
International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 1, May 2015 

1 

A Validation Technique for UML Activity Model 

Sudhir Kumar Singh 
Deptt. Of Computer Science & 

Engg.,Bhagwant University 
Ajmer,Rajsthan, India, 205004 

Taskeen Zaidi 
Deptt. Of Computer Science 
B.B. Ambedkar University 

Lucknow, (U.P.) India, 226025 

Vipin Saxena 
Deptt. Of Computer Science 
B.B. Ambedkar University 

Lucknow, (U.P.) India, 226025 

 

ABSTRACT 

In the current scenario of modeling, object-oriented modeling 

has completely replaced the structured modeling approach. 

Software industries are slowly-slowly shifting their old 

structured based softwares into the object-oriented based 

softwares, for e.g. Foxpro has been changed into the Visual 

Foxpro. From the literature, it is observed that various 

researchers are proposing the software models based on the 

object-oriented technology. It is a big challenge whether the 

proposed design is correct or reliable for a long time. For 

solution of this problem, the present work deals with a 

proposal of Unified Modeling Language (UML) model for a 

real case study of Mobile Bill Deposit System (MBDS)  By 

the use of UML, class and activity models are designed for 

static and dynamic representation of the problem. For 

validation purpose the activity model is validated by the use 

of Finite State Machine (FSM) technique and results are 

presented in the form of test cases. When the size of the 

model becomes complex then presented technique shall help 

for validation of the complex model. 

 Keywords 

Object-oriented  modeling, UML, Class, Activity, Test Cases, 

Validation.  

1. INTRODUCTION 
UML is most popular multi-purpose platform independent 

language used to model for software and hardware 

architecture problems. One can develop the code in any 

object-oriented programming language from the UML 

diagrams. It supports static and dynamic representation of the 

problem. Let us first explain  some of the important references 

related to the UML. Parade et al. [1] have described the UML 

diagrams and designed java codes which automatically 

generate structural and behavioral codes from class and 

sequence diagrams, respectively. Hu et al. [2] have explained 

the UML class diagram layout for important parts for software 

visualization and presented the graphical representation of any 

software model. Alanazi et al. [3] have presented basic 

diagrams for Unified Modeling Language which is used for 

object-oriented modeling. Salleh et al. [4] have generated a 

tool for analysing the Unified Modeling Language class 

diagram by the use of step by step design approach and 

clearly explained the relation between class and operation. 
Deng and liang [5] have described Unified Modeling 

Language for setting the answering system. Ali et al. [6] 

developed an assessment system for the Unified Modeling 

Language   and by the use of developed system; one can make 

analysis of UML diagrams. Alsaadi [7] observed the data 

integrity for the database system by the use of UML. Lee et al.  

[8] have described an approach for classification of database 

through distributed approach. By the use of this approach a 

large database can be easily distributed on the different 

machines. Alhajj   et al. [9] have described   the object-

oriented data model from the relational database model which 

converts the structured database into the object-oriented 

database. Fraser [10] has presented a approach for finding the 

length of the test cases generated from the software code. 
Welte [11] has presented state diagrams approach for the 

work of maintenance modeling and maintenance strategies. 

Kulakowski et al. [12] have also explained 

UML state diagrams which are used as a   business rules for 

formulation and visual modeling. UML state diagrams 

generally minimize the complexity of the research problems. 
Alvarez et al.[13] have described  finite state machines which 

can be used to model the temporal evolution of this type of 

phenomenon. Chaurasia and Saxena [14] have described 

UML is a unique and most popular modeling language and 

present time  slowly-slowly Software Industries are changing  

by their old structured design models in the form of object 

oriented design models by the use of UML. Sexena and 

Kumar[15] have explained  the UML is a powerful and  

graphical modeling language present time software developer 

are used in Object-Oriented database and designing, Modeling  

purpose used UML.    

