
International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 7, April 2015

33

FFT Architectures: A Review

Shubhangi M. Joshi.
Sathyabhama University,

Chennai

ABSTRACT
Fast Fourier Transform (FFT) is one of the most efficient

algorithm widely used in the field of modern digital signal

processing to compute the Discrete Fourier Transform

(DFT).FFT is used in everything from broadband to 3G and

Digital TV to radio LAN’s. Due to its intensive computational

requirements, it occupies large area and consumes high power

in hardware. Different efficient algorithms are developed to

improve its architecture. This paper gives an overview of the

work done of different FFT processor previously. The

comparison of different architecture is also discussed.

Keywords
Fast Fourier Transform (FFT), FFT architectures

1. INTRODUCTION
FFT processors are involved in a wide range of applications

today. Not only a savery important block in broadband

systems, digital TV etc., but also in are as like radar, medical

electronics, imaging and the SETI project(Search for Extra-

terrestrial Intelligence).Many of these systems are real-time

systems, which mean that the systems has to produce a

result within a specified time.

The work load for FFT computations are high and a better

approach than a general purpose processor is required, to

fulfil the requirements at a reasonable cost. The major

concerns for researchers are to meet real-time processing

requirements and to reduce hardware complexity mainly

with respect to are and power and to improve processing

speed of processor.

The DFT Algorithm: A DFT transform that is defined as

(Eq.1)

 (Eq.2)

These equations show that to compute all N values DFT

requires N²complex multiplications and N(N-1)complex

additions Since the amount of computation and thus the

computation time, is approximately proportional to N², it

will cost a long computation time for large values of N. For

this reason, It is very important to reduce the number of

multiplications and additions. The algorithm is an efficient

algorithm to compute the DFT, is called Fast Fourier

Transform (FFT) algorithm.The FFT algorithm deals with

these complexity problems by exploiting regularities in the

DFT algorithm.

1.1 FFT Processor
The FFT structure of FFT processor contains a butterfly

processing unit, a RAM and ROM unit for the storage of

data, address generation unit and a sequential control unit.

The main units of FFT processor are butterfly processing

unit and address generation unit. The dualport RAM used to

store input data and intermediate results and output. Twiddle

factors are stored in ROM. The address generation unit

generates the address for reading data for butterfly

operations and also for storing the output data results in

RAM. Sequential control unit generates the control signals

for each module.[1]

Fig.1 Block Diagram of FFT processor

2. FFT ARCHITECTURES:
Different FFT architectures are classified as

1. Memory Based

2. Cache Memory Based

3. Sequential

4. Parallel

5. Parallel Iterative

6. Array Architecture

7. Pipelined

2.1 Memory Based
Memory based- architectures mainly rely on the use of the

memory for its operation. These Architectures generally

consists of one or more processing elements (PE) or

butterflies depending on computation, memory blocks and

control unit.

Memory based architectures are classified into

 Single memory architecture

 Dual memory architecture

2.1.1 Single memory architecture
In this architecture processing element is connected to a single

memory unit by bidirectional bus. Data exchanges are taken

place between the processor and memory at every stage using

this bus.

Fig.2 Single Memory Architecture

Sequential Control Unit

Parallel-to-serial

ROM
Address

Generator

Serial –to-Parallel

Butterfly Processing Unit

RAM

2

RAM1

Proc Main Memory

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 7, April 2015

34

2.1.2 Dual memory architecture
In this type of architecture both memories are connected to

processing element with two separate bidirectional data buses.

Data inputs are passed from one memory to another memory

through the processing elements (PE) and vice versa till the

transform is completed.[2]

Fig.3 Dual Memory Architecture

2.2 Cache memory Architecture
This architecture is mainly used to increase the speed of the

memory access, energy efficiency and for reducing the power

consumption. Architecture is similar to that of single memory

architecture except that the cache between the processer and

main memory to pre fetch the data. This architecture is not

widely used due to extra hardware and controller

complexity.[2]

Fig.4 Cache Memory Architecture

2.3 Sequential Architecture
The basic sequential processer uses processing elements (PE)

for computing butterfly. The same memory can be used to

store input data, output data intermediate results and twiddle

factors. The amount of hardware involved is very small and it

requires N/2 log2N sequential operation to compute the FFT.

2.4 Parallel Architecture
This is also known as In- Place architecture. It consists of

butterfly unit and three multiport buffers, one to parallelize the

input data, one for processing data and one for the output. At

the butterfly output a switching module branches the result to

the right memory locations. The control of this type of

architecture is complicated as there is lot of resource sharing.

It is used for low to moderate speed applications. The feature

of this architecture is high throughput but worst hardware

efficiency.[17][18]

2.5 Parallel Iterative Architecture
Performance of FFT processor can be improved further by

adding more processing elements in every sequential pipeline

stage. Butterflies are computed in parallel in every stage.

