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ABSTRACT 

In text documents data mining techniques have been 

discovered for mining useful patterns. But there are some 

questions, how to properly use and update discovered patterns 

is still an open research issue, specifically in the text mining. 

Therefore  most existing text mining methods have used  

term-based approaches but they all suffer from the problems 

of  polysemy (multiple meaning word) and synonymy(same 

meaning word).This is the literature survey paper with 

proposed system develops innovative and successful pattern-

based technique which contains the processes of pattern 

taxonomy, pattern deploying and gradually developing pattern 

,to improve the effectiveness of using and updating researched 

patterns for finding applicable and interesting data with 

effectual patterns as per the users requirements. In this paper 

user is also getting the meaningful information without wrong 

meaning problem. 

General Terms 
Text mining, information filtering, Pattern Mining, Data 

Mining, pattern evolving, Text Classification. 

Keywords 
D-matrix ,Pattern Taxonomy 

1. INTRODUCTION 
Text mining is the discovery of interesting information in 

word documents. It is a stimulating issue to find precise 

information in text documents to help users to find what they 

want. Many applications, such as market analysis and 

business managing, can profit by the use of the data and facts 

extracted from a large amount of data. Knowledge discovery 

can be effectively use and update discovered patterns and 

apply it to field of text mining .Data mining is therefore an 

essential step in the process of knowledge discovery in 

databases, which means data mining is having all methods of 

knowledge discovery process and presenting modeling phase 

that is application of methods and algorithm for calculation of 

search pattern or models. These techniques include 

association rule mining(ASM), frequent item set 

mining(FIM), sequential pattern mining(SPM), maximum 

pattern mining(MPM) and closed pattern mining(CPM). 

Utmost of them are projected for the determination of 

developing efficient mining algorithms to find particular 

patterns within a equitable and tolerable time structure. With a 

great number of patterns engendered by using the data mining 

methods, how to effectively exploit these patterns is still an 

exposed research issue. 

2. BASIC CONCEPTS 
Taxonomy of entities for search engines is designed to 

improve significance [17]in perpendicular search. Taxonomies 

of objects are trees whose nodes are labeled with entities 

which expect to occur in a web exploring request. These trees 

are used to compare keywords from search query with the 

keywords from answers (or snippets).Taxonomies, thesauri 

and concept hierarchies are crucial components for many 

applications of Natural Language processing, Information 

Retrieval and information management. Though, construction, 

regulation and handling taxonomies and ontologies is rather 

costly since a lot of manual processes are essential. A number 

of studies projected the programmed construction of 

taxonomies based on verbal resources and or statistical 

machine learning Web mining is one of the methods to form 

search engine taxonomies for net search. The taxonomy 

building procedure starts from the kernel objects and mines 

accessible source areas for new objects linked with these seed 

objects. New objects are molded by put on the machine 

learning to the present net search results for standing objects 

to form harmonies among them. These unity words then form 

parameters of present objects, and are revolved into new 

objects at the next learning repetition. 

3. SYSTEM ARCHITECTURE 

 

4. PROPOSED WORK 
Research project selection is an important task for government 

and private research funding organizations. When a great 

number of research applications are received, it is mutual to 

cluster them conferring to their resemblances in research 

domains. The clustered proposals are then allotted to the 

suitable specialists for peer analysis. Present procedures for 

clustering proposals are built on manual toning of related 

research domain areas and/or keywords.[13] However, the 

exact research domain areas of the offers cannot often be 

exactly nominated by the candidates due to their particular 

views and possible misapprehensions. So, rich info in the 

http://en.wikipedia.org/wiki/Information_Retrieval
http://en.wikipedia.org/wiki/Information_Retrieval
http://en.wikipedia.org/wiki/Information_Retrieval
http://en.wikipedia.org/wiki/Knowledge_Management
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Machine_learning
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applications’ full text can be used efficiently. Text-mining 

approaches have been projected to solve the problem by 

automatically categorizing text documents, largely in English. 

