ap2 c3 c4 c6

Ap3 c3 c4 c5 c6

Ap4 c3 c4 c5 c6

Ap5 c1 c2 c6 c7

Ap6 c1 c2 c6 c7

A).Frequent and Closed Patterns-

Given [1] a term set D in document d ,┌D
┐ is used to denote the

covering set of D for A, which includes all paragraphs

Ap PS(A) such that D⊆Ap, i.e.,

D   ={Ap|Ap 𝑃𝑆 𝐴 , 𝐷 𝐴𝑝}.

 Its absolute support is the number of occurrences of D in

PS(A),that is supa(D)=| ┌D
┐ |.Its relative support is the fraction

of the paragraphs that have the pattern, that is

 supr(D)=
| ┌D┐ |

|𝑃𝑆(𝐴)|

A termset D is called frequent pattern if its supr(or

supa)≥min_sup, minimum support.

Table 1 lists a set of paragraphs for a given document A,

where PS(A)={Ap1,Ap2, ….,Ap6} and duplicate terms were

removed.

T2: Frequent patterns and covering sets

Frequent patterns Covering sets

{c3, c4, c6 } {Ap2,Ap3,Ap4}

{c3, c4} {Ap2,Ap3,Ap4}

{c3, c6} {Ap2,Ap3,Ap4}

{c4, c6} {Ap2,Ap3,Ap4}

{c3} {Ap2,Ap3,Ap4}

{c4} {Ap2,Ap3,Ap4}

{c1, c2 } {Ap1,Ap5,Ap6}

{c1} {Ap2,Ap3,Ap4}

{c2 } {Ap2,Ap3,Ap4}

{c6} {Ap2,Ap3,Ap4 ,Ap5,Ap6}

Let min_sup=50%, users can obtain ten frequent patterns in

Table 1 using the above explanations. T2 illuminates the ten

frequent patterns and their covering sets. Not all repeated

patterns in T2 are beneficial. For example, pattern {c3, c4}

always occurs with term c6 in paragraphs, i.e., the shorter

pattern, {c3, c4}, is always a part of the larger pattern, {c3, c4,

c6}, in all of the paragraphs. Therefore, users consider that the

smaller one, {c3, c4}, is a noise pattern and expect to keep the

larger pattern, {c3, c4, c6}, only. Given a term set D, its

covering set | ┌
D

┐ | is a subset of paragraphs. Similarly, given

a set of paragraphs E ⊆ PS (A), users can define its term set,

which satisfies

termset(E)= 𝑐 ∀ 𝐴𝑝 ∈ 𝐸 → 𝑐 ∈ 𝐴𝑝

The closure of is defined as follows:

 Cls(D)=termset(┌
D

┐).

A pattern D (also a termset) is called closed if and only if

D=Cls(D).

Let D be a closed pattern. Users can prove that

supa(D1)<supa(D) (1)

for all patterns D1 D; otherwise, if supa(D1)= supa(D),

users have

1D   = D  

Where supa(D1) and supa(D) are the absolute support of

pattern D1 and D, respectively.

Users also have

Cls(D) =termset(D  )=termset(1D  )D1 D,

that is, Cls(D) ≠D.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 1, May 2015

8

B). Pattern Taxonomy-

Patterns can be structured into a taxonomy by using the is-a

(or subset) relative. For the example of T1, where users have

demonstrated a set of paragraphs of a document, and the

exposed 10 repeated patterns in T2 if assuming min_sup =

50%. There are, however, only threeclosed patterns in this

example. They are <c3,c4, c6>, <c1, c2>, and <c6>.

Fig. 1 illustrates an example of the pattern taxonomy for the

frequent patterns in T2, where the nodes denote repeated

patterns and their covering sets; non-closed patterns can be

pruned; the edges are “is-a” relation. After pruning, some

direct “is-a” retaliations may be changed, for example, pattern

{c6} would become a direct sub-pattern of {c3,c4,c6},after

pruning non-closed patterns. Smaller patterns in the

taxonomy, for example pattern {c6} (see Fig. 1) are usually

more general because they could be used frequently in both

positive and documents; and larger patterns, for example

pattern {c3,c4,c6} in the taxonomy are usually more specific

since they may be used only in confident documents. The

semantic info will be used in the pattern taxonomy to develop

the performance of using closed patterns in text mining.