Total execution time requires is log2N cycles.

2.6 Array Architecture
A fully parallel structure can be obtained by having a PE for

each of the butterfly operations. A number of processing

elements with local buffers are interconnected in a network

fashion to compute FFT. As the architecture requires huge

area and a lot of hardware this is not the attractive option for

large N.

Fig.6: Array Architecture

2.7 Pipeline Architecture
This architecture is also known as cascaded FFT architecture,

and used in most of the designs. the basic structure of

pipelined is as shown in fig. between each stage of radix-r

pe’s there is a commutator and last stage is unscrambling

stage. the commutator records the output data from previous

stage and feed to the next stage. the unscramble rearranges

data in natural sorted order.in figure a denotes the stage

number in the pipeline. the number in boxes gives the size of

that fifo r in complex sampling. c2 is a switch and radix-4

butterfly element.

Fig.7:General structure of a pipelined FFT architecture.

Performance of this architecture can be improved by

Parallelism using separate arithmetic unit for each stage of

FFT processer and through put can be increased by factor

log2N using different units in pipelined. Pipelined FFT

processers have features like high throughput, simplicity, fast,

small area and energy efficient implementation.

The most commonly used pipelined architectures such as

Multipath Delay Commutator (MDC) , Single Path Delay

Commutator (SDC) and Single Path Delay Feedback (SDF)

[2][18]

Radix

-r

PE

Radix

-r

PE

C C ………

…..

Proc
Main

Memory

Main

Memory

Proc Cache
Main

Memory

Proc

+

Buffer

Proc

+

Buffer

Proc

+

Buffer

Proc

+

Buffer

Butterfly
Unit

Butterfly
Unit

Butterfly
Unit

Butterfly
Unit

Butterfly
Unit

Butterfly
Unit

Butterfly
Unit

Butterfly
Unit

Butterfly
Unit

Butterfly
Unit

Butterfly
Unit

Butterfly
Unit

In
p
u
t

O
u
tp

u
t

...

(b) Parallel Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 7, April 2015

35

2.7.1 Multipath Delay Commutator
In this architecture, input sequence is first divided into

multiple parallel data streams by commutator. This data is

then goes to butterfly unit for computation. Butterfly

operation is then followed by twiddle factor multiplication

with proper delay at each data streams. All butterflies and

multiplier units are 100% utilised with proper input buffering.

Fig.8: Multipath Delay Commutator structure.

Fig.9: Radix-2 Multipath Delay Commutator structure

(N=16).

2.7.2 Single Path Delay Commutator

Fig.8: Single path Delay Commutator structure.

2.7.3 Single Path Delay Feedback
In this single data stream goes through multiplier in every

stage. The commutator used for SDF is somewhat different

because it also feeds data backwards. The delay units are more

efficiently utilised by sharing the same storage between input

and output of butterfly unit. Multiplier and Butterfly units can

be utilised 50% because they are bypassed half the time.

Fig.10:Single Path Delay Feedback Structure

3. RESULTS AND CONCLUSION
Among these various architectures, memory based

architectures and Pipelined architectures are most widely

used.

Table 1: Comparison of Pipelined FFT Architectures

Architecture R2-

SDF

R4-

SDF

R2-

MDC

R4-

MDC

Delay Buffer N-1 N-1 3N/2-2 5N/2-4

Complex

Adder

2log2N 8log4N 2log2N 8log4N

Adder

Utilization

50% 25% 100% 100%

Complex

Multiplier

log2N-1 Log4N-

1

log2N-1 3Log4N-

1

Multiplier

Utilization

50% 75% 100% 100%

Clock Rate 1 1 0.5 0.25

Control Simple Medium Simple Simple

Above comparison shows that in case of multipath delay

commutator (MDC) two samples can be processed in parallel

which improves the performance than designs which are serial

in nature but requires larger memory.

Table2showsthe comparison between pipelined Single Delay

feedback (SDF) architecture and memory based architecture

for radix-r N point FFT implementation. The comparison is

made in terms of Storage Requirement Memory banks,

Complex multipliers and Complex adders. Power

consumption can be reduced in the pipelined SDF architecture

with the efficient implementations of sequential buffers

whereas in memory based architecture, to achieve a conflict

free memory access, random addressing is necessary. So,

pipelined architectures are preferred when performance and

power are the main concern than the complexity of hardware. On

the other hand memory based architectures are good choice

where complexity is of main concern.[2]

Further the performance can be improved by using high radix

algorithm, higher parallel architectures or using folding

technique.