The present work deals with the design of UML class and 

activity diagram for showing the static and dynamic behavior 

of Mobile Bill Deposit System (MBDS). Activity diagram is 

converted into the finite state machine for designing the 

transition table. By the use of transition table, test cases are 

generated for the validation of the dynamic behavior of the 

problem. The entire procedure is demonstrated on the Mobile 

Bill Deposit System (MBDS). When the problem becomes 

more complex, then the presented technique shall be helpful 

for validation of complex model of research.  

2. OBJECT-ORIENTED DATABASE  
Object-oriented database is a better approach than the 

relational database. Object-Oriented database has major 

advantages like reducing the paging for better concurrency 

control. Object-oriented database stores the data in integer 

number, real number or string forms.  The following code 

creates a table for the object-oriented database which is used 

in the UML class diagram:    

create database database_name; 

create table database_name.table_name; 

create database Mobilebill; 

create table  Mobilebill.p1 (Cust_id INT NOT NULL, 

Mobile_no  INT ,  Bill_amount  INT); 

insert into  Mobilebill.p1 values( Cust_id, Mobile_no,  

Bill_amount) 

 values  

(1001, 9452184193,3500); 

insert into  Mobilebill.p1 values( Cust_id,  Mobile_no,  

Bill_amount) 

values 

(1002, 8004922219, 2300); 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 1, May 2015 

2 

insert into  Mobilebill.p1 values(  Cust_id,  Mobile_no,  

Bill_amount) 

values 

(1003, 9027374863, 1800); 

On the basis of above code, an object-oriented database table 

is designed for the three major fields like Cust_id, Mobile_no 

and Bill_amount. The three fields are selected since these can 

be easily depicted in the form of data cubes and customer can 

easily trace the desired information when the object-oriented 

database becomes too complex. A sample of object-oriented 

database is shows in table1. 

Table  1: An Object-Oriented Database for MBDS 

Cust_id Mobile_no Bill_amount 

(In Indian Rupees) 

1001 9452184193 3500 

1002 8004922219 2300 

1003 9027374863 1800 

1004 9956098198 4500 

1005 9795777512 5000 

1006 9454272113 2345 

1007 7499047254 7890 

1008 9838449043 4567 

1009 9839841701 4329 

1010 8004922214 3789 

1011 9452372550 4213 

1012 9984111136 3123 

1013 9958180278 3450 

1014 9956123560 2341 

1015 8739236012 4512 

3. UML MODELING FOR MBDS 

3.1 UML Class Diagram 
UML class diagram is a type of static structure which 

represents attributes and operations. In the pictorial form, it is 

represented as a rectangle with three parts. First part shows 

the name of class, second part shows attributes while third 

part shows the operations. The object is an instance of class 

which follows object property. For the  MBDS , a UML class 

model is designed for creation of database and a large size of 

database is converted into the different clusters and thereafter 

fuzzy clustering approach is used for finding the desired 

record.  Let us first describe the UML class diagram. 

Customer is a class and Cust_id,    Cust_add, and Cust_name   

are attributes. Exchange_Office is a class and Branch_id, 

Branch_name, Branch_add, and Branch_city are attributes. 

Mobile_Bill is a class and Bill_no, Bill_amount and Bill_date 

are attributes. Mobile is a class and Iemi_no Mobile_no, 

Model_no and Mobile_make are attributes. Customer makes 

enquiry from Exchange_Office and Customer’s Mobile_no is 

registered with Exchange_Office who is responsible to 

generate the Mobile_Bill. Then amount of bills controlled by 

Bill_amount is sent on the registered Mobile_no of the 

customer. The different associations are also depicted in 

following figure 1.     

