
International Journal of Computer Applications (0975 8887)
Volume 116 - No. 8, April 2015

Improving the Performance of Read Operations in
Distributed File System using Global Cache Mechanism

and Anticipated Parallel Processing

B. Rangaswamy
Sri Krishnadevaraya University

Ananthapur, Andhra Pradesh, India

N. Geethanjali
Sri Krishnadevaraya University

Ananthapur, Andhra Pradesh, India

T. Ragunathan
ACE Engineering College

Hyderabad, India

ABSTRACT
Distributed file system (DFS) is the main storage component of a
distributed system (DS). DFS provides scalable storage to the DS
and it is also the main component of any cloud storage system.
Improving the performance of read operations in a DFS is very
important as many web-based applications deployed in the cloud
perform read operations quite frequently. Many pre fetching and
caching techniques are used to improve the performance of the read
operations in a DFS. Speculation-based techniques have also been
proposed in the literature for reducing the read access time. In this
paper, we propose a novel anticipation-based parallel processing
technique by considering global caching technique for a DFS. The
results of performance analysis through mathematical and simula-
tion modeling indicate that the proposed technique improves the
performance of read operations better than the speculation-based
algorithm proposed in the literature.

General Terms:
Algorithms.

Keywords:
Distributed System, Speculation, Asynchronous reading
Performance

1. INTRODUCTION
Many IT organizations around the globe deploy their web appli-
cations in cloud environment in order to improve the availability,
scalability and performance of their applications. A distributed file
system (DFS) is the main storage component of a cloud comput-
ing system. Google file system (GFS) [4] and Hadoop distributed
file system (HDFS) [10] are the important distributed file systems
which are currently used in the enterprise level cloud storage sys-
tems.
It is found that very frequently the client programs perform read
operations and infrequently they perform update operations in a
cloud storage system. So, improving the performance of the read
operations in a DFS is an important requirement in the emerging
cloud computing scenario. Many techniques have been proposed
in the literature for improving the performance of the read opera-

tions in the DFS. Pre fetching and client-side caching [2] [6] are
the two important techniques used for improving the performance
of the read operations in the DFS [9] [7] [8][5], [3] and [1]. These
techniques allow a client program to read the requested data blocks
from the main memory of the system where it is getting executed
by avoiding disk I/O.
A speculation-based technique has been proposed for improving
the performance of read access in the DFS [7]. This technique per-
mits the read requests of the client application program (CAP) to
read the requested data blocks from the cache (LC) maintained at
the data node where that CAP is getting executed provided the re-
quested blocks are available in LC. If the requested data blocks are
not available in LC or if the data blocks are obsolete, then the CAP
has to read the required data blocks from the disk(s) of the server
system(s) where the file system is kept. This technique follows syn-
chronous approach and hence the CAP has to wait for the response
given by the server system. In our proposed technique we make use
of this waiting time of the client to carry out additional anticipated
execution by reading the data blocks available in the global cache
maintained in a separate system in the DFS environment. Then,
based on the time stamp value returned by the server system, it will
be decided to terminate which execution. If both the executions are
not matching with the time stamp value returned by the server then
the CAP has to read the data blocks from from the disk(s) of the
server system(s) where the file system is kept.
We have carried out mathematical analysis of the algorithms and
also we have conducted simulation experiments. The results of both
mathematical analysis and simulation modeling indicate that the
proposed algorithm improves the performance of read operations
better than the speculation-based algorithm proposed in the litera-
ture.
This paper is organized as follows. In the next section, we discuss
our proposed approach in detail. In section 3, we have done the
detailed performance evaluation of the algorithms through mathe-
matical and simulation modeling. Section 4 concludes the paper.

2. PROPOSED ALGORITHM BASED ON
ANTICIPATED PARALLEL PROCESSING
USING GLOBAL CACHE MECHANISM

In this section, first, we discuss the architecture the DFS which
we have considered for proposing our algorithm. Next, we discuss

1



International Journal of Computer Applications (0975 8887)
Volume 116 - No. 8, April 2015

the advantages of the anticipated parallel execution and then we
describe the proposed algorithm.

2.1 Architecture of Distributed File System
We have considered that the DFS consists of number of data nodes
organized in multiple racks forming a cluster. We have also con-
sidered that data is stored in data nodes and meta data (global di-
rectory) is stored in the name node and client application programs
are executed in the data nodes. In order to support reliability fea-
ture, this DFS supports secondary name node. In case, the name
node fails, data can be recovered by using secondary name node.
The data nodes, name node and secondary name nodes are placed
in the racks of the cluster. The client programs executed in the data
nodes communicate with the name node by using the DFS client
program which is also getting executed in the data nodes. We have
assumed that the DFS maintains a separate node where a global
cache is maintained and the data nodes maintain their own local
caches.