4.1 Preprocessing 
All words passes to pre-processing step. Inappropriate terms 

are removed there. This procedure is also called as 

tokenization procedure. It contains two types of processes 

such as stop list elimination, stem word elimination. 

A). Stop List Elimination: Stop words are words which are 

cleaned out proceeding to, or afterward, treating of natural 

language data. They typically comprise prepositions, articles, 

and so on. There is no specific list of stop words for all 

applications and these stop words are controlled by the human 

but not automated. It saves the system assets. Stop word has 

list of arguments. That are considered as inappropriate and 

then it is eliminated .It consists of (a, an, the) articles, (for, in, 

at, etc.) preposition, etc. 

B). Stem word removal: Stemming is the process for 

reducing inflected (or sometimes derived) words to their stem 

base or root form. It generally a written word forms. In this 

preprocess the text documents have to be processed using the 

Porter stemmer. It removes the Suffix’s of the words these 

words are useful in the text mining for clustering the text 

documents in the text mining process users collects the 

documents and each documents are composed into the set of 

terms or words the words having stem have a same meaning 

in stem process the suffixes of the words, singular and plural 

words are considered into a one single word for meaning full 

text clustering process. 

4.2 Pattern Taxonomy Model 

Users assume that all documents are split into paragraphs. So 

a given document A yields a set of paragraphs PS(A). Let B 

be a teaching set of docs, which contains  a set of docs, B;. Let 

C= {c1, c2, …,cn} be a set of terms (or keywords) which can 

be extracted from the set of documents, B 

T1:A set of paragraphs 

Paragraphs Terms 

Ap1 c1 c2 

Ap2 c3 c4 c6 

Ap3 c3 c4 c5 c6 

Ap4 c3 c4 c5 c6 

Ap5 c1 c2 c6 c7 

Ap6 c1 c2 c6 c7 

A).Frequent and Closed Patterns- 

Given [1] a term set D in document d ,┌D
┐ is used to denote the 

covering set of  D  for A, which includes all paragraphs 

Ap  PS(A) such that D⊆Ap, i.e., 

D   ={Ap|Ap 𝑃𝑆 𝐴 , 𝐷 𝐴𝑝}. 

 Its absolute support is the number of occurrences of D in 

PS(A),that is supa(D)=| ┌D
┐ |.Its relative support is the fraction 

of the paragraphs that have the  pattern, that is 

 supr(D)=
| ┌D┐ |

|𝑃𝑆(𝐴)|
  

A termset D is called frequent pattern if its supr(or 

supa)≥min_sup, minimum support. 

Table 1 lists a set of paragraphs for a given document A, 

where PS(A)={Ap1,Ap2, ….,Ap6} and duplicate terms were 

removed. 

T2: Frequent patterns and covering sets 

Frequent patterns Covering sets 

{c3, c4, c6 } {Ap2,Ap3,Ap4} 

{c3, c4} {Ap2,Ap3,Ap4} 

{c3, c6} {Ap2,Ap3,Ap4} 

{c4, c6} {Ap2,Ap3,Ap4} 

{c3} {Ap2,Ap3,Ap4} 

{c4} {Ap2,Ap3,Ap4} 

{c1, c2 } {Ap1,Ap5,Ap6} 

{c1} {Ap2,Ap3,Ap4} 

{c2 } {Ap2,Ap3,Ap4} 

{c6} {Ap2,Ap3,Ap4 ,Ap5,Ap6} 

 

Let min_sup=50%, users can obtain ten frequent patterns in 

Table 1 using the above explanations. T2 illuminates the ten 

frequent patterns and their covering sets. Not all repeated 

patterns in T2 are beneficial. For example, pattern {c3, c4} 

always occurs with term c6 in paragraphs, i.e., the shorter 

pattern, {c3, c4}, is always a part of the larger pattern, {c3, c4, 

c6}, in all of the paragraphs. Therefore, users consider that the 

smaller one, {c3, c4}, is a noise pattern and expect to keep the 

larger pattern, {c3, c4, c6}, only. Given a term set D, its 

covering set | ┌
D

┐ | is a subset of paragraphs. Similarly, given 

a set of paragraphs E ⊆ PS (A), users can define its term set, 

which satisfies 

termset(E)= 𝑐 ∀ 𝐴𝑝 ∈ 𝐸 → 𝑐 ∈ 𝐴𝑝  

The closure of is defined as follows: 

  Cls(D)=termset(┌
D

┐). 

