
International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 9, April 2015

14

Evaluating User Interface Management Systems based

on Quality Attributes and Unit Operations

Abdelkareem M. Alashqar
Information Systems Dept.,
Faculty of Computer and

Information Sciences,
Mansoura University, Egypt

Ahmad Abo Elfetouh
Information Systems Dept.,
Faculty of Computer and

Information Sciences,
Mansoura University, Egypt

Hazem M. El-Bakry
Information Systems Dept.,
Faculty of Computer and

Information Sciences,
Mansoura University, Egypt

ABSTRACT
Software architecture is an essential early stage in the

software design process. In this stage, the architect should

give the quality attributes a special consideration because a

good level of meeting these attributes can be performed by

well-designed architecture. This means that there is a close

relationship between quality attributes and software

architecture. However, quality attributes can be achieved

through the appropriate application of a set of unit operations.

A unit operation is a systematic designing operation that can

be applied directly to system architecture. Architectural styles

(patterns) include high level design decisions that address

quality attributes. Many general architectural styles are

defined in the literature. For the domain of user interactive

systems there are many architectural styles that address some

important quality attributes. In many cases, it is essential to

evaluate software styles in terms of their achievement of the

required quality attributes by analyzing the relationships

between these attributes, unit operations, and styles. This

evaluation can help and facilitate the process of selecting a

specified style. In this paper the authors propose a structured

quantitative evaluation method to show a rank of four well-

known user interface management systems (UIMSs) in terms

of their supporting a set of six important selected quality

attributes.

Keywords
Quality Attributes, User Interface Management Systems, Unit

Operations, Software Architectural Styles.

1. INTRODUCTION
Software architecture is designed after determining and

organizing software requirements. An essential goal of

designing system architecture is to meet the required

functionality as well as the quality attributes. Quality

attributes are also called non-functional requirements (NFRs).

Ideally, the architect relies on architectural design styles

(patterns) in designing software architecture. Many software

architectural styles are found in the literature and also used by

practitioners. Such styles include good design decisions. One

category of these styles is user interface architectural styles.

They are called User Interface Management Systems (UIMSs)

and used in interactive systems to achieve usability [1].

Common and well-known UIMSs include Seehim,

Arch/Slinky, MVC and PAC. A major issue in UIMSs is the

separation between the semantics of the application and the

interface provided for the user to make use of that semantics.

This separation of concerns is supported by several good

quality attributes such as portability, reusability, modifiability,

performance, scalability and the capability of applying

multiple interfaces. The achievement of quality attributes of a

system are closely connected with the software architecture

for that system. Furthermore, these qualities can be achieved

through the appropriate application of a set of unit operations

which are fundamentally applied in traditional engineering

disciplines. Specific architectures can be derived from an

understanding of the unit operations and the quality attributes

that will be achieved by that architecture. The authors in [2]

define and discuss six unit operations used frequently by

experienced designers. They argue that codifying derivations

based on unit operations and their relationship with quality

attributes will allow the creation of architectures to become a

rote activity as it is in traditional engineering. These defined

unit operations are: Separation, Abstraction, Uniform

Decomposition, Resource Sharing, Replication, and

Compression. Many UIMSs architectural styles have been

described in the literature (see for example [2] [3] [4]). The

relationships of UIMSs architectural styles, unit operation and

quality attributes are discussed in [5]. To evaluate UIMSs and

to provide guidance for the software architect in selecting the

most appropriate UIMS architectural style, the interactions

between quality attributes, unit operations and styles should

be analyzed and quantitatively measured using matrices

manipulation. The results of this systematic method should be

considered as decision criteria within quality based

architectural design process. In this paper, the authors propose

an approach for quantitative evaluation of four well-known

UIMSs in terms of supporting a set of six given important

quality attributes by considering architectural unit operations

to refine the evaluations.

The rest paper is organized as follows: Sections 2 discusses

four well-known UIMSs styles in addition to a discussion of a

set of six important quality attributes that supported by these

styles. Section 3 provides quantitative evaluations of the

relationship between quality attributes and unit operations.