2.2 Anticipated Parallel Execution
In anticipated parallel execution method, we execute a task before
it is known whether that task will be required at all. Later, the exe-
cuted task will be allowed to continue its work or it will be termi-
nated and the work is undone based on the results produced. An-
ticipated parallel execution method reduces the delay in execution
and hence the performance of the system can be improved. Modern
pipelined processors use anticipated parallel executions for improv-
ing the throughput performance of the CPU.

2.3 Proposed Algorithm
In this subsection, we describe regarding the client-side caching
and global caching techniques followed in the DFS. Next, we dis-
cuss the three parts of the proposed algorithm in detail.
Assumptions:

The proposed DFS consists of a name node, multiple data nodes
and a cache node. These nodes are arranged in racks and commu-
nication is established through a switched local area network. The
name node stores the meta data (global directory) of the DFS.
The data nodes store the data blocks and they are also capable of ex-
ecuting client application programs. The data nodes communicate
with the name node and cache node using the DFS client program
getting executed in the data nodes. These data nodes also maintain
cache in the local main memory where the frequently and recently
accessed data blocks of the files by those data nodes are captured.
The cache node maintains a global cache in which frequently and
recently accessed data blocks of the files by the data nodes present
in the DFS are captured. We also consider that three copies of a file
is maintained in three different data nodes and file level caching
technique is implemented in both the local cache and the global
cache. Each data node maintains a cache directory (CD) in which
the meta data of the cached files are stored and the cache node also
maintains global cache directory (GCD) in which the meta data
of the files accessed by various data nodes are stored. Note that,
we have considered that cache coherence protocol is not imple-
mented in this system in order to avoid communication and other
overheads.
Two parts of the algorithm:
Our algorithm consists of two parts. The first part describes the
steps to be followed for the main thread of execution of the read
procedure of the DFS. The second part describes the steps to be

followed by the anticipated executions (AE1 and AE2).

/* A client program CL running in DN1 has issued read procedure
to read the contents of the file F1 */
I) Algorithm for main thread of execution:

Step 1. If AE1 and AE2 are not created or AE1 and AE2 are
terminated then the following steps are executed or else go to Step
5.

Step 2. DFS client running in DN1 contacts the name node to get
the addresses of the data nodes (DNs) where F1 is stored.

Step 3. The DFS client program contacts one of the nearest data
node among DNs to read the contents of F1 from the disk storage
system of that data node.

Step 4. The content available in F1 is transferred to CL and also
cached in CL.

Step 5. Stop

(II) Algorithm for anticipated executions (AE1 and AE2):

Step 1. If F1 is available in the local cache, CL can read it
(Anticipated parallel execution (AE1)).
Let us consider that time stamp value of this cached copy of F1 is
T1. Otherwise go to Step 4.
Step 2. AE1 will continue until the time stamp value of F1 is
received from the name node (T2) or its completion.
Step 3. If T1 ¿= T2 then AE1 will be allowed to complete its
execution and goto Step 7.; or else AE1 will be terminated.

Step 4. CL verifies the GCD to get the time stamp value of F1 if
F1 is cached in the global cache.

Step 5. If F1 is available in the global cache, then CL can read the
time stamp value (T3) of F1 from the GCD.

Step 6. If T3 ¿= T2 then Anticipated parallel execution2 (AE2)
will be started and it will be allowed to complete its execution;

Step 7. Stop.

(Note that request message is sent to name node to send the time
stamp value of F1 and then part II will be started. If F1 is not avail-
able in local cache and also in the global cache then part I will be
executed.)

3. PERFORMANCE EVALUATION
In this section, first, we discuss regarding assumptions that we have
made for evaluating the performance of the algorithms. Next, we
discuss the results of the mathematical analysis. Finally, we discuss
the simulation results.

3.1 Assumptions
Let us consider that a file consists of only one block and the block
size is 4 KB for the purpose of performance evaluation. Here,
we have assumed that all the data nodes and the name node are
connected in a local area network. We have considered that the
average communication delay (ACD) required for transferring

2



International Journal of Computer Applications (0975 8887)
Volume 116 - No. 8, April 2015

4 KB of data as 4 ms and for transferring time stamp and meta
data information as 0.125 ms based on the recent analysis by
considering the switched local area network. Also, the average
time required to access a 4 KB data block from the disk storage
system is 12 milliseconds by considering the latest disk storage
devices. Also, we consider that the average time required to access
4 KB of data block from the main memory as 0.0006 ms by
considering latest dynamic random access memory technologies.
Let us consider that local cache hit ratio as lc and global cache hit
ratio as gc.