 {c3, c4, c6}

 {c1,c2 } {c3,c4} {c3,c6} {c4,c6}

 [1,5,6] [2,3,4] [2,3,4] [2,3,4]

{c1} {c2} {c3} {c4} {c6}
[1,5,6] [1,5,6] [2,3,4] [2,3,4] [2,3,4,5,6]

Fig 1: Pattern taxonomy

C). Closed Sequential Patterns

A [2]sequential pattern s = <c1,. . . ,cr> (ci  C) is an ordered

list of terms. A sequence s1 = <d1, . . . ,di>is a subsequence of

another sequence s2=<e1,. . . ,ej>, denoted by s1ô s2, if j1, .

. . ,jy such that 1  j1< j2 . . . < je j and d1 = ej1,d2=ej2 , . . . ,

di =eje. Given s1 ô s2, users usually say s1 is a sub pattern

of s2, and s2 is a super pattern of s1. In the following, users

simply say patterns for sequential patterns. Given a pattern (an

ordered termset) D in document A, D  

is still used to denote the covering set of D, which includes all

paragraphs p s ∈ PS(A) such that Dô p s, i.e., D   = { p s

| p s∈ PS(A),Dô p s }.Its absolute support is the number of

occurrences of D in PS(A), that is supa(D) = | D   |. Its

relative [3]support is the fraction of the paragraphs that contain

the pattern, that is,

supr(D) =
| ┌D┐ |

|𝑃𝑆(𝐴)|
 .

A sequential pattern D is called frequent pattern if its relative

support (or absolute support) _ min sup, a minimum support.

The property of closed patterns (see eq. (1)) can be used to

define closed sequential patterns. A frequent sequential

pattern D is called closed if not 9 any superpatternD1 of D

such that supa(D1) =supa(D).

4.3 Pattern Deploying Method
In demand to use the semantic info in the pattern taxonomy to

develop the performance of closed patterns in text mining,

users need to interpret discovered patterns by summarizing

them as d-patterns (see the definition below) in order to

accurately evaluate term weights (supports).

The rationale behind this motivation is that d-patterns include

more semantic meaning than terms that are selected based on

a term-based technique (e.g., tf*idf). As a result, a term with a

higher tf*idf value could be meaningless if it has not cited by

some d-patterns (some important parts in documents). The

evaluation of term weights (supports) is different to the

normal term-based methods. In the term-based methods, the

estimate of term weights is based on the distribution of terms

in documents. In this ,terms are biased conferring to their

forms in exposed closed patterns.

A). Representation of Closed Patterns-

It is complicated to derive a method to apply discovered

patterns in text documents for information purifying systems.

To make simpler this procedure, users first analyze the

composition operation ⨁defined in [25]. Let p1 and p2 be sets

of term-digit pairs. p1⨁p2 is called the composition of p1 and

p2 which fulfills

p1⨁p2 ={(c,d1+d2)|(c,d1) ∈p1,(c,d2) ∈ p2}

 {(c,d)|(c,d) ∈ p1 p2,not((c,_) ∈ p1 p2)}

where is the wild card that matches any number. For the

special case users have p1⨁= p; and the operands of the

composition operation are exchangeable. The result of the

composition is quiet a set of term-number pairs.