Section 4 shows quantitative evaluations of the degree to

which UIMSs are achieving unit operations. Section 5

provides calculation results of the quantitative effect of

incorporating the quality attributes into architectural styles via

matrix transformation method using the data from the

―quality-unit operation‖ and ―unit operation-style‖ quantified

relationships. Section 5 discusses related work, and Section 6

provides conclusion and the future work orientation. The

approach used throughout this paper is the analysis of the

effect of incorporating six unit operations into four UIMSs

styles in achieving a specific set of quality attributes.

2. USER INTERFACE MANAGEMENT

SYSTEMS
The four most widely used user interface management

systems (UIMSs) are explained next.

1.1 Seeheim model
Seeheim model is considered as the first UIMS that was

proposed at a workshop in 1985 at Seeheim in Germany [6].

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 9, April 2015

15

Seeheim model encompasses three main components as

depicted in Figure 1; which are Application Interface,

Dialogue Control and Presentation Interface. The Application

Interface describes the Application semantics from the

viewpoint of the user interface and describes the data

structures and the procedures that the Application exports to

the user interface. The Presentation Interface defines the

behavior of the system as perceived and manipulated by the

user. The Dialogue Control is viewed as a mediator between

the Application Interface and the Presentation. Although the

Dialogue Control plays as the initiator of direct link between

the other two components, the lower little box permits the

Application Interface to bypass the Dialogue Control in order

to improve performance.

Fig 1: The Seeheim Model

The Seeheim model is an example of the functional

decomposition approach where the three main components

work as the semantic, syntactic and lexical interactions. The

semantic includes the description of functions, the syntactic

define the sequence of both inputs and outputs, and the lexical

facilitates the sequence of user actions. The Seeheim model

also constitutes a pipe-filter structure that provides a sequence

of data transformation [3] [4].

1.2 Arch/Slinky model
Arch has more additional layers than the Seeheim model but it

provides some improvements in functional decomposition

structure as shown in Figure 2. These improvements include a

refinement in the level of abstraction of each component in

addition to an explicit definition of the data structures

exchanged between its main components. This level of

abstraction is performed by two main components called

Virtual Application and Virtual Toolkit adapters.

Fig 2: The Arch/Slinky Model

As shown in Figure 2, at one side of the model, the

Application component covers the domain-dependent

concepts and functions. And at the other side, the Presentation

component is responsible for presenting the domain concepts

and functions in terms of physical interaction objects to the

user. The Dialogue Component plays an important role in

regulating the sequence of tasks via the Arch model

components.

Arch applies a clear abstraction between the major functional

components of the UIMS. So there is no direct interaction

between the Application, the Dialogue and the Presentation.

The interaction of exchanging data is performed by two

additional adaptors; the Virtual Application and the Virtual

Toolkit. The Virtual Application is intended to accommodate

various forms of mismatch between the Application and the

user interface of the system. As shown in Figure 2, data

transfer through the Virtual Application is performed in terms

of domain objects. Ideally, domain objects match the user‘s

mental representation of a particular domain concept. In many

cases, the domain specific objects may be implemented in

inappropriate way for users, so these objects may need to be

adapted. The Virtual Toolkit is the other adapter component

that separates the rendering of domain objects from the actual

interaction toolkit of the target platform by providing logical

presentation objects. This separation adds more flexibility for

modification when changing the physical interaction toolkit in

the UIMS. In such cases there is no need to change the logical

presentation objects. The Slinky part of the model referred to

the ability to expand and balance the allocation of functions to

components. Slinky notion provides the ability for a given

implementation architecture to place the dialogue, virtual

application, and application in a separate or group them in a

single structural components [4] [7].