3.2 Mathematical Analysis
Average read access time for a 4 KB data block of DFS (without
anticipated parallel processing and global caching) = time
required to access name node to collect meta data + reading 4
KB data block from a specific data node from the disk + reading
4 KB data block from the main memory of source data node +
transferring the 4 KB data block to the destination data node + time
required for transferring the data block to client’s address space).
By following above formula the average access time is computed
as = 16.13 ms (0.125 ms + 12 ms + .0006 ms + 4 ms + .0006 =
16.1262 ms)

Average read access time for a 4 KB data block of DFS (with spec-
ulation - earlier approach) = lc * (time required to access the local
memory + time required to access name node to collect time stamp)
+ (1-lc) * (time required to access the local memory + time required
to access name node to collect time stamp+ time required to access
name node to collect meta data + reading 4 KB data block from a
specific data node from the disk + reading 4 KB data block from
the main memory of source data node + transferring the 4 KB data
block to the destination data node + time required for transferring
the data block to client program’s address space).
By following above formula, the average access time is computed
as = (16.26 - 16.13 lc)ms (Formula 1). Note that, we have ignored
the time required to start speculative execution in these calcula-
tions.
For the proposed approach we have to calculate the time required
to access 4 KB of data block from global cache (remote memory)
which is equivalent to time required to access memory + time re-
quired to transfer the data from the remote node to the local node
+ time required for transferring the data block to client’s address
space. This time is computed as 4.0012 ms (0.0006 ms + 4 ms +
0.0006 ms).
Average read access time for a 4 KB data block of DFS (our an-
ticipated parallel processing and global caching -based approach
= lc* (time required to access the local memory + time required to
access name node to collect time stamp) + gc * (time required to
send the request message to the name node to get the time stamp
of F1 + time required for transferring data block to CL from the
global cache + time required for transferring the data block to client
program’s address space) + (1-lc-gc) * (time required to send the
request message to the name node to get the time stamp of F1 +
time required to access name node to collect meta data + reading
4 KB data block from a specific data node from the disk + read-
ing 4 KB data block from the main memory of source data node +
transferring the 4 KB data block to the destination data node + time
required for transferring the data block to client’s address space)
By following above formula, the average access time is computed
as = (16.26 - 16.13lc - 12.13gc)ms (Formula 2)

Fig. 1. Global cache hit ratio versus Average access time (local cache hit
ratio is 0.3.

Fig. 2. Global cache hit ratio versus Average access time (local cache hit
ratio is 0.4.)

Fig. 3. Global cache hit ratio versus Average access time (local cache hit
ratio is 0.5.

Based on the formulas (Formula 1 and Formula 2) discussed above
we have evaluated the performance of speculation-based algorithm
and our proposed algorithm based on anticipated parallel process-
ing and global caching mechanism by fixing the local cache hit ratio
(cl) and by varying the global cache hit ratio (gc).

In Figure 1, we have fixed the lc value as 0.3 and observed the
performance of the algorithms by varying the gc values from 0.1

3



International Journal of Computer Applications (0975 8887)
Volume 116 - No. 8, April 2015

Fig. 4. Global cache hit ratio versus Average access time (local cache hit
ratio is 0.6.

Fig. 5. Global cache hit ratio versus Average access time (local cache hit
ratio is 0.7.

to 0.7. For the gc values 0.1 and above the proposed anticipated
parallel processing and global caching mechanism-based algorithm
(APAG) performs better than the speculation-based algorithm (SP).
Note that, the performance of speculation-based algorithm is de-
pendent only on lc whereas the the performance of the proposed
algorithm is dependent on both lc and gc.
In Figure 2, we have fixed the lc value as 0.4 and observed the per-
formance of the algorithms by varying the gc values from 0.1 to
0.6. We can note that for the cache hit ratio values 0.1 and above
the proposed APAG performs better than the SP. Note that, the per-
formance of SP is dependent only on lc whereas the performance
of the APAG is dependent on both lc and gc.
In Figure 3, we have fixed lc value as 0.5 and observed the per-
formance of the algorithms by varying the gc values from 0.1 to
0.5. For the gc values 0.1 and above the proposed anticipated par-
allel processing and global caching mechanism-based algorithm
(APAG) performs better than the speculation-based algorithm (SP).
We can observe similar trends in Figures 4 and 5.

3.3 Simulation Results
We have developed a simulator for simulating speculation-based,
anticipatory parallel processing-based algorithms and by fixing the
number of files available in the DFS, the number of cache blocks
maintained in the local cache and global cache by varying the num-
ber of blocks available in the file.

Fig. 6. Number of blocks versus Average access time.

Fig. 7. Number of blocks versus Average access time.)