 

+enquiry()

+search()

+Cust_id

+Cust_add

+Cust_name

Customer

+login()

+logout()

+services()

+Imei_no

+Mobile_no

+Model_no

+Mobile_make

Mobile

+display()

+Bill_no

+Bill_amount

+Bill_date

Mobile_Bill

+gererate_bill()

+cust_record_update()

+Branch_id

-Branch_name

-Branch_add

-Branch_city

Exchange_Office

* *

*

*

has

S
e
r
v

i
c
e
 
P

r
o

v
i
d

e
r
 
b

y

* *
generate

*

- 

*

- 

*

- 

*
deposit

e
n

q
u

i
r
e
s
/
r
e
g

i
s
t
r
a
t
i
o

n

- 

*

- 
*

d
i
s
p

l
a
y

 

Fig 1: UML Class Diagram for MBDS 

3.2 UML Activity Diagram 
UML activity diagram is most important part of UML   It is 

used to describe dynamic behavior of the system. Activity 

diagram basically works similar to flow chart. In the present 

work, activity diagram is prepared for identification of some 

of the important elements. In the problem, customer has the 

mobile number and this activity is represented as “Customer 

has Mobile No” which is connected to the next activity like 

“Exchange Office Search Requested Bills” by an event 

“Search for Mobile Bills”. In this manner different activities 

are joined together with events and represented in the 

following table 2. The activity “Customer Deposit Bills” 

shows that the customer has deposited the bill and a receipt is 

received by the customer. It is done after searching the record 

by the Mobile Bill Deposit System (MBDS). The complete 

activity diagram is represented in the following figure 2. 



International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 1, May 2015 

3 

 

 

Fig 2: UML Activity Diagram for MBDS 

4. FINITE STATE MACHINE 
Finite State Machine (FSM) has a limited or finite number of 

possible states.  A finite state machine can be used both as a 

development tool for approaching and solving problems and 

as a formal way of describing the solution so there later 

developers and system maintainers. Finite State Machine the 

number of possible states and the number of inputs both are 

finite and the change of the state is totally governed by the 

inputs. The following symbols are used in the FSM. The 

different eight events are shown below in the table 2.  

∑ is the input symbol. 

q0  is the initial state. 

qf   is the final state 

s is the transaction function. 

 Table  2: Representation of Events from Activity Diagram 

a Search for Mobile Bills 

b Formed Request For Search  

c For  Bill Generation 

d  Send  Acknowledgment 

e Send Receipt 

f lliB gnitsopeD roF  

g lliB syalpsiD 

 h  lliB fO ypoC dneS

 

On the basis of above definition, the different states are taken  

from UML activity diagram and represented in the following 

table 3. 

Table 3: Representation of State from Activity Diagram 

Table 4: A Transition Table 

δ/∑ a b c d e f g h 

q0 q1 Ø Ø Ø Ø q4 Ø Ø 

q1 Ø q2 Ø Ø Ø Ø Ø Ø 

q2 Ø Ø q3 Ø Ø Ø Ø Ø 

q3 Ø Ø Ø Ø Ø Ø q0 q1 

q4 Ø Ø Ø q1 q0 q0 Ø Ø 

When events are operated on the different activities then 

different transitions take place. From the states and activities a 

transition table is explained above after generating the 

grammar given below from the finite state machine. A finite 

state machine from the activity diagram is shown below in 

figure 3. 

 

Fig. 3: Representation of FSM from Activity Diagram 

Symbol  Name of State  

q0 Customer has Mobile No 

q1 Exchange Office Search Requested Bill 

q2 MBDS Activated 

q3 Generates Mobile Bill 

q4 Customer Deposits Bill 

a 

b 

h 

g 

f 

e 

c 

d 

q0 

q4 

q2 

q1 

q3 



International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 1, May 2015 

4 

5. TEST CASES GENERATION  
Test   cases are used to check the program or model and they 

are finite and selected either from the model or from the 

problem. It check the validity of the proposed models. In the 

present work test cases are generated from the proposed UML 

activity model which has been converted into FSM. From 

figure 3 the relationships between activities  and events are 

represented in the form of following equivalent grammar: 

δ(q
0,a)= q

1 ⇒ q
0

aq
1 

 

