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ABSTRACT 

Radio frequency power amplifiers play a key role in 

transceivers for mobile communications and their linearity is a 

crucial aspect. In order to meet the linearity requirements 

dictated by the standard at a reasonable efficiency, the usage 

of a linearization technique is desired. For effective 

implementation of any linearization technique, accurate 

modelling of power amplifier is required. Due to its less 

complexity, memory polynomial has been widely used for 

modelling non-linear system with memory. So in this paper, 

memory polynomial has been used to model the wideband 

power amplifier. The effects of nonlinearity order and 

memory depth on the power amplifier modeling have also 

been simulated.   
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1. INTRODUCTION 
In new generation mobile communication systems (LTE, 

WiMAX, WCDMA, CDMA2000 etc.), where spectrum 

efficient linear modulation formats are used, power amplifier 

(PA) linearity is a key requirement. As PA is one of the major 

sources of nonlinearity in communication systems, and its 

nonlinearity can significantly affect system performance. 

Since the linearity of a transmitter has to meet stringent 

spectral emission requirements, one has to accurately predict 

and compensate for the nonlinearities of the PA [1-2]. The 

transfer characteristic of PA is not linear up to the saturation 

point. The amplification decreases as the input power 

increases. There are many ways to express the nonlinear 

relationship mathematically. Here polynomials have been 

considered, such that a power series describes the relationship 

as, 

  2 3

1 2 3( ) ( ) ( ) ( )out in in inV t aV t a V t a V t         (1) 

The transfer characteristic now includes not only the linear 

term but also the higher order terms. In the equation 1, a third 

order polynomial represents the nonlinear transfer function. 

The second-order coefficient is positive and the third-order 

coefficient negative, which result in a compressive 

characteristic of the curve. The more the input signal grows, 

the larger the influence of the higher-order powers. Feeding 

an amplifier with a signal of some frequency, the output 

signal will include unwanted frequency components. This is 

referred to as AM/AM distortion [3], since the output 

amplitude will be distorted in relation to the input amplitude. 

The amplitude of the input signal affects the output signal 

phase. Increasing amplitude levels will introduce an 

increasing phase distortion on the output signal. The 

conversion of input power to output phase is called AM/PM 

distortion. Peaks will be clipped even with ideal amplifier if 

input exceeds maximum input power. With enough clipping, 

it appears as Gaussian noise at the receiver. The effects of 

clipping gives in-band distortion, degradation of bit error rate 

(BER) and higher error vector magnitude (EVM). Out of band 

radiations give adjacent channel interference (ACI) problems, 

like adjacent channel leakage ratio (ACLR) degradation, 

adjacent channel power ratio (ACPR) spreading etc. One of 

the most important measurements on RF signals for digital 

communication systems is the leakage power in the adjacent 

channels. Leakage power influences the system capacity as it 

interferes with the transmission in adjacent channels. 

Therefore it must be rigorously controlled to guarantee 

communication for all subscribers in a network. Thus the 

problem of peak to average power ratio (PAPR) is the major 

concern. Always there is tradeoff for the design and 

optimization of the PAPR reduction algorithm within the 

context of the EVM and ACLR. 

EVM is in-band distortion causing high BER during reception 

of the transmitted data [4]. EVM gives a measure of the phase 

and amplitude distortion of a signal. It is one way of 

quantifying transmitter system performance and it is a 

measure of the difference between the measured and a 

reference signal. As shown in Figure 1 EVM is the magnitude 

of the error vector. 

 

Fig 1: Error Vector Magnitude 

EVM is the distance between the desired and actual signal 

vectors. From figure 1, the actual value of the constellation 

point can deviate from the ideal one significantly depending 

on PA nonlinearity. Mathematically EVM can be defined for 

each symbol of K as: 
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Where E (k) is the error vector for symbol k, S (k) is the ideal 

signal vector of the symbol k and N is the number of symbols. 
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Therefore some linearization techniques are required to 

minimize the distortion on the transmit signal. Among all the 

linearization techniques, digital predistortion (DPD) is the 

most efficient and cost effective technique [5]. Memory 

polynomial PA model is a simplified model based on indirect 

learning architecture.  This model is able to capture some of 

the memory effects, while reducing the number of parameters 

describing the model. Proposed memory polynomial model 

can be used for any wideband PA data. In this paper for 

modelling PA, the degree and order of memory polynomial 

can be varied to obtain the optimum result. The paper is 

organized as follows: section I provides the introduction to 

PA and non-linearity problem in PA, section II gives 

nonlinearity analysis of PA using Single-tone stimulus and 

Two-Tone stimulus analysis, section III gives memory 

polynomial model using indirect learning architecture, section 

IV gives the results for memory polynomial model and 

section V concludes the paper. 