Figure 6 shows the performance of the proposed algorithm (AGAG)
and the speculation-based algorithm proposed in the literature (SP).
Here, we have fixed the number of files present in the DFS as 50,
capacity of LC as 100 blocks and capacity of GC as 1000 blocks.
We have varied number of blocks present in the files from 25 to
100 and observed the performance. We can note that the proposed
AGAG requires less average read access time than SP for all the
cases.
Figure 7 shows the performance of the proposed algorithm (AGAG)
and SP algorithms. Here, we have fixed the number of files present
in the DFS as 50, capacity of LC as 200 blocks and capacity of GC
as 2000 blocks. We have varied number of blocks present in the
files from 25 to 100 and observed the performance. We can observe
that, AGAG requires less average read access time than SP for all
the cases.
Figure 8 shows the performance of the proposed algorithm
(AGAG)and SP algorithms. Here, we have fixed the number of files
present in the DFS as 50, capacity of LC as 300 blocks and capac-
ity of GC as 3000 blocks. We have varied number of blocks present
in the files from 25 to 100 and observed the performance. We can
observe that, APAG requires less average read access time than SP
for all the cases.
We can observe similar trends in Figures 9 and 10.

Overall, we conclude that the proposed algorithm can perform bet-
ter than the speculation-based algorithm proposed in the literature
by considering the metric ”Average Read Acces Time”.

4



International Journal of Computer Applications (0975 8887)
Volume 116 - No. 8, April 2015

Fig. 8. Number of blocks versus Average access time.

Fig. 9. Number of blocks versus Average access time.

Fig. 10. Number of blocks versus Average access time.

4. CONCLUSION
Distributed file systems provide scalable and reliable storage solu-
tions. Modern cloud computing systems use distributed file system
to store and access large amount of data and also to share the data to
authorized users. Most frequently read operations are carried out in
the cloud computing systems and less frequently update operations
are carried out in the system. Hence, improving the performance of
read operations is an important research issue.
In this paper, we have proposed a novel anticipation-based parallel
processing technique by considering global caching technique for

a DFS. The results of performance analysis done through mathe-
matical and simulation modeling indicate that the proposed algo-
rithm improves the performance of read operations better than the
speculation-based algorithm proposed in the literature.

5. REFERENCES
[1] B. S. S. X. Chen, Y. Data access history cache and asso-

ciated data prefetching mechanisms. In Proceedings fo the
AMC/IEEE Conference on Supercomputing, Reno, NV, pages
1–12, November 2007.

[2] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Pat-
terson. Cooperative caching: Using remote client memory to
improve file system performance. In Proceedings of the 1st
USENIX Conference on Operating Systems Design and Im-
plementation, OSDI ’94, Berkeley, CA, USA, 1994. USENIX
Association.

[3] V. O. G. S. F. Isaila, G. Malpohl and W. Tichy. Integrating col-
lective i/o and cooperative caching into the clusterfile parallel
file system. In In the 18th annual international conference on
Supercomputing, page 5867, June 2004.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file
system. In ACM SIGOPS Operating Systems Review, vol-
ume 37, pages 29–43. ACM, 2003.

[5] S. Jiang, F. Petrini, X. Ding, and X. Zhang. A locality-aware
cooperative cache management protocol to improve network
file system performance. In Distributed Computing Systems,
2006. ICDCS 2006. 26th IEEE International Conference on,
pages 42–42, 2006.

[6] W.-k. Liao, K. Coloma, A. Choudhary, L. Ward, E. Russell,
and S. Tideman. Collective caching: application-aware client-
side file caching. In High Performance Distributed Comput-
ing, 2005. HPDC-14. Proceedings. 14th IEEE International
Symposium on, pages 81–90. IEEE, 2005.

[7] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative ex-
ecution in a distributed file system. In Proceedings of the
Twentieth ACM Symposium on Operating Systems Principles,
SOSP ’05, pages 191–205, New York, NY, USA, 2005. ACM.

[8] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed prefetching and caching. In Proceedings
of the Fifteenth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’95, pages 79–95, New York, NY, USA, 1995.
ACM.

[9] P. Sarkar and J. Hartman. Efficient cooperative caching us-
ing hints. In Proceedings of the Second USENIX Symposium
on Operating Systems Design and Implementation, OSDI ’96,
pages 35–46, New York, NY, USA, 1996. ACM.

[10] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
hadoop distributed file system. In Mass Storage Systems and
Technologies (MSST), 2010 IEEE 26th Symposium on, pages
1–10. IEEE, 2010.

5


	Introduction
	Proposed Algorithm Based on Anticipated Parallel Processing using Global Cache Mechanism
	Architecture of Distributed File System
	Anticipated Parallel Execution
	Proposed Algorithm

	Performance Evaluation
	Assumptions
	Mathematical Analysis
	Simulation Results

	Conclusion
	References