1.3 Model-View-Controller (MVC)
MVC is a type of Agent-based models. Agent-based models

structure an UIMS as a collection of computational units

called agents. Each agent has a state, possesses an expertise,

and is capable of initiating and reacting to events. Some

agents called interactor agents can present the user with data

about its internal state. The agent resembles an implemented

object in object oriented programming environment. In MVC,

an agent is modeled along three functional perspectives: the

Model, the View, and the Controller. A Model defines the

abstract functional perspectives of the agent. The View

defines the perceivable behavior of the agent for output. The

Controller defines the perceivable behavior of the agent for

inputs. The overall means of interaction behavior with user is

ideally achieved by the View and the Controller [4].

Fig 3: The MVC Model

MVC was proposed in the Smalltalk programming

environment [8] [9]. Smalltalk was one of the earliest

successful object-oriented programming systems whose main

feature was the ability to build new interactive systems based

on existing ones [3]. Figure 3 shows the implementation of

the MVC model in the Smalltalk environment where

Controllers and Views are implemented as hierarchies classes.

Models, which are domain-dependent, are organized

according to the domain requirements. It is not necessarily to

organize Models in a hierarchical way. Each component in the

Dialogue

Virtual Toolkit Virtual

Application

Presentation Application

Interaction

Objects

Domain

Objects

Logic Presentation

Objects

Adapted Domain

Objects

Dialogue

Control

Application

Component

Presentation

Interface

User

V1

M1

M3

M2

V2

V3

C1

C3

C2

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 9, April 2015

16

MVC can communicate with the other by means of method

invocation. Typically, the Controller translates the user‘s

actions into method calls on the Model. The Model sends a

notification to the View and the Controller informing them

that its internal state has been changed. The View reading the

exact changes occurred in the Model and then updates the user

interface displays according to an external request. The

Controller acts as the mediator between the Model and the

View. Practically the Controller may encompass instances for

both the Model and the View. Because the View and the

Controller need to know about changes occurred in the Model,

the later provides a registration facility to permit multiple

Views and Controllers to interact with the Model for any

important changes. This technique allows adding and

removing Views for different user workstation simply.

However, all registered Views will be notified according to

any Model changes despite that some of them do not need

these changes.

1.4 Presentation-Abstraction-Control

(PAC)
PAC model proposed by [10]. As an MVC, PAC is a type of

agent-based models [4]. The main components of PAC are:

the Presentation component which combines both input and

output behavior [3], the Abstraction component which is

considered as the functional core of the UIMS, and the

Control component which expresses multiple forms of

dependencies. The main role of the Control component in one

agent is to achieve dependencies between the Abstraction and

the Presentation components of the agent and to communicate

with other agents in the UIMS. In the PAC model there is no

direct communication between Abstraction and Presentation

components. Instead this communication, coordination and

also any aspects of data transformations are achieved by

Controls. As shown in Figure 4, the flow of data between

agents transit through the Controls in a hierarchical way

where the connectors of a PAC hierarchy achieve

communication relationships. These relationships in PAC

between components do not represent class relations as in the

object-oriented implementation of the MVC model that

discussed previously.

Fig 4: The PAC Model

By comparing MVC to PAC, it is important to denote that

MVC separate input techniques from outputs, whereas PAC

localizes them in the Presentation part. Contrary to PAC,

MVC has no explicit concept of mediator for expressing the

relationships and the coordination between agents. However

MVC and PAC sometimes outperform other models because

they encompass different functional decompositions in their

architectural design styles.

1.5 Quality Attributes Supported by UIMSs
An important issue in the area of research of developing

UIMSs architecture is to apply good design decisions in order

to achieve good level of quality attributes. The authors explain

here six important quality attributes supported by an UIMS

architectures [2] [3] [11]:

 Scalability: is the ability to expand the system to meet

any future changes and modifications by simply

increasing its size.

 Modifiability: is the ability to extend the system

functionality by adding new required business features.

 Portability: is the ability of a system to execute on

different hardware and software platforms. It includes

developing the system to be operational on various

operating systems.

 Performance: is the measure of how well the system

responds to its inputs. Important measures include

response time, resource utilization, and throughput.

 Reliability: is the ability of the operational system to

provide a good error-free level. The mean time between

failures is considered an important measurement for

reliability.