2. NON-LINEARITY IN POWER 

AMPLIFIER 
Memory Polynomial model for power amplifier shows the 

non-linearity with memory effects [6]. This model can be 

designed with unity time delay taps and also with non-

uniform time delay taps. Modelling is done by using data in 

discrete time domain. Signal is first converted from 

continuous to discrete by a method of sampling. If ( )V tin is 

the input signal to the sampler, then the output of sampler is: 

( ) ( . )V i V i Tout in , Where T is the sampling period and 

sampling frequency is
1

Fsamples
T

 . 

Let the baseband signal is 

 
 ( ) ( ). ( ( )in cZ t V t Cos t t  

                        (3) 

Here c is the angular carrier frequency, V(t) is the amplitude 

and ( )t is the phase of the signal. The envelop band width of 

this signal is much lower than the carrier frequency. This 

signal can be written in terms of in-phase and quadrature 

components as:  

( ) ( ). ( ) ( ).sin( )in c cZ t I t Cos t Q t t  
            (4) 

Where  ( ) ( ). ( )I t V t Cos t                                                    

 ( ) ( ). ( )Q t V t Sin t
                      (5) 

Equation (4) can be re-written in complex form as:  

   ( ) ( ). ( ) . ( ) ( ). ( ) .sin( )in c cZ t V t Cos t Cos t V t Sin t t    
     (6)           

( ) Re ( ). cj t

inZ t A t e
                                                                (7) 

Here ( )A t is a base band signal and   

 
( )( ) ( ). j tA t V t e 

                                            (8) 

 

2.1 Nonlinearity Analysis of Power 

Amplifier using Single-Tone Stimulus 
For a linear amplifier the output can be described as: 

( ) . ( )o Lin inZ t G Z t
                                                       (9) 

where GLin is a time independent linear amplifier gain. 

Practically due to non-linearity, the output of amplifier 

saturates at some value as the input signal amplitude is 

increased. Due to non-linearity, amplifier has a non-constant 

gain and non-linear phase. These amplifiers are called quasi-

memory-less amplifiers and described by the polynomial as  

0

( ) . ( )
K

k

o k in

k

Z t a Z t

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                             (10) 

2

0 1 2( ) . ( ) . ( ) . ( )k

o in in k inZ t a a Z t a Z t a Z t   
   (11)           

In equation (11), k is the maximum polynomial order which 

shows the non-linearity of the amplifier. 

, ,0 1 2a a a ak     are complex polynomial coefficients, 

which determine the exact shape of the input-out-put 

characteristics. For memory-less case, these polynomials are 

real values. By using trigonometric formulas, the quasi-

memory-less amplifier will produce new frequency 

components which are located at the harmonics (

2 , 3 , K       ) of the input signal. 

From equation (7)  

 ( ) ( ). ( )in cZ t V t Cos t t  
              (12)                                        

By substituting this value in equation 10,  

 
0

( ) . ( ). ( ( ))
K

k

o k c

k

Z t a V t Cos t t 


 
          (13) 

When time constant of the amplifier is very small compared to 

the amplitude ( )V t and phase ( )t , then for narrow band 

application i.e <1.2 MHz, these amplitude and phase 

variations can be neglected and assuming it to be constant [7], 

But for high memory amplifiers it comes in the form of 

memory effects. Memory effects can be described as changes 

in the amplitude and phase of the output signal as function of 

the input signal amplitude and can be expressed as  

0 ) )( ) ( .cos (o in c out inZ t V V t V                (14)                               

Whose complex envelop will be  

)(

)( ) ( . out inj V

out out inA t V V e
   

                  (15)                                      

This AM/AM conversion is used to evaluate the 1-db 

compression point. 

