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ABSTRACT 

This paper aims at providing a solution to optimum power 
flow (OPF) in considered power systems by using a flexible 
genetic algorithm (GA) model. The proposed approach finds 
the optimal setting of OPF control variables which include 
generator active output, generator bus voltages, transformer 
tap-setting and shunt devices with the objective function of 
minimizing the fuel cost. The proposed GA is modeled to be 
flexible for implementation to any power systems with the 
given system line, bus data, generator fuel cost parameter and 
forecasted load demand. The GA model has been analyzed 
and tested on the standard benchmark IEEE 30-bus system 
and two real time power systems which are an industrial park 
power system and a gold-copper mining power system both 
located in Indonesia. The results obtained outperform other 
approaches which are recently applied to the IEEE 30-bus 
system with the same control variable maximum & minimum 
limits and system data. Better results are also found when 
compared against the configurations used in the two real 
power systems. These superior results are achieved due to the 
robust and reliable algorithm of the proposed GA which 
utilizes the differential evaluation. 
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Optimal power flow, Fuel cost minimization, Genetic 
algorithm, Differential Evaluation. 
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1. INTRODUCTION 
In power system operation and planning, optimum power flow 
is one of the areas in which power engineers focus on in order 
to minimize the operational cost and system losses, while 
supplying reliable and uninterruptible electricity to the 
consumers. Power plant management is required not only to 
provide uninterruptible and reliable power supply but also to 
achieve the most economic cost. By optimizing the power 
flow and concurrently minimizing the operational cost and 
taking into account the power losses, these objectives can be 
achieved. Furthermore, by utilizing the evolutionary-based 
approach specifically the Genetic Algorithm (GA), the 
Optimum Power Flow (OPF) will be relatively easier and 
faster to be analyzed and solved. No. of optimization are 
proposed to control the power flow solutions. Since the 
optimum power flow method was first introduced by Dommel 
and Tinney in 1968[1]. The major techniques are linear 
programming, quadratic programming, weighting, surrogate 
worth tradeoff techniques. To simplify the OPF problem 
many mathematical assumptions are used, like convex, 
analytical, differential objective functions [1].  

Now the interest is changed in OPF from mathematical 
programming algorithms to evolutionary programming 
methods. The advancement in optimal power flow problem 
solving the genetic algorithm is applied as direct & integration 
with other techniques is introduced to obtained promising 
results. In this processes the tabu search & PSO algorithm are 
introduced for OPF problem to get the best results by avoiding 
the limitations of mathematical programming approaches. 

In PSO the search technique having multi agents in a parallel 
combination. Das et al proposed a new scheme, adjustment of 
velocity of particles in PSO using the tool, called a vector 
differential operator. The random selection is used for 
mutation in the name of base vector. In these processes best 
vector is chosen as the base vector for mutation processes 
(i.e., random selection of base vector). In this paper a hybrid 
intelligent algorithm is used as an effective approach to solve 
the OPF problem in the view to minimization of fuel cost. 
IEEE-30 bus standard test system is chosen to demonstrate the 
proposed algorithm & to examine the proposed algorithm to 
evaluate the performance for getting the optimal global fuel 
cost. Some commercially available OPF programs use linear 
programming (LP) optimization techniques. Their overall 
solution strategy may simply be summarized in several stages:  

Stage 1: nonlinear power flow 

Stage 2: linearization around a power flow solution 

Stage 3: LP optimization 

Iterate back to Stage 1 

One major limitation of such a strategy is that the LP 
optimization process cannot proceed when Stage 1 produces 
no power flow solution. 