A pattern D (also a termset) is called closed if and only if 

D=Cls(D). 

Let D be a closed pattern. Users can prove that 

supa(D1)<supa(D)     (1) 

for all patterns D1  D; otherwise, if supa(D1)= supa(D), 

users have 

1D   = D    

Where supa(D1) and supa(D) are the absolute support of 

pattern D1 and D, respectively. 

Users also have 

Cls(D) =termset( D   )=termset( 1D   )D1 D, 

that is, Cls(D) ≠D. 
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B). Pattern Taxonomy- 

Patterns can be structured into a taxonomy by using the is-a 

(or subset) relative. For the example of T1, where users have 

demonstrated a set of paragraphs of a document, and the 

exposed 10 repeated patterns in T2 if assuming min_sup = 

50%. There are, however, only threeclosed patterns in this 

example. They are <c3,c4, c6>, <c1, c2>, and <c6>. 

Fig. 1 illustrates an example of the pattern taxonomy for the 

frequent patterns in T2, where the nodes denote repeated 

patterns and their covering sets; non-closed patterns can be 

pruned; the edges are “is-a” relation. After pruning, some 

direct “is-a” retaliations may be changed, for example, pattern 

{c6} would become a direct sub-pattern of {c3,c4,c6},after 

pruning non-closed patterns. Smaller patterns in the 

taxonomy, for example pattern {c6} (see Fig. 1) are usually 

more general because they could be used frequently in both 

positive and  documents; and larger patterns, for example 

pattern {c3,c4,c6} in the taxonomy are usually more specific 

since they may be used only in confident documents. The 

semantic info will be used in the pattern taxonomy to develop 

the performance of using closed patterns in text mining. 

                                          {c3, c4, c6} 

    

 {c1,c2 }         {c3,c4}           {c3,c6}         {c4,c6} 

  [1,5,6]           [2,3,4]   [2,3,4]         [2,3,4]  

 

 

{c1}           {c2}         {c3}           {c4}      {c6} 
[1,5,6]   [1,5,6]   [2,3,4]    [2,3,4]       [2,3,4,5,6] 

Fig 1: Pattern taxonomy 

C). Closed Sequential Patterns 

A [2]sequential pattern s = <c1,. . . ,cr> (ci   C) is an ordered 

list of terms. A sequence s1 = <d1, . . . ,di>is a subsequence of 

another sequence s2=<e1,. . . ,ej>, denoted by s1ô  s2, if j1, . 

. . ,jy such that 1  j1< j2 . . . < je  j and d1 = ej1,d2=ej2 , . . . , 

di =eje. Given s1 ô  s2, users usually say s1 is a sub pattern 

of s2, and s2 is a super pattern of s1. In the following, users 

simply say patterns for sequential patterns. Given a pattern (an 

ordered termset) D in document A, D    

is still used to denote the covering set of D, which includes all 

paragraphs p s ∈ PS(A) such that Dô p s, i.e., D   = { p s 

| p s∈ PS(A),Dô p s }.Its absolute support is the number of 

occurrences of D in PS(A), that is supa(D) = | D   |. Its 

relative [3]support is the fraction of the paragraphs that contain 

the pattern, that is, 

supr(D) = 
| ┌D┐ |

|𝑃𝑆(𝐴)|
 . 

A sequential pattern D is called frequent pattern if its relative 

support (or absolute support) _ min sup, a minimum support. 