 Reusability: is the ability to reuse significant number of

existing qualified components or modules in the current

system. Reuse includes, functions, classes, group of

classes, and small working packages in the system being

developed. The main objective of reusability is to reduce

time of development.

These quality attributes will be included in the evaluation of

the four well-known UIMSs.

3. INTERACTION BETWEEN

QUALITY ATTRIBUTES AND UNIT

OPERATIONS
The achievement of quality attributes of a system are closely

connected with the software architecture for that system.

These qualities can be achieved through the appropriate

application of a set of unit operations. Specific architectures

can be derived from an understanding of the unit operations

and the quality attributes to be achieved by that architecture.

The authors in [2] define and discuss six unit operations used

daily by experienced designers in traditional engineering

fields. The defined unit operations are separation, abstraction,

uniform composition, resource sharing, replication, and

compression. Understanding the relationship between unit

operations and quality attributes is an important issue in the

design process of system architectures. These unit operations

will be used in the evaluation approach adopted in this paper.

A discussion for each of the six unit operations is stated next

[2] [5] [13] [14] [15].

 Separation: this unit operation provides the capability for

the designer to isolate several pieces of functionality and

distribute them into several components. Each component

has an interface to its environment. This isolation helps in

achieving specific system characteristics or quality

attributes. A good example of separation is UIMSs, where

presentation, dialogue and application functionalities are

separated.

 Abstraction: Abstraction unit operation supports the

creating of a virtual machine. The benefit of virtual

machine is to hide the component functionality from its

physical implementation. Although virtual machines are

complex to create, they can be reused by other software

components. Virtual toolkits are popular virtual machines

in UIMSs. The developers usually create such virtual

A1 C1 P1

A2 C2 P2 A3 C3 P3

A4 C4 P4 A5 C5 P5

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 9, April 2015

17

toolkits only once to support user interactive components

that can be operational into various platform

environments.

 Compression: compression is the contradictory of

separation unit operation. While separation means adding

new layers, compression means removing unnecessary

layers from the architecture. The normal case in software

engineering is applying separation which is supported by

different fields in computer science such as the client-

server style, distributed and parallel computing, and

object-oriented development. Compression is rarely used

but designer. Architect may use compression in software

architecture to improve system performance by

eliminating or combining components to reduce overhead

communication between system components.

 Decomposition: decomposition is a consequence of

separation unit operation where large system components

are further decomposed into smaller ones. Separating a

large component into small uniform size components is a

type of decomposition called modularity or uniform

decomposition. Applying modularity improves the

cohesion between system components and hence

facilitates the modification of any future changes. Two

techniques can be applied in the decomposing process.

The first one named ―part-whole‖ where the system can

only be built from the resulting decomposed components.

The other is called ―is-a‖ where each of the decomposed

components represents a specialization of its parent‘s

functionality. The MVC style applies modularity where

the user interface is decomposed into a set of uniform

components each of them contains a model, a view, and a

controller. PAC also applies the same techniques in

decomposing the system into presentation abstraction

control.

 Replication: replication unit operation means duplicating

the same component within the system architecture. The

main goal of this operation is to enhance reliability and

performance. When components are replicated, it reduces

the possibility system failure. Distributing the processing

into more than one component also increases the

performance of the system. Reliability is increased

through increased redundancy by having several

components perform the same operation. Whereas

performance may be increased through increased

parallelism by dividing a single function among several

components.

 Resource Sharing: is a unit operation that allows the

resource (data or services) which has a control or a

manager to be shared among multiple components.

Resource sharing can improve portability and

modifiability of systems because it reduces the coupling

among components. But it hinders the system

performance because of the additional overhead that

added when applying access control mechanisms. The

components that use a shared resource are less likely to be

reused in later applications because of the tight

relationships among components. Databases, integrated

computer-assited software engineering (CASE) tool

environments, and servers in a client-server system are

common examples of resource sharing mechanism.

Table 1 illustrates ―quality-unit operation‖ relationship for six

quality attributes and six unit operations that concern a UIMS.