For example,

{(c1,1),(c2,2),(c3,3)} ⨁{(c2,4)}={(c1,1),(c2,6),(c3,3)}

Or

{(c1,2%),(c2,5%),(c3,9%)}⨁{(c1,1%),(c2,3%)}={(c1,3%),(c2,8

%),(c3,9%)}

Formally, for all positive documents Ai D+, users first

deploy its closed patterns on a common set of terms T in order

to obtain the following d-patterns (deployed patterns, non-

sequential weighted patterns):

Â i={(ci1,ni1),(ci2,ni2),…..,(cim,nim)} (2)

Where cij in pair (cij,nij) denotes a single term and nijis its

support in Ai which is the total absolute supports given by

closed patterns that contain cij; or nij(simply in this paper) is

the total number of closed patterns that contain cij .

For example, using Fig. 1 and T1, users have

supa(<c3,c4, c6>)=3,

supa(<c1,c2>)= 3,

supa(<c6>)=5,and

Â = {(c1,3),(c2,3),(c3,3),(c6,8)}

The process of calculating d-patterns can be easily described

by using the  operation in Algorithm 1 (PTM) displayed in

Fig. 2, where a term’s support is the total number of closed

patterns that contain the term. Users also can obtain the d-

patterns of the five sample documents in which are expressed

as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 1, May 2015

9

Â 1 = {(carbon,2),(emiss,1),(air,1),(pollut,1)},

Â 2 = {(greenhouse,1),(global,2),(emiss,1)},

Â 3 = {(greenhouse,1),(global,=1),(emiss,1)},

Â 4 = {(carbon,1),(airl,2),(antarct,1)},

Â 5 = {(emiss,1),(global,1),(pollut,1)}.

Let AAP be a set of d-patterns in D+, and pAAP be a d-

pattern. Users call p(c) the absolute support of term c, which

is the number of patterns that contain c in the corresponding

patterns taxonomies. In order to efficiently install patterns in

dissimilar taxonomies from the different positive documents,

d-patterns will be normalized using the following assignment

sentence:

1
() ()

()c C

p c p c
p c

 


Actually the relationship between d-patterns and terms can be

explicitly described as the following association mapping

[25], a set-value function:

β:AAP→2C×[0,1] (3)

such that

β(p i)={(c1, 1), (c2, 2),……., (ck, k)}

for all p IAAP, where

p i={(c1,f1),(c2,f2),……,(ck,fk)}AAP,

1

i
i k

j j

f

f







And C={c|(c,f)p,pAAP}

β(p i) is called the normal form (or normalized d-pattern)

of d-pattern p I in this paper, and

termset(p i)={c1,c2,….,ck}

4.4 Inner Pattern Evaluation
In this section, users [4] talk over how to restructuring supports

of terms within normal forms of d-patterns centered on

documents in the training set. The method will be useful to

lessen the side effects of noisy patterns for the reason that of

the low-frequency problem. This method is called inner

pattern evolution here, for the reason that it only changes a

pattern’s term supports within the pattern.

A threshold is usually used to categorize documents into

appropriate or inappropriate groups. Using the d-patterns, the

threshold can be well-defined naturally as follows:

Threshold(AAP)= min
p AAP

(

(,) ()c p 

 support(c)) (4)

A noise negative document A in D is a document that the

system misleadingly recognized as a positive, that is weight

(A)≥Threshold(AAP). In order to lessen the noise, users must

track which d-patterns have been used to provide rise to such

a mistake. Users call these patterns offenders of

nd.An offender of A is a d-pattern that has minimum one term

in A. The set of offenders of A is defined by:

V(A)={p∈AAP|termset(p)⋂A≠ϕ}. (5)

There are two sorts of offenders: 1) a complete conflict

offender which is a subset of A; and 2) a partial conflict

offender which holds part of terms of A.The basic idea of

bring up-to-date patterns is described as follows:

Complete conflict offenders are detached from d-patterns first.

For partial conflict offenders, their term supports are

restructured in order to lessen the effects of noise documents.