2. PROBLEM FORMULATION 
The mathematical formulation of OPF problem can solved as 
follows: 

 Mini F(x, u)                                                 (1) 

Sub to 

gn(x,u) = 0                                                  (2) 

hmin ≤ h(x,u) ≤  hmax                         (3) 

Where vector x denotes the state variables in vector form for 
the considered system. The power system contains the slack 
bus real power output (PG1), voltage magnitudes and phase 
angles of the load buses (Vi, δi) and generator reactive power 
outputs (QG). Vector u represents control variables that consist 
of real power (PGN) and generator voltages magnitudes (VGN), 
transformer tap setting (TK) and reactive power injections 
(QCK) due to volt-amperes reactive (VAR) compensations:  
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u = [PG1... PGN, VG1...VGN, T1...TNT, QC1 ... QCS]  (4) 

Where N is the number of generator buses, NT is the number 
of tap changing transformers, and CS is the number of shunt 
reactive power injections. 

The OPF problem has two types of constraints: 

Equality constraints These are the sets of nonlinear power 
flow equations that govern the power system, i.e 

 PGK  - PDK - ∑J=1
N|VK| |VJ| |YKJ| COS(ɵKJ – δk +δj) = 0   (5) 

 QGK  - QDK - ∑J=1
N|VK| |VJ| |YKJ| Sin(ɵKJ – δk +δj) = 0    (6) 

Where PGK  and QGK are the real and reactive power outputs 
injected at bus i, respectively, the load demand at the same 
bus is represented by PDK  and QDK , and elements of the bus 
admittance matrix are represented by | YKj | and ɵKj. 

Inequality constraints These are the set of constraints that 
represent the system operational and security limits like the 
bounds on the following: 

1) Generators real and reactive power outputs 

PGK
min ≤ PGK ≤ PGK

max,  k=1,…..N           (7) 

QGK
min ≤ QGK ≤ QGK

max,  k=1,…..N           (8) 

2) Voltage magnitudes at each bus in the network 

VK
min ≤ VK ≤ VK

max,  k=1,…..NL            (9) 

where NL is the number of load buses. 

3) Transformer tap settings 

TK
min ≤ TK ≤ TK

max,  k=1,…..NT           (10) 

4) Reactive power injections due to capacitor banks 

QCK
min ≤ QCK ≤ QCK

max,  k=1,…..CS           (11) 

In this paper, the constraints corresponding to the state or 
dependent variables are incorporated into a fitness function. 

1) Minimization of generation fuel cost:  
In general the OPF generation fuel cost function can 
be expressed by a quadratic function as follows. 

Mini (FT) = ∑NG
N=1 FN (PGN)                        (12)  

FNPGN=aN+bNPGN+CNPGN
2                           (13)                                                           

2) IEEE 30 bus power system: 
The IEEE-30 bus system is taken in this paper to 
test the proposed algorithm & it is used as a 
standard test system to study different power 
problems & evaluate programs to analyze such 
problems. It consists of 6 generator units as well as 
41 transmission lines. 

3. PROPOSED ALGORITHM 
 The performance [11, 12] of the DE algorithm is sensitive to 
the mutation strategy, crossover strategy and control 
parameters such as the population size (NP), crossover rate 
(CR) and the scale factor (F). The proposed flexible genetic 
algorithm is associated with DE search and it consists of a 
pool of mutation and crossover strategies along with a pool of 
values for each of the associated control parameters. 

 

Figure 1: Flow Chart for Proposed Algorithm 

Each member in the initial population is randomly assigned 
with a mutation strategy and associated parameter values 
taken from the respective pools. The population members 
(target vectors) produce offspring (trial vectors) using the 
assigned mutation strategy and parameter values. If the 
generated trial vector produced is better than the target vector, 
the mutation strategy and parameter values are retained with 
trial vector which becomes the parent (target vector) in the 
next generation. The combination of the mutation strategy and 
the parameter values that produced a better offspring than the 
parent are stored. If the target vector is better than the trial 
vector, then the target vector is randomly reinitialized with a 
new mutation strategy and associated parameter values from 
the respective pools or from the successful combinations 
stored with equal probability. This leads to an increased 
probability of production of offspring by the better 

Start 

Reading of input 

parameters 

Create Population 

Initialize each individual 

Selection of best individual 

Calculate fitness of individual 

Set best of Pbest as Gbest 

If trail X is 

better than 

or equal 

Update velocity equations 

Stop  

Obtain Gbest Optimal 

Solution 

yes 



International Journal of Computer Applications (0975 – 8887)  