The property of closed patterns (see eq. (1)) can be used to 

define closed sequential patterns. A frequent sequential 

pattern D is called closed if not 9 any superpatternD1 of D 

such that supa(D1) =supa(D). 

4.3 Pattern Deploying Method 
In demand to use the semantic info in the pattern taxonomy to 

develop the performance of closed patterns in text mining, 

users need to interpret discovered patterns by summarizing 

them as d-patterns (see the definition below) in order to 

accurately evaluate term weights (supports). 

The rationale behind this motivation is that d-patterns include 

more semantic meaning than terms that are selected based on 

a term-based technique (e.g., tf*idf). As a result, a term with a 

higher tf*idf value could be meaningless if it has not cited by 

some d-patterns (some important parts in documents). The 

evaluation of term weights (supports) is different to the 

normal term-based methods. In the term-based methods, the 

estimate of term weights is based on the distribution of terms 

in documents. In this ,terms are biased conferring to their 

forms in exposed closed patterns. 

A). Representation of Closed Patterns- 

It is complicated to derive a method to apply discovered 

patterns in text documents for information purifying systems. 

To make simpler this procedure, users first analyze the 

composition operation ⨁defined in [25]. Let p1 and p2 be sets 

of term-digit pairs. p1⨁p2 is called the composition of p1 and 

p2 which fulfills 

p1⨁p2 ={(c,d1+d2)|(c,d1) ∈p1,(c,d2) ∈ p2} 

 {(c,d)|(c,d) ∈ p1 p2,not((c,_) ∈ p1  p2)} 

where is the wild card that matches any number. For the 

special case users have p1⨁= p; and the operands of the 

composition operation are exchangeable. The result of the 

composition is quiet a set of term-number pairs. 

For example, 

{(c1,1),(c2,2),(c3,3)} ⨁{(c2,4)}={(c1,1),(c2,6),(c3,3)} 

Or 

{(c1,2%),(c2,5%),(c3,9%)}⨁{(c1,1%),(c2,3%)}={(c1,3%),(c2,8

%),(c3,9%)} 

Formally, for all positive documents Ai  D+, users first 

deploy its closed patterns on a common set of terms T in order 

to obtain the following d-patterns (deployed patterns, non-

sequential weighted patterns): 

Â i={(ci1,ni1),(ci2,ni2),…..,(cim,nim)}  (2) 

Where cij in pair (cij,nij) denotes a single term and nijis its 

support in Ai which is the total absolute supports given by 

closed patterns that contain cij; or nij(simply in this paper) is 

the total number of closed patterns that contain cij . 

For example, using Fig. 1 and T1, users have 

supa(<c3,c4, c6>)=3, 

supa(<c1,c2>)= 3, 

supa(<c6>)=5,and 

Â  = {(c1,3),(c2,3),(c3,3),(c6,8)} 

The process of calculating d-patterns can be easily described 

by using the  operation in Algorithm 1 (PTM) displayed in 

Fig. 2, where a term’s support is the total number of closed 

patterns that contain the term. Users also can obtain the d-

patterns of the five sample documents in which are expressed 

as follows: 



International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 1, May 2015 

9 

Â 1 = {(carbon,2),(emiss,1),(air,1),(pollut,1)}, 

Â 2 = {(greenhouse,1),(global,2),(emiss,1)}, 

Â 3 = {(greenhouse,1),(global,=1),(emiss,1)}, 

Â 4 = {(carbon,1),(airl,2),(antarct,1)}, 

Â 5 = {(emiss,1),(global,1),(pollut,1)}. 