 

δ(q
1,b) = q

2 ⇒ q
1

bq
2 

δ(q
2,c)= q

3 ⇒ q
2

cq
3 

δ(q
3,h)= q

1 ⇒ q3hq
1 

δ(q
4,d) = q

1 ⇒ q
4dq

1 

δ(q
4,e)= q

0 ⇒ q
4eq0 

δ(q
4,f)=q

0 ⇒ q
0

fq
4 

δ(q
3,g) = q

0 ⇒ q
3

gq
0 

 

  Test Case 1: Customer gets a copy of bill 

The equivalent grammar from the above production rule is 

q
0

aq
1
 

q
1

bq
2 

q
2

cq
3 

q3gq 0  

 
q0  Ø

 

 
By replacing the non terminals on RHS of above production 

rules ,we can get 

q
0ab cg  

wh ich  r epresen ts  fro m the act iv i ty  d iagram th at  

custo mer  get s  a  cop y o f b i l l .  

  Test Case 2: Customer gets a copy of receipt 

The equivalent grammar from the above production rule is 

q
0

aq
1
 

q
1

bq
2 

q
2

cq
3 

q3gq 0  

 
q0fq4 

q4eq0 

q0  Ø
 

 

 

q4


dq1 

 

By replacing non terminals on RHS of production rules, we can 

get 

q
0abcgfe  

Thi s  r epresen ts  f ro m act iv i ty d i agram that  a ft er  

deposi t in g b i l l ,  cus to mer  ge ts  rece ip t .  

6. CONCLUSIONS 
From the above work, it is concluded that any software and 

hardware research problem can be modelled in the pictorial 

form and for this purpose, software developers are using the 

platform independent Unified Modeling Language as many of 

the softwares have been converted into the object oriented 

style. The coders can easily convert the models by using any 

object-oreinted programming language but before moving 

towards development of code, validation of model is a 

necessary task. In the present work, a FSM techniques is used 

for validation of the proposed model and observed that the 

proposed model is an efficient which will further save the cost 

of the development. The proposed technique can be applied 

for other software and hardware problems and even real life 

problems can also be easily solved. 

7. REFERENCES 
[1] Parada, G. A., Siegert, F.,   Brisolara, L., “Generating 

Java Code from UML Class and Sequence Diagrams”,   

Presented in Brazilian Symposium on Computing System 

Engineering, Page 99-101 Date 7 Nov 2011.                      

[2] Hu , H., Fang, J., Lu, Z. ,Zhao, F., Qin, Z., “ Rank-

Directed Layout of UML Class Diagrams”, In 

Proceedings of the First International Workshop on 

Software Mining, Pages 25-31,Date 7 Nov 2011.   

[3] Alanazi , N, M., “Basic Rules to Build Correct UML 

Diagrams”,  Presented in  International Conference on 

New Trends in Information and Service Science , June 

30-July 02,  

[4] Salleh, M. F., Ibrahim, N.,  Ling, Y.L.,  “ Design of Tool 

or Generating UML Analysis Class Diagram”, Presented  

in International Conferences on Computational 

Intelligence for Modelling, Control and Automation, 

Intelligent Agents, Web Technologies and Internet 

Commerce and Innovation in Software Engineering, 

Date 10-12 Dec,2008 . 

[5] Deng, W. and Liang, Y., “Reason on UML Diagrams 

with Answer Set Programming”, In    Proceeding of    
International Conference on Computer Science and 

Software Engineering 2008, Date 12-14 Dec, 2008.  

[6] Ali, H. N., Shukur, Z. and  Idris, S.,  “A Design of an 

Assessment System for UML Class Diagram”, In     

Proceeding of International Conference on  

Computational Science and its Applications (ICCSA 

2007),  Page 539-546 ,Date 26-29 Aug 2007,     

[7] Alsaadi, A., “Checking Data Integrity via the UML Class 

Diagram”, Presented in International Conference on 

Software Engineering Advances (ICSEA'06), Page 37,  

Nov 2006. 