Volume 116 – No. 6, April 2015 

16 

combination of mutation strategy and the associated control 
parameters in the future generations. The initialization of each 
individual in population creation is represented by following 
two equations (14) & (15). 

cost(1,pp)=cost(1,pp)+(a1(ii)*Xr(ii,pp)^2)+(b1(ii)*Xr(ii,pp))+
c1(ii);                (14) 

fit(1,pp)=1/cost(1,pp);              (15) 

4. PRATICAL POWER SYSTEMS 
Three practical power systems are considered in this paper as 
case1, 2, 3. 

Case 1: Standard IEEE 30-Bus System 

The IEEE-30 bus system network consists of 6 generators 
buses, 21 load buses and 41 branches of which 4 branches are 
under load tap setting transformer branches. The generator 
units are connected to the bus number 1, 2, 5, 8, 11 and 13. 
The generator cost coefficients of IEEE-30 bus system are 
tabulated as follows [1]: 

Table 1: generator cost coefficients of IEEE-30 bus system 

Bus No 

Cost Coefficients Min 

MW 

Max 

MW a b c 

1 0.0 2.00 0.00375 50 200 

2 0.0 1.75 0.01750 20 80 

5 0.0 1.00 0.06250 10 50 

8 0.0 3.25 0.00834 10 35 

11 0.0 3.00 0.02500 10 30 

13 0.0 3.00 0.02500 12 40 

Case 2: Industrial Park Power System 

The second test system for proposed method is on a real 
industrial park power plant which consists of six diesel 
generators (total 21 MW), two generator voltages (6.6KV and 
11KV) and five loads (Substations A, B, C and Powerhouse 
auxiliaries). Single line diagram of Industrial power plant is 
shown in figure 2. While, the total power for the auxiliaries 
such as fuel system, lubrication oil system and the actual load 
demand is 10.9MW [1]. 

 

Figure 2: single line diagram of industrial park power 

system 

Table 2: generator cost coefficients of industrial park 

power system [1] 

Unit 
No 

Cost Coefficients Min 

MW 

Max 

MW a B c 

1 40.54 103.01 17.61 1.05 2.1 

2 40.30 105.03 16.71 1.05 2.1 

3 41.59 104.20 17.08 1.05 2.1 

4 43.46 100.50 18.12 1.05 2.1 

5 111.73 68.01 0.0250 3.25 6.5 

6 81.31 87.38 0.0250 3.05 6.1 

Case 3: Gold-Copper Mine Power System 

The large power plant consists of 20 diesel generators (total 
80MW), 18 loads. The total power load including the 
auxiliaries such as fuel system, lubrication oil system and 
mining load demand is 27.56MW. The single line diagram of 
gold-copper mine power system is depicted in figure 2. 

 

Figure 3: Single line diagram of gold-copper mine power 

system [1] 

 

Table 3: generator cost coefficient of gold-copper mine 

power system [1] 

Unit 
No 

Cost Coefficients Min 

MW 

Max 

MW a B c 

*1 68.96 100.64 4.79 2.0 4.0 

*2 174.17 2.32 24.40 2.0 4.0 

*3 169.99 5.73 25.88 2.0 4.0 
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4 39.48 114.80 2.21 2.0 4.0 

*5 169.99 5.73 25.88 2.0 4.0 

6 194.74 0.57 25.08 2.0 4.0 

7 188.41 8.75 25.04 2.0 4.0 

*8 107.84 71.33 10.27 2.0 4.0 

9 169.99 5.73 25.88 2.0 4.0 

*10 176.28 21.23 20.60 2.0 4.0 

11 169.99 5.73 25.88 2.0 4.0 

12 136.39 52.90 15.30 2.0 4.0 

*13 169.99 5.73 25.88 2.0 4.0 

*14 128.74 44.39 16.67 2.0 4.0 

*15 146.36 48.14 15.54 2.0 4.0 

*16 144.54 38.57 18.12 2.0 4.0 

17 181.47 9.95 23.66 2.0 4.0 

18 146.36 48.14 15.54 2.0 4.0 

19 18.29 121.40 0.85 2.0 4.0 

*20 38.37 114.34 1.12 2.0 4.0 

The systems which are in operating mode is indicated by *. 