The relationships between the unit operations and quality

attributes are selected to be under focus in the evaluation

process that adopted in this paper. The assessment of how

much the unit operation supports quality attributes is adapted

from [2] [12]. Where the meaning of symbols used in Table 1

is as follows: ―+1‖ means that a style positively supports a

quality attributes, ―0‖ stands for neutral or no support, ―–1‖

means that the style has a negative influence on achieving a

quality attributes.

In addition to the analysis results stated in the discussion part

of unit operations which explains the assigned numbers in

Table1 1, it can be stated that applying separation will break

down the large system into smaller pieces, where these

smaller pieces have specific interfaces with each other. This

leads to an ability to increase size of the system to become

more scalable, so +1 is put in the separation/scalability cell in

Table 1. If separation encloses the capability of hiding

platform dependencies, it helps in achieving portability (+1).

In contrary, separation requires the creation of additional

interfaces, hence in this case, it hinders performance (-1).

4. INTERACTION BETWEEN UIMS

ARCHITECTURES AND UNIT

OPERATIONS
For comparing and ranking UIMSs styles, the relationships

between the unit operations and these styles are deeply

studied. Each style is also analyzed to evaluate the degree to

which it supports the unit operations. In this paper, a five

point scale is adopted to identify the degree to which the style

achieves the unit operation. Where ―+2‖ means that a style

strongly supports a unit operation, ―+1‖ stands for some

support, ―0‖ stands for neutral or no support, ―-1‖ means that

the style has a negative influence on achieving a unit

operation, ―-2‖ means that the style has a strong negative

influence on achieving a unit operation. This five point scale

has been used by different researchers for the purpose

evaluating architectural styles. For example, in [17] a five

point scale is used to calculate the total score for architectural

style in achieving specific quality attributes.

Table 1: Relationships between quality attributes and unit operations

Unit Op./Quality Scalability Modifiability Portability Performance Reliability Reusability

Separation +1 +1 +1 -1 0 +1

Abstraction +1 +1 +1 -1 0 +1

Compression -1 -1 -1 +1 0 -1

Uniform Decomposition +1 0 0 0 0 0

Replication -1 -1 -1 +1 +1 -1

Resource Sharing 0 +1 +1 -1 -1 -1

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 9, April 2015

18

And in [12] a five point scale is used to identify the effect

magnitude of incorporating tactics within architectural styles.

Table 2 summarizes the findings of the degree to which

Seeheim, Arch/Slinky, MVC and PAC styles support unit

operations. For example, it is obvious that all the styles apply

separation on their architectures. This is achieved by

separating what the user interacts (e.g. presentation in

Seeheim and View in MVC) from the application model, and

the mediator between the both. Seeheim style applies

functional decomposing in ―is-a‖ fashion by separating a

system into three main components, while MVC style applies

―part-whole‖ decomposition unit operation. The difference is

that Seeheim style assumes that the most important scenarios

to guard against are porting from toolkit to toolkit, and

isolating the application, presentation and dialogue from

changes in each other. MVC style assumes that modifications

are likely to occur between different functional objects, and so

makes the minimization of the effect of such changes its main

quality goal. More separation is done by the Arch/Slinky style

on the functionality on each of the presentation and the model

components. In addition to that more separation is also done

on MVC style so that input is departed from output and hence

a value of +2 is assigned, while a value of +1 is assigned to

the two other styles. By applying abstraction, the connection

between the presentation and the dialogue components is

made indirect. Abstraction mechanism allows additional

component(s) to be inserted between the presentation and

dialogue that maps between the both, demonstrating a virtual

presentation toolkit to the dialogue, thus forcing the dialogue

to conform to the abstractions presented by the virtual toolkit.

Arch/Slinky style applies abstraction in this way so a value of

+2 is assigned to it. A lower positive value +1 is assigned to

the remainder set of styles under focus with regard to

abstraction. The reason is that all of these styles apply

separation mechanism, and separation is considered the super-

type of abstraction, although they are not the same concept.