Table 2: Comparison between Memory Based and

Pipelined SDF FFT Architectures

Architecture Memory Based

Architecture

Single Path

delay feedback

architecture

Algorithm Radix-r Radix-r

Storage

Requirement

N N-1

Memory banks

(dual port)

r Log2N

C2

2
a

2
a

C
o

m
m

u
ta

to
r

R
ad

ix
 2

 B
u
tt

er
fl

y

C
o

m
m

u
ta

to
r

z--2

z--1

R
ad

ix
 2

 B
u
tt

er
fl

y

R
ad

ix
 2

 B
u
tt

er
fl

y

z--2

6X4a

3X4a

BF4

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 7, April 2015

36

Memory access

times

2NlogrN 2Nlog2 N

Complex

multipliers

r-1 logrN-1

Complex adders 2r 2log2N

4. REFERENCES
[1] Miss. Jaishri Katekhaye, Mr.Amit Lamba, Mr. Vipin

―REVIEW ON FFT PROCESSOR FOR OFDM

SYSTEM‖ IJAICT Vol-1,NOV:2014

[2] Anwar Bhasha Pattan, Dr. Madhavi Latha ―FastFourier

Transform Architectures: A Survey‖ ―IJAECT

[3] Weidong Li and Lars Wanhammar ―LOW- POWER FFT

PROCESSORS‖ ―IJAECT

[4] Weidong Li and Lars Wanhammar―VLSI based FFT

processor with improvement in computation speed and

area reduction‖ ―IJECSE 2013.

[5] H. Sorensen, D. Jones, M. Heideman, and C. Burrus,

―Real-valued fast Fourier transform algorithms,‖ IEEE

Trans. Acoust., Speech Signal Process., vol. 35, no. 6,

pp. 849–863, Jun. 1987.

[6] S. He and M. Torkelson, ―Design and implementation of

a 1024-point pipeline FFT processor,‖ in Proc. IEEE

Custom Integr. Circuits Conf.,

[7] J. Lee, H. Lee, S. I. Cho, and S. S. Choi, ―A high-speed

two parallel radix-24 FFT/IFFT processor for MB-

OFDM UWB systems,‖ in Proc. IEEE Int. Symp.

Circuits Syst., May 2006, pp. 4719–4722.

[8] [4] M. Ayinala, M. Brown, and K. K. Parhi, ―Pipelined

parallel FFT architectures via folding transformation,‖

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.

20, no. 6, pp. 1068–1081, Jun. 2012.

[9] R. Radhouane, P. Liu, and C. Modin, ―Minimizing the

memory requirement for continuous flow FFT

implementation: Continuous flow mixed mode FFT

(CFMM-FFT),‖ in Proc. IEEE Int. Symp. Circuits Syst.,

May 2000, pp. 116–119.

[10] B. G. Jo and M. H. Sunwoo, ―New continuous-flow

mixed-radix (CFMR) FFT processor using novel in-place

strategy,‖ IEEE Trans. Circuits Syst. I, Reg. Papers, vol.

52, no. 5, pp. 911–919, May 2005.

[11] A. T. Jacobson, D. N. Truong, and B. M. Baas, ―The

design of a reconfigurable continuous-flow mixed-radix

FFT processor,‖ inProc. IEEE Int. Symp. Circuits Syst.,

May 2009, pp. 1133–1136.

[12] C. F. Hsiao, Y. Chen, and C. Y. Lee, ―A generalized

mixed-radix algorithm for memory-based FFT

processors,‖ IEEE Trans. Circuits Syst. II, Exp. Briefs,

vol. 57, no. 1, pp. 26–30, Jan. 2010.

[13] P.-Y. Tsai and C.-Y. Lin, ―A generalized conflict-free

memory addressing scheme for continuous-flow parallel-

processing FFT processors with rescheduling,‖ IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no.

12, pp. 2290–2302, Dec. 2011.

[14] D. Reisis and N. Vlassopoulos, ―Conflict-free parallel

memory accessing techniques for FFT architectures,‖

IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 11,

pp. 3438–3447, Dec. 2008.

[15] H. Chi and Z. Lai, ―A cost-effective memory-based real-

valued FFT and Hermitian symmetric IFFT processor for

DMT-based wire-line transmission systems,‖ in Proc.

IEEE Int. Symp. Circuits Syst., May 2005, vol. 6,

[16] A. Wang and A. P. Chandrakasan, ―Energy-aware

architectures for a real-valued FFT implementation,‖ in

Proc. Int. Symp. Low Power Electron. Design, Aug.

2003, pp. 360–365.

[17] M. Garrido, K. K. Parhi, and J. Grajal, ―A pipelined FFT

architecture for real-valued signals,‖ IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 56, no. 12, pp. 2634–

2643, Dec. 2009.

[18] ManoharAyinala, Yingjie Lao, and Keshab K. Parhi, ―An

In-Place FFT Architecture for Real-Valued Signals,‖

IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS—II: EXPRESS BRIEFS, VOL. 60, NO. 10,

OCTOBER 2013.

IJCATM : www.ijcaonline.org