5. SIMULATION RESULTS 
The considered three practical power systems data are 
simulated by MTALAB platform. Cost coefficient curves for 
three systems are shown as follows. From the Tables 5, 6 
and 7 it is clearly shows that the fuel cost minimization 
without violating the maximum & minimum limits. 

Case 1: Standard IEEE 30-Bus System 

 

Figure 4: Fuel Cost & fitness Values for IEEE-30 Bus 

System with Proposed Approach 

 Table 4: Comparison of Optimal Scheduling & Fuel Cost 
Results with Proposed, Gradient Based & Power World 

Simulator [1] 

Units Min Max 
Proposed 
approach 

Gradient 
Based[1] 

Power 
simulat
or[1] 

1 50 200 156.71 187.219 197.99 

2 20 80 50.061 53.781 44.00 

5 10 35 24.78 16.955 22.00 

8 10 30 13.10 11.288 10.00 

11 15 50 26.21 11.287 10.00 

13 12 40 12.00 13.353 12.00 

Fuel 
cost($\hr) 

  $778.0762 $804.853 $811.5 

Case 2: Industrial Park Power System 

 

Figure 5: Fuel Cost & Fitness Values for Industrial Park 

Power System with Proposed Approach 

 

Table 5: Comparison of Optimal Scheduling & Fuel Cost 

Results with Actual Setting & Proposed Approach 

Units Min Max 
Proposed 
approach 

Actual 

Heuristic [1] 

1 1.05 2.1 1.1177 1.0323 

2 1.05 2.1 1.2565 1.4600 

3 1.05 2.1 1.2194 1.2190 

4 1.05 2.1 1.1177 1.2050 

5 3.25 6.5 3.2500 ----------- 

6 3.05 6.1 3.0500 6.1000 

Fuel 
cost($\hr) 

  $ 454.3399 $1,395.03 
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Case 3: Gold-Copper Mine Power System 

 

Figure 6: Fuel Cost & Fitness Values for Gold-Copper 

Power System with Proposed Approach 

 

Table 6: Comparison of Optimal Scheduling & Fuel Cost 

Results with Actual Setting & Proposed Approach 

Units Min Max 
Proposed 
approach 

Actual 
heuristic 

[1] 

1  2.0 4.0  4.0   2.511 

2  2.0  4.0  2.813  2.494 

3  2.0  4.0  2.926  2.507 

5  2.0  4.0  2.963  2.492 

8  2.0  4.0  2.960  2.673 

10  2.0  4.0  2.942  2.594 

13 2.0 4.0 2.599 2.580 

14 2.0 4.0 2.599 2.572 

15 2.0 4.0 2.599 2.230 

16 2.0 4.0 2.599 2.627 

20 2.0 4.0 2.599 2.720 

Fuel 
cost($\hr) 

  $1,608.3 $3,887.23 

6. CONCLUSION 
In this paper, the flexible genetic algorithm model has been 
successfully implemented on the standard IEEE-30 bus 
system, industrial park power plant and the gold-copper mine 

power system with actual data & load demand pattern. The 
algorithm which was proposed in this paper is modeled to be 
flexible for implementation to any practical power systems 
with line& bus data, generator fuel cost parameter and 
forecasted load demand. Superior results are obtained by 
proposed algorithm when compared to the existing methods 
for the IEEE-30 bus system and two practical power plants 
named industrial park power system and gold-copper power 
plants. Any large power network can tested using proposed 
flexible genetic algorithm because of only the robust and 
reliability that can be achieved by utilizing differential 
evaluation. Finally the proposed approach ensure more 
optimal configuration of control variables, provides a solution 
with lower operational cost. 
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