The feedback line that directs the connection between the

presentation and the application bypassing the dialog,

resulting in adding compression on this architecture so a value

of +1 is assigned. However, the opposite of compression is

done on Arck/Slinky and MVC styles, while the degree of

compression is negatively lower in PAC. So a value of -2 is

assigned to MVC style and a value of -1 is assigned to PAC

style. The analysis shows that none of the four UIMSs styles

support replication so a value of 0 is assigned to all of them.

Uniform decomposition applied heavily in PAC style where

the system is decomposed into uniform components; all user

inputs and outputs are combined in the presentation

component, the abstraction encompasses the functional core

of the application, while the control of an agent is in charge of

communicating with other agents as well as of expressing

dependencies between the Abstraction and the Presentation.

Thus a value of +2 is assigned. A lower degree of uniform

decomposition is applied to Seeheim and MVC so a value of

+1 was assigned. While uniform decomposition unit operation

is not supported by Arch/slinky so a value of 0 was assigned.

Because system performance was a critical issue in user

interfaces particularly graphical user interface, and resource

sharing has the most harmful effects on system performance,

resource sharing is not applied to UIMS style so a value of -1

is assigned to all styles.

Table 2: The degree of achieving unit operations by UIMSs styles

Unit op./UIMS Seeheim Arch/Slinky MVC PAC

Separation +1 +2 +2 +1

Abstraction +1 +2 +1 +1

Compression +1 -1 -2 -1

Uniform Decomposition +1 0 +1 +2

Replication 0 0 0 0

Resource Sharing -1 -1 -1 -1

Average +0.5 +0.33 +0.33 +0.33

5. EVALUATING UIMSs STYLES BASED

ON QUALITY ATTRIBUTES AND

UNIT OPERATIONS
Section 4 of this paper provides a discussion of the quantitative

achievement of UIMS styles for each unit operation which was

shown as ―unit operation-style‖ relationship. The degree to

which an UIMS style achieves the set of all unit operations is

performed by computing the averaging values for the set of unit

operations against each UIMS style. Ideally, these averaging

values range from -2 to +2 because all of the assigned values in

the ―unit operation-style‖ relationship fall into this range. Each

averaging value shows the quantitative degree for a style in

achieving the set of unit operations, where the value of -2

represents the least achieving state, and the value of +2

represents the most achieving state. The averaging values for

the quantitative achievement degree of unit operations by the

four styles in Table 2 exposed that Seeheim is the most

supporting style for unit operations, followed by Arch/Slinky,

MVC, and PAC that have the same lower supporting averaging

values. Although such calculation results are important, they do

not provide sufficient support for system architect who is in

position of evaluating architectural styles. Hence, to provide the

system architect with more convenient quantitative evaluations,

the interaction between quality attributes and unit operations

should be considered. To do so, the data from ―quality-unit

operation‖ relationship should be considered and combined with

the data from ―unit operation-style‖ relationship, where the

calculation results are based on the following steps:

1. Let M is the matrix representing the ―quality-unit

operation‖ relationship. M is composed of a set of mqu

values where mqu represents the effect value of the unit

operation u on the quality q, as shown in Table 1.

2. Let N is the matrix representing the ―unit operation-style‖

relationship. N is composed of a set of nus values where

nus is the value of the achievement of unit operation u by

the style s, as shown in Table 2.

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 9, April 2015

19

3. Calculate W = M * N, where an element wab in W is the

scalar product of the ath row of M with the bth column of

N. This will produce the ―style-quality‖ matrix that

represents the effect value of incorporating quality

attributes in architectural styles as shown in Table 3.

4. Calculate the arithmetic mean value by dividing the sum

of all values under each style divided by the total number

of quality attributes. This will produce the effect of each

style in supporting the set of six quality attributes.

Matrix multiplication that stated in Step 3 is very important

because it takes into account the interaction between quality

attributes and unit operations, where this type of interaction can

be positive, neutral or negative, as stated previously in Section

3. It is important to note that the mean values computed when

following Step 4, are relative to the number of quality attributes

under focus which is constrained to six in this paper. In other

words, if the number of quality attributes is reduced to five, the

mean results will dramatically change.