[8] Lee, M.S., Yan Ha, Y., Park, S. H., “Allocation of 

Classes in Distributed Object-Oriented Databases”,   

Presented in 10th ACIS International Conference on 

Software Engineering, Artificial Intelligences, 

Networking and Parallel/Distributed Computing, Page 

237-242, Date 27-29 2009. 

[9]   Alhajj, R., and Polat, F., “Reengineering Relational 

Databases to Object-Oriented: Constructing the Class 

Hierarchy and Migrating the Data”, Presenting in  Eight 

Working Conference on Reverse Engineering (WCRE 

2001),Date 2-5Oct 2001.                      ,   

[10]  Fraser, G. , “Experiments on the Test Case Length In   

Specification Based Test Case Generation”, Published in: 

Automation of Software Test, 2009. AST '09. ICSE 

Workshop on, page 18-26, Date 18-19 May 2009. 

[11] Welte, T.M. ,“Using State Diagrams for Modeling 

Maintenance of Deteriorating Systems”,   Published in: 

Power Systems, IEEE Transactions 

on  (Volume:24,  Issue: 1 ),Page 58-66,Date 9 Dec 2008. 

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Abilio%20G.%20Parada
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Eliane%20Siegert
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Lisane%20B.%20de%20Brisolara
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Mohammad%20N.%20Alanazi
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Faridah%20Hani%20Mohamed%20Salleh
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Nazrita%20Ibrahim
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Wenjun%20Deng
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Yiwen%20Liang
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Noraida%20Haji%20Ali
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Ahmad%20Alsaadi
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Yan%20Ha
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Reda%20Alhajj
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Fraser,%20G..QT.&searchWithin=p_Author_Ids:37313745900&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5061534
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5061534
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Welte,%20T.M..QT.&searchWithin=p_Author_Ids:37644945800&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=59
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=59
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4762160


International Journal of Computer Applications (0975 – 8887)  

Volume 117 – No. 1, May 2015 

5 

[12] Kulakowski, K. , and  Nalepa, G. J. ,“ Using UML State 

Diagrams for Visual Modeling of Business Rules”,   

Published in Computer Science and Information 

Technology, 2008. IMCSIT 2008. International 

Multiconference, Page 189-194, Date   20-22 Oct 2008.   

[13]  Alvarez, A, A., Trivino, G. , Cordon, O., “Human Gait 

Modeling Using a Genetic Fuzzy Finite State Machine”  ,   
Published in Fuzzy Systems, IEEE Transactions on 

 (Volume:20 ,  Issue: 2 ) Biometrics Compendium, IEEE, 

Page  205 – 223, Date of Publication 19 October 2011. 

[14] Chaurasia, P., K and Saxena, V., “Mobile Based 

Electricity Bill Deposit System through UML”, 

Published in Journal of Software Engineering and 

Applications, Volume 4, Page 187-190,   Date 12 

March 2011. doi:10.4236/jsea.2011.43021. 

[15]  Saxena, V. and  Kumar , S., “Object-Oriented Database 

Connectivity for Hand Held Devices”, Published in 

Journal of Software Engineering and Applications, 

Volume 5, Page 314-320,  Date 5 May 2011.    

 

IJCATM : www.ijcaonline.org 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kulakowski,%20K..QT.&searchWithin=p_Author_Ids:37663060900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Nalepa,%20G.J..QT.&searchWithin=p_Author_Ids:37659468600&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4731350
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4731350
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4731350
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4731350
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Trivino,%20G..QT.&searchWithin=p_Author_Ids:37671440200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Cordon,%20O..QT.&searchWithin=p_Author_Ids:37270830500&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=91
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=91
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=91
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6176019
http://ieeexplore.ieee.org/xpls/virtual-journal/virtualJournalHome?pub=biocomp