Let AAP be a set of d-patterns in D+, and pAAP be a d-

pattern. Users call p(c) the absolute support of term c, which 

is the number of patterns that contain c in the corresponding 

patterns taxonomies. In order to efficiently install patterns in 

dissimilar taxonomies from the different positive documents, 

d-patterns will be normalized using the following assignment 

sentence: 

1
( ) ( )

( )c C

p c p c
p c

 


 

Actually the relationship between d-patterns and terms can be 

explicitly described as the following association mapping 

[25], a set-value function: 

β:AAP→2C×[0,1]   (3) 

such that 

β( p i)={(c1, 1), (c2, 2),……., (ck, k)} 

for all p IAAP, where  

p i={(c1,f1),(c2,f2),……,(ck,fk)}AAP, 

1

i
i k

j j

f

f







 

And C={c|(c,f)p,pAAP} 

β( p i) is called the normal form (or normalized d-pattern) 

of d-pattern p I in this paper, and 

termset( p i)={c1,c2,….,ck} 

4.4 Inner Pattern Evaluation 
In this section, users [4] talk over how to restructuring supports 

of terms within normal forms of d-patterns centered on  

documents in the training set. The method will be useful to 

lessen the side effects of noisy patterns for the reason that of 

the low-frequency problem. This method is called inner 

pattern evolution here, for the reason that it only changes a 

pattern’s term supports within the pattern. 

A threshold is usually used to categorize documents into 

appropriate or inappropriate groups. Using the d-patterns, the 

threshold can be well-defined naturally as follows: 

Threshold(AAP)= min
p AAP

(

( , ) ( )c p 

 support(c))     (4)               

A noise negative document A in D is a  document that the 

system misleadingly recognized as a positive, that is weight 

(A)≥Threshold(AAP). In order to lessen the noise, users must 

track which d-patterns have been used to provide rise to such 

a mistake. Users call these patterns offenders of 

nd.An offender of A is a d-pattern that has minimum one term 

in A. The set of offenders of A is defined by: 

V(A)={p∈AAP|termset(p)⋂A≠ϕ}.              (5)                                                           

There are two sorts of offenders: 1) a complete conflict 

offender which is a subset of A; and 2) a partial conflict 

offender which holds part of terms of A.The basic idea of 

bring up-to-date patterns is described as follows: 

Complete conflict offenders are detached from d-patterns first. 

For partial conflict offenders, their term supports are 

restructured in order to lessen the effects of noise documents. 

The main procedure of inner pattern evolution is executed by 

the algorithm IPEvolving. The input of this method is se of 

patterns .The output is a serene of d-pattern. Step 2 in 

IPEvolving is used to guess the threshold for discovery of the 

noise  documents. Steps 3to 10 reread term supports by using 

all noise  documents. Step 4 is to find noise documents and 

the equivalent offenders. Step 5 gets normal forms of d-

patterns NDP. Step 6 calls algorithm scuffling to update NDP 

agreeing to noise documents. Steps 7 to 9 compose updated 

normal forms organized. The time complexity of Algorithm 2 

is defined by step 2, the number of calls for Scuffling 

algorithm and the number of using ⨁ operation. Step 2 takes 

(nm).  

For each noise pattern A, the algorithm catches its offenders 

that takes O(nm×|nd|)in step 4, and then calls once Scuffling. 

After that, it calls n ⨁ operation that takes 

O(nmm)=O(nm)2. 

The task of algorithm Scuffling is to adjust the support supply 

of terms within a d-pattern. A different strategy is committed 

in this algorithm for each type of offender. As stated in step 2 

in the algorithm Scuffling, complete conflict offenders (d-

patterns) are detached since all elements within the d-patterns 

are held by the documents representing that they can be 

thrown away for preventing interfering from these possible 

“noises.” The parameter proposing is used in step 4 for the 

purpose of provisionally keeping the cheap supports of some 

terms in a partial conflict offender. The offering is part of the 

sum of supports of terms in a d-pattern where these terms also 

act in a noise document. The algorithm calculates the base in 

step 5 which is definitely not zero since termset(p)−d≠ϕ; and 

then updates the support allocations of terms in step 6. 

For example, for the following d-pattern 

Â ={(c1,3),(c2,3),(c3,3),(c3,4),(c6,8)}. 