The main procedure of inner pattern evolution is executed by

the algorithm IPEvolving. The input of this method is se of

patterns .The output is a serene of d-pattern. Step 2 in

IPEvolving is used to guess the threshold for discovery of the

noise documents. Steps 3to 10 reread term supports by using

all noise documents. Step 4 is to find noise documents and

the equivalent offenders. Step 5 gets normal forms of d-

patterns NDP. Step 6 calls algorithm scuffling to update NDP

agreeing to noise documents. Steps 7 to 9 compose updated

normal forms organized. The time complexity of Algorithm 2

is defined by step 2, the number of calls for Scuffling

algorithm and the number of using ⨁ operation. Step 2 takes

(nm).

For each noise pattern A, the algorithm catches its offenders

that takes O(nm×|nd|)in step 4, and then calls once Scuffling.

After that, it calls n ⨁ operation that takes

O(nmm)=O(nm)2.

The task of algorithm Scuffling is to adjust the support supply

of terms within a d-pattern. A different strategy is committed

in this algorithm for each type of offender. As stated in step 2

in the algorithm Scuffling, complete conflict offenders (d-

patterns) are detached since all elements within the d-patterns

are held by the documents representing that they can be

thrown away for preventing interfering from these possible

“noises.” The parameter proposing is used in step 4 for the

purpose of provisionally keeping the cheap supports of some

terms in a partial conflict offender. The offering is part of the

sum of supports of terms in a d-pattern where these terms also

act in a noise document. The algorithm calculates the base in

step 5 which is definitely not zero since termset(p)−d≠ϕ; and

then updates the support allocations of terms in step 6.

For example, for the following d-pattern

Â ={(c1,3),(c2,3),(c3,3),(c3,4),(c6,8)}.

Its normal form is

{(c1,3/20),(c2,3/20),(c3,3/20),(c4,3/20),(c6,2/5)}

Assume nd={c1,c2,c6,c9}, Â will be a partial conflict offender

since

termset(Â)⋂nd=={t1,t2,t6}≠ϕ

Let  =2,

offering=
1

2
×(

3
20 +

3
20 +

2
5)=

7
20 ,and

base=
3

20 +
3

20 =
7

10 Hence, users can get the

Following restructured normal form by using

algorithm Scuffling:

{(c1,3/40),(c2,3/40),(c3,13/40),(c4,13/40),(c6,1/5)}

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 1, May 2015

10

Let m = |T|, n=|D| the number of positive documents in a

training set, and q be the number of noise documents in D.

The time complexity of algorithm Scuffling is decided by

steps 6 to 9. For a given noise document A, its time

complexity is O(nm2)if let A= A⋂ T, where T =

{t∈termset(p)|p∈DP}. Therefore, the time complexity of

algorithm Scuffling is O(nm2) for a given noise document.

Based on the above study, the total time complexity of the

inner pattern evolution is

O(nm+q(nm|nd|+nm2)=O(qnm2)bearing in mind that the noise

document A can be replaced by A⋂ T before leading the

pattern evolution. The projected model contains two phases:

the training phase and the testing phase. In the training phase,

the suggested model first calls Algorithm PTM (D, min sup)

to find d-patterns in documents (D) based on a min sup, and

assesses term supports by deploying d-patterns to terms. It

also calls Algorithm IPEvolving (D, DP, µ) to reread term

supports using noise documents in D based on an trial

coefficient µ. In the testing phase, it assesses weights for all

entering documents using eq. (4). The entering documents

then can be organized based on these weights.

5. ALGORITHMS USED
[11]Algorithm 1: SPMining(PL,min_sup)

Input: a list of nTerms frequent sequential pattern PL:

minimum support min_sup.

Output: a set of sequential patterns SP.

Method:

1: SP←SP← {Pa ϵ| ∃ Pb ϵPL such a that len (Pa) =len(Pb)-1

˄Pa c Pb ˄ suppa (Pa) = suppa (Pb) }} || pattern mining

2:SP←SP ∪PL ||storing nTerms patterns

3: PLˈ ← ∅

4: for each pattern p in PL do begin

5: generating p-projected database PD

6: for each frequent term t in PD do begin

7: Pˈ = p⋈t ||sequence extension

8: if suppr (Pˈ)≥ min_sup then

9: PLˈ ← PLˈ ∪ Pˈ

10: end if

11: end for

12: end for

13: if | PLˈ | =0 then

14: return ||no more pattern

15: else

16: call SPMining(PLˈ,min_sup)

17: end if

18: output SP

Algorithm 2: PDM(D,min_sup)

Input: a list of document D: minimum support min_sup.