Following the above calculation steps will give the results

shown in Table 3, which are also graphically depicted in Figure

5. The results mainly show the quantitative effect of

incorporating six quality attributes, Scalability, Modifiability,

Portability, Performance, Reliability and Reusability into four

UIMS styles Seeheim, Arch/Slinky, MVC and PAC. The results

expose that when all of the six quality attributes under focus are

considered in the evaluated system, then the degree of how

much an UIMS style supports for these attributes is ranked from

highest to lowest as: MVC > PAC > Arch/Slinky > Seeheim.

This means that MVC is the most supporting style for the

focused set of quality attributes while applying six unit

operations; Separation, Abstraction, Uniform Composition,

Resource Sharing, Replication, and Compression. The results

also guide the system architect on how different styles vary in

providing best support for specific quality attributes as shown in

Figure 6. It is noticed that, MVC is best in terms of scalability,

modifiability, and portability of the system; however it is one of

the lowest in terms of performance. On the other hand

Arch/Slinky style is the best in terms of reliability.

6. RELATED WORK
A lot of user interface management systems and their

architectural styles have been proposed and described.

Table 3: The effect of four well-known UIMSs on six quality attributes

 Seeheim Arch/Slinky MVC PAC

Scalability 2 3 6 5

Modifiability 0 2 4 2

Portability 0 2 4 2

Performance 0 -2 -4 -2

Reliability 1 2 1 1

Reusability 2 4 6 4

Mean 0.83 2.66 2.83 2

Fig 5: The effect average of UIMSs on quality

Fig 6: The effect of four well-known UIMSs on each of the six quality attribute

0

0.5

1

1.5

2

2.5

3

Seeheim Arch/Slinky MVC PAC

Effect average on qaulity

-6

-4

-2

0

2

4

6

8

Seeheim

Arch/Slinky

MVC

PAC

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 9, April 2015

20

Though, USIMs styles evaluations are limited and mostly

qualitative, the authors‘ work aims at providing a quantitative

method for comparing, evaluating and ranking UIMSs

architecture. The proposed method uses, in particular,

information drawn from unit operations descriptions as given in

[2] and the quantitative effect of these unit operations on quality

attributes.

Kazman and Bass [5] propose a general model that relates user

interface architecture styles to unit operations and quality

attributes. In particular they provide an analysis concentrates on

the interaction between unit operations and user interface

architectures. The authors‘ approach may be seen as

complementary to this framework as they consider both the

effect of a unit operation on a style and the effect of the unit

operation on other quality attributes.

A similar work is done in [12] and [16] where a matrix

calculation is used in incorporating the impact values of

architectural styles on quality attributes. The authors in [16]

present a quantitative evaluation of a set of selected

architectural styles regarding their support for the evolvability

quality attribute. They defined subcharacteristics of evolvability

and mapped them to properties for good architectural design in

order to be able to determine the impact on evolvability.

Whereas the authors in [12] proposed a quantitative approach to

selecting architectural styles starting from a subset of quality

requirements. Their approach relies on a quantitative

assessment of the impact of architectural tactics on quality

requirements, in the one hand, and the impact of incorporating

these tactics in architectural styles, in the other hand. In [16],
the approach used for the analysis of the relationships between

styles and quality is based on a case study and an evaluation by

experts , while in [12] it is based on the analysis of the generic

structures and behavior of tactics and styles. A similar to latter

approach is used in the authors‘ paper to analyze the UIMSs

architectural styles in supporting unit operations.

The authors‘ work differs from [12] in that it focuses on the

evaluation of UIMSs architectures. Besides, it introduces unit

operations in the evaluation process. Moreover, while [16]

consider only one quality attributes, and [12] consider two

quality attributes in the evaluation, this paper considers six

quality attributes in analysis of the proposed method.