Its normal form is 

{(c1,3/20),(c2,3/20),(c3,3/20),(c4,3/20),(c6,2/5)} 

Assume nd={c1,c2,c6,c9}, Â will be a partial conflict offender 

since 

termset( Â )⋂nd=={t1,t2,t6}≠ϕ 

Let  =2,  

offering=
1

2
×(

3
20 +

3
20 +

2
5 )=

7
20 ,and  

base=
3

20 +
3

20 =
7

10 Hence, users can get the  

Following restructured normal form by using 

algorithm Scuffling: 

{(c1,3/40),(c2,3/40),(c3,13/40),(c4,13/40),(c6,1/5)} 
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Let m = |T|, n=|D| the number of positive documents in a 

training set, and q be the number of noise documents in D. 

The time complexity of algorithm Scuffling is decided by 

steps 6 to 9. For a given noise  document A, its time 

complexity is O(nm2)if let A= A⋂ T, where T = 

{t∈termset(p)|p∈DP}. Therefore, the time complexity of 

algorithm Scuffling is O(nm2) for a given noise  document. 

Based on the above study, the total time complexity of the 

inner pattern evolution is 

O(nm+q(nm|nd|+nm2)=O(qnm2)bearing in mind that the noise  

document A can be replaced by A⋂ T before leading the 

pattern evolution. The projected model contains two phases: 

the training phase and the testing phase. In the training phase, 

the suggested model first calls Algorithm PTM (D, min sup) 

to find d-patterns in documents (D) based on a min sup, and 

assesses term supports by deploying d-patterns to terms. It 

also calls Algorithm IPEvolving (D, DP, µ) to reread term 

supports using noise documents in D based on an trial 

coefficient µ. In the testing phase, it assesses weights for all 

entering documents using eq. (4). The entering documents 

then can be organized based on these weights. 

5. ALGORITHMS USED 
[11]Algorithm 1: SPMining(PL,min_sup) 

Input: a list of nTerms frequent sequential pattern PL:   

minimum support min_sup. 

Output: a set of sequential patterns SP. 

Method: 

1: SP←SP← {Pa ϵ| ∃ Pb ϵPL such a that len (Pa) =len(Pb)-1  

˄Pa c Pb ˄ suppa (Pa) = suppa (Pb) }}  || pattern mining  

2:SP←SP ∪PL ||storing nTerms patterns 

3: PLˈ ← ∅ 

4: for each pattern p in PL do begin 

5: generating p-projected database PD 

6: for each frequent term t in PD do begin 

7: Pˈ = p⋈t ||sequence extension 

8: if suppr (Pˈ)≥ min_sup then 

9: PLˈ ← PLˈ ∪ Pˈ 

10:  end if 

11:       end for 

12:   end for 

13: if  | PLˈ | =0 then 

14: return   ||no more pattern 

15: else 

16:      call SPMining(PLˈ,min_sup) 

17:  end if 

18: output SP 

Algorithm 2: PDM(D,min_sup) 

Input: a list of document D: minimum support min_sup. 

Output: a set of vectors ∆ 

 

 

METHOD: 

1:  ∆←∅ 

2: for each  document d in D do begin 

3: extract lTerms frequent patterns PL from d 

4: SP = SPMining(PL,min_sup)   ||  Call Algorithm 1 

5: d
ur

← ∅ 

6: for each pattern p  in SP  do begin 

7: d
ur

← d
ur

⨁ Pˈ   || Pˈ  is the expanded form of p 

8: end for 

9: ∆←∆ ∪ { d
ur

} 

10: end for 

Algorithm 3: PDS(SP) 

Input: a set of frequent sequential patterns SP. 

Output: a sevectors of feature in expanded form d
ur

. 

METHOD: 

1: sum_supp = 0, d
ur

← ∅ 

2: for each pattern p in SP  do begin 

3: sum_supp += supa(p) 

4: end for 

5: for each pattern p  in SP  do begin 

6: ⨍=suppa(p)/(sum_supp × len(p))  

7: Pˈ ← ∅  

8: for each term t  in p  do begin 

9: Pˈ ← Pˈ ∪ {(t,⨍ )} 

10: end for 

11: d
ur

← d
ur

⨁ Pˈ 

12:  end for 

Algorithm 4: DPEvolving(Ω,D) 

Input: a list of deployed patterns Ω; a  list of documents D 

Output: a set of term weight pairs d
ur

. 