Output: a set of vectors ∆

METHOD:

1: ∆←∅

2: for each document d in D do begin

3: extract lTerms frequent patterns PL from d

4: SP = SPMining(PL,min_sup) || Call Algorithm 1

5: d
ur

← ∅

6: for each pattern p in SP do begin

7: d
ur

← d
ur

⨁ Pˈ || Pˈ is the expanded form of p

8: end for

9: ∆←∆ ∪ { d
ur

}

10: end for

Algorithm 3: PDS(SP)

Input: a set of frequent sequential patterns SP.

Output: a sevectors of feature in expanded form d
ur

.

METHOD:

1: sum_supp = 0, d
ur

← ∅

2: for each pattern p in SP do begin

3: sum_supp += supa(p)

4: end for

5: for each pattern p in SP do begin

6: ⨍=suppa(p)/(sum_supp × len(p))

7: Pˈ ← ∅

8: for each term t in p do begin

9: Pˈ ← Pˈ ∪ {(t,⨍)}

10: end for

11: d
ur

← d
ur

⨁ Pˈ

12: end for

Algorithm 4: DPEvolving(Ω,D)

Input: a list of deployed patterns Ω; a list of documents D

Output: a set of term weight pairs d
ur

.

METHOD:

1: d 
ur

// estimate minimum threshold

2:  = Threshold (D)

3: for each document d in D do begin

4: if Threshold ({d})>  then

5: ∆p = {Ap ϵ Ω| termset (Ap)∩ d≠∅ }

6: Shuffling (d, ∆p)

7: end if

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 1, May 2015

11

8: for each deployed pattern d in Ω do begin

9: d
ur

← d
ur

⨁ Ap

10: end for

11: end for

Algorithm 5: Shuffling (d, ∆p)

Input: a document d and a list of deployed patterns ∆p.

Output: updated deployed patterns.

METHOD:
 1: for each deployed pattern d in ∆p

 do begin

2: if termset(d) ⊆d then // complete conflict offender

3: Ω = Ω- {Ap}

4: else // partial conflict offender

5:offering’ =

()

1
(1) { . | }

t termset Ap

t weight t d
 

  

6: base =

()

{ . | }
t termset Ap

t weight t d




7: for each term t in termset(Ap) do begin

8: if t ϵ d then // shrink offender weight

9: t.weight =
1


×t.weight

10: else //shuffle weights

11: t.weight = t.weight×(1+offering’÷base)

12: end if

13: end for

14: end if

15: end for

6. EXPERIMENTAL RESULTS
T3: The List of Methods Used for Evaluation

Method Description Algorithm

Sequential ptns Data mining method

using sequential

patterns

SPM

Sequential closed

ptns

Data mining method

using freq. sequential

closed patterns

SCPM

Freq. Itemset Data mining method

using freq.itemset

NSPM

Freq.closed itemset Data mining method

using freq.closed

itemset

NSCPM

FIG: Comparison in the number of patterns used for

training by each method on the first 50 topics (r101 r150)

and the rest of the topics (r151 r200).