7. CONCLUSION AND FUTURE WORK
In this paper, the authors proposed a quantitative approach to

evaluate the effect of selecting UIMSs styles against selected set

of quality attributes. This approach relies on a quantitative

evaluation of the effect of architectural unit operations on

quality attributes, in the one hand, and the effect of

incorporating these unit operations in architectural styles on the

other hand. The authors illustrate the approach using four well-

known UIMSs styles and evaluating their support for

Scalability, Modifiability, Portability, Performance, Reliability

and Reusability quality attributes. The authors believe it is a key

step towards selecting a suitable user interface architectural

design style.

In the future, the authors plan to extend the evaluation approach

considering the trade-offs among quality attributes.

Furthermore, they plan to improve the stated analysis and

results in this paper by considering sub-characteristics of quality

attributes. In addition to that, the numerical value assigned to

architecture style regarding each unit operation should be

proved by experts. The authors also plan to use other evaluation

techniques such as aggregation methods, Analytical Hierarchy

Process (AHP) and fuzzy integral.

8. REFERENCES
[1] Kasik, D. J., ―A user interface management system.

Computer Graphics‖, 16(3), July, 1982.

[2] Kazman, R. and Bass, L., ―Toward Deriving Software

Architectures From Quality Attributes‖, 1994.

[3] Dix, A., Finlay, J., Abowd, G. and Beale, R., ―Human-

Computer Interaction‖, 3rd editions, Pearson Education,

2004.

[4] Joëlle Coutaz, (2001), ―Software Architecture Modeling

For User Interfaces‖.

[5] Kazman, R. and Bass, L., ―Software Architectures for

Human-Computer Interaction: Analysis and Construction‖,

Submitted to ACM Transactions on Human-Computer

Interaction, 1996.

[6] Pfaff, G. and Ten Hagen, P.J.W. ―Seeheim workshop on

User Interface Management Systems‖ (Berlin), Springer-

Verlag, 1985.

[7] Kazman, R., Bass, L., Abowd, G., and Webb, M., ―SAAM:

A Method for Analyzing the Properties of Software

Architectures.‖ Proceedings of ICSE-16, Sorrento, Italy,

May, 1994, 81-90.

[8] Krasner, G. E. and Pope, S. T., ―A cookbook for using the

model-view-controller user interface paradigm in

Smalltalk‖, -80. JOOP, 1(3), August, 1988.

[9] Lewis, S., ―The Art and Science of Smalltalk‖, Hewlett-

Packard Professional Books, Prentice Hall, Hemel

Hempstead, 1995.

[10] Coutaz, J., ―Pac, an object oriented model for dialog

design‖, In H. J. Bullinger and B. Shackel, editors,

Human–Computer Interaction – INTERACT‘87, pages

431–6. North-Holland, Amsterdam, 1987.

[11] ISO/IEC 9126-1, ―Software engineering —Product quality

— Part 1: Quality model‖, 2001.

[12] Kassab, M., El-Boussaidi, G., and Mili, H., ‖A

Quantitative Evaluation Of The Impact Of Architectural

Patterns On Quality Requirements‖. Springer's Studies in

Computational Intelligence Book Series, Volume 377, pp.

173-184, 2011.

[13] Pfaff, G., ―User Interface Management Systems. New

York: Springer-Verlag, 1985.

[14] Dijkstra, E.W., ―The Structure of the ‗THE‘

Multiprogramming System.‖ Communications of the ACM

11, 5 (May 1968): 341-346.

[15] Rochkind, M.J., ―An Extensible Virtual Toolkit (XVT) for

Portable GUI Applications,‖ pp. 485-494. Digest of

Papers, COMPCON, San Francisco, CA: Thirty-Seventh

IEEE Computer Society International Conference,

February 1992.

[16] Bode, S., and Riebisch, M., ―Impact Evaluation for

Quality-Oriented Architectural Decisions Regarding

Evolvability‖, The 4th European conference on Software

architecture, pp.182-197, 2010.

[17] Galster, M., and Eberlein, A., Moussavi, M., ―Systematic

selection of software architecture styles‖. IET Software,

2010, Vol. 4, lss. 5, pp. 349-360.

IJCATM : www.ijcaonline.org