2.2 Nonlinearity of Power Amplifier in 

Two-Tone Analysis 
Let the two-tone input signal to the power amplifier is  

1 2( ) cos ( ) cos ( )in in inZ t V t V t  
               (16)                               

1 2 
, 2 1    
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2 1 2 1( ) 2 cos( ).cos( )
2 2

in inZ t V t t
    


          (17)                     

Here frequency
2 1

( )

2

 
is the modulating frequency m , 

which is half of the frequency spacing between two tones. 

2 1
( )

2

t
 

 is the RF center frequency. So equation (17) can 

be written as: 

( ) 2 cos( ).cos( )in in m cenZ t V t t 
             (18)                                      

This two tone signal is recognized as double sideband 

suppressed carrier signal having carrier frequency cen and 

modulating frequency m . When this signal is applied to PA, 

the output signal can be expressed as:  

 1 2

0

( ) . ( ). ( )cos
K

k

o k

k

Z t a V t Cos t V t t 


 
           (19)                         

By expanding equation (19), new frequency components will 

appear, which shows the non-linearity of the device and called 

inter-modulation distortion [7]. In two-tone signal these are 

computed as: 

1 2. .new     
                    (20)                                                   

Where  and  are positive integers including zero. 

k   denotes the order of the inter-modulation distortion. 

To examine inter-modulation products, two frequencies 1  

and 2  , some of the orders of intermodulation products have 

been considered. To define the order, harmonic multiplying 

constants have been added with two frequencies producing the 

inter-modulation product. For example ( 1 2  ) is second 

order,      ( 2 1 2  ) is third order, ( 3 21 2  ) is fifth order, 

& so on. For 1  and 2  to be two frequencies of 200 kHz 

and 201 kHz which are 1 kHz apart, table 1 is showing the 

inter-modulation products.  

Table 1-Intermodulation products 

Order Freq. 1 Freq. 2 
Freq. 1  

(kHz) 

Freq. 2 

(kHz) 

First ω1 ω2 200 201 

Second ω1 + ω2 ω2 - ω1 401 1 

Third 2ω1 - ω2 2ω2 - ω1 199 202 

Fourth 

2ω1 + ω2 2ω2 + ω1 601 602 

2ω1 + ω2 2ω2 - 2ω1 802 2 

Fifth 

3ω1 - ω2 3ω2 - 2ω1 198 203 

3ω1 + 2ω2 3ω2 + 2ω1 1002 1003 

From table 2, only the odd order inter-modulation products 

are close to the two fundamental frequencies 1  and 2 . One 

third order product (2 )1 2   is 1 kHz lower in frequency 

than 1  and another third order product (2 )2 1   is 1 kHz 

above 2 . One fifth order product (3 2 )1 2   is 2 kHz 

below 1  and another (3 2 )2 1   is 2 kHz above 2 . 

Table 2-Odd order products 

Order Freq. 1 Freq. 2 
Freq. 1 

(kHz) 

Freq. 2 

(kHz) 

Third 2ω1 - ω2 2ω2 - ω1 199 202 

Fifth 3ω1 - ω2 3ω2 - 2ω1 198 203 

Seventh 4ω1 - 3ω2 4ω2 - 3ω1 197 204 

Ninth 5ω1 - 4ω2 5ω2 - 4ω1 196 205 

In fact the odd order products are closest to the fundamental 

frequencies 1   and 2 . The in-band IMD products cannot be 

easily filtered out [8]. The most commonly used measure of 

IMD is the ratio of the largest IMD (almost third order IMD) 

to the one of the two tone. For complex input signals non-

linearity appears over a continuous band of frequencies and is 

referred as spectral regrowth. 

3. INDIRECT LEARNING 

ARCHITECTURE 
The basic algorithm taken for this work is memory 

polynomial model. There are two methods to extract the 

power amplifier coefficients. One method is to model the 

power amplifier and then find its inverse. Since memory 

effects are also considered, so it is not possible to extract the 

exact inverse of the non-linear system. Second method is to 

use indirect learning architecture directly because it eliminates 

the assumptions about the model parameter estimation of the 

PA. The general form of a baseband memory polynomial PA 

model can be written as: 

  2 1

0 1

. ( )
Q K

k

out kq n

q k

Z n