7. FUTURE SCOPE
Knowledge based system many useful features such as

support and confidence of a pattern, relationship between

patterns, distribution of pattern taxonomies, and the

dimension of these taxonomies are provided. In PTM system,

some features such as the relationship among patterns and

support of patterns have been studied. The rest of the features

will be used in further research work. Most of the data mining

algorithms are computationally expensive such as PTM,

especially during the phase of Pattern Deploying. One

possible solution to improve the efficiency of pattern

taxonomy-based model is to reduce the dimensionality of the

feature space in the knowledge base. One alternative solution

is to apply length-decreasing support constraints to frequent

pattern mining

8. CONCLUSION
Many data mining techniques have been initiated in the last

decade. These techniques carry (ASM) association rule

mining, (CLOSET) closed frequent item set mining,

maximum pattern mining, (SPM) sequential pattern mining

and closed pattern mining. However, using these uncovered

data (or patterns) in the field of text mining is hard to

implement and not as much effective. This is because some

useful long patterns with high specificity minimum support

(i.e., the low-rate of occurrence problem). Users argue that not

all recurrent short patterns are useful. Hence, misapprehension

of patterns obtained from data mining techniques lead to the

unsuccessful presentation. In this research work, an effectual

pattern discovery technique has been established to overcome

the low rate of occurrence and misapprehension problems for

text mining. This proposed technique uses two processes,

pattern evolving and pattern deploying, to refine the

uncovered patterns in text documents. The exploratory results

show that the proposed structure out performs not only other

pure data mining-based process and the concept based

structure, but also term-based state-of-the-art structures, such

as BM25 and SVM-based structures

9. ACKNOWLEDGMENTS
The authors wish to thank Prof. Vibha Lahane from Dr. D Y

Patil Institute of engineering and Technology, Ambi, Pune.

Authors also wish to thank Ning Zhong, Yuefeng Li, and

Sheng-Tang Wu for providing such a deep research on this

topic.

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 1, May 2015

12

10. REFERENCES
[1] Manan Parikh1, Bharat Chaudhari2 and Chetna Chand

2013 “A Comparative Study of Sequential Pattern

Mining Algorithms”

[2] Jian Pei, Member, IEEE Computer Society, Jiawei Han,

Senior Member, IEEE, BehzadMortazavi-Asl, Jianyong

Wang, Helen Pinto, Qiming Chen, UmeshwarDayal,

Member, IEEE Computer Society, and Mei-Chun Hsu

2004 “Mining sequential Patterns by Pattern-Growth:

The Prefix Span Approach”

[3] Jian Pei, Jiawei Han, and Runying Mao 2010 “CLOSET:

An Efficient Algorithm for Mining Often Closed Item

sets”

[4] RamshankarChoudhary Prof. AkhtarRasool Dr.

NilayKhare2012 “Variation of Boyer-Moore String

Matching Algorithm: A Comparative Analysis”

[5] li-ping jing,hou-kuan huang,hong-bo shi 2004 “improved

feature selection approach tfidf intext mining”

[6] Robert Burbidge, Bernard Buxton2000’s An Introduction

to Support Vector Machines for DataMining

[7] Z. Yang,W. H. Tang,A. Shintemirov, and Q. H. Wu 2009

“Association Rule Mining-Based Dissolved Gas

Analysis for Fault Diagnosis of Power Transformers”

[8] Gerard Salton and Christopher Buckley 1988 “Term-

weighting Approaches in Automatic Text Retrival”

[9] Tsang-Hsiang Cheng and Chih-Ping Wei 2008 “A

Clustering-Based Approach for Integrating Document-

Category Hierarchies”

[10] RupaliBhaisare,T. RajuRao 2013 “Review On Text

Mining With Pattern Discovery”.

[11] NingZhong, Yuefeng Li, and Sheng-Tang Wu 2012

“Effective Pattern Discovery for Text Mining”

[12] JoydipDatta 2010 “Ranking in Information Retrieval”

[13] KjerastiAas Line Eikvil 1999 “Text categorization: a

Survey”

[14] RamkrishnanShrikant, RakeshAgrawal “Mining

Generelizedassotiation”

[15] Chih-Ping Wei and Yu-Hsiu Chang March 2007

“Discovering Event Evaluation Patterns From Document

Sequences”

[16] Laura AuriaRouslanA.Moro August 2008 “Support

Vector Machines (SVM) as a Technique for Solvency

Analysis”

[17] http://en.wikipedia.org/wiki/Taxonomy_for_search_engi

nes

IJCATM : www.ijcaonline.org