METHOD: 

1: d 
ur

// estimate minimum threshold 

2:   = Threshold (D) 

3: for each document d in D do begin 

4: if Threshold ({d})>   then 

5: ∆p = {Ap ϵ Ω| termset (Ap)∩ d≠∅ } 

   

6: Shuffling (d, ∆p)  

7: end if 
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8: for each deployed pattern d in Ω do begin 

9: d
ur

← d
ur

⨁ Ap 

10: end for 

11: end for 

Algorithm 5: Shuffling (d, ∆p) 

Input: a document d and a list of deployed patterns ∆p. 

Output: updated deployed patterns. 

METHOD: 
 1: for each deployed pattern d  in ∆p

  do begin 

2: if  termset(d) ⊆d  then  // complete conflict offender 

3: Ω =  Ω- {Ap} 

4: else // partial conflict offender 

5:offering’ = 

( )

1
(1 ) { . | }

t termset Ap

t weight t d
 

     

6: base =

( )

{ . | }
t termset Ap

t weight t d


  

7:  for each  term  t  in termset(Ap)  do begin 

8: if t ϵ d  then // shrink offender weight  

9: t.weight = 
1


×t.weight 

10: else //shuffle weights 

11: t.weight = t.weight×(1+offering’÷base)  

12: end if 

13:  end for 

14:  end if 

15:  end for 

6. EXPERIMENTAL RESULTS 
T3: The List of Methods Used for Evaluation 

Method Description Algorithm 

Sequential ptns Data mining method 

using sequential 

patterns 

SPM 

Sequential closed 

ptns 

Data mining method 

using freq. sequential 

closed patterns  

SCPM 

Freq. Itemset Data mining method 

using freq.itemset 

NSPM 

Freq.closed itemset Data mining method 

using freq.closed 

itemset 

NSCPM 

 

 

 

 

FIG: Comparison in the number of patterns used for 

training by each method on the first 50 topics (r101  r150) 

and the rest of the topics (r151  r200). 

7. FUTURE SCOPE 
Knowledge based system many useful features such as 

support and confidence of a pattern, relationship between 

patterns, distribution of pattern taxonomies, and the 

dimension of these taxonomies are provided. In PTM system, 

some features such as the relationship among patterns and 

support of patterns have been studied. The rest of the features 

will be used in further research work. Most of the data mining 

algorithms are computationally expensive such as PTM, 

especially during the phase of Pattern Deploying. One 

possible solution to improve the efficiency of pattern 

taxonomy-based model is to reduce the dimensionality of the 

feature space in the knowledge base. One alternative solution 

is to apply length-decreasing support constraints to frequent 

pattern mining 

8. CONCLUSION  
Many data mining techniques have been initiated in the last 

decade. These techniques carry (ASM) association rule 

mining, (CLOSET) closed frequent item set mining, 

maximum pattern mining, (SPM) sequential pattern mining 

and closed pattern mining. However, using these uncovered 

data (or patterns) in the field of text mining is hard to 

implement and not as much effective. This is because some 

useful long patterns with high specificity minimum support 

(i.e., the low-rate of occurrence problem). Users argue that not 

all recurrent short patterns are useful. Hence, misapprehension 

of patterns obtained from data mining techniques lead to the 

unsuccessful presentation. In this research work, an effectual 

pattern discovery technique has been established to overcome 

the low rate of occurrence and misapprehension problems for 

text mining. This proposed technique uses two processes, 

pattern evolving and pattern deploying, to refine the 

uncovered patterns in text documents. The exploratory results 

show that the proposed structure out performs not only other 

pure data mining-based process and the concept based 

structure, but also term-based state-of-the-art structures, such 

as BM25 and SVM-based structures 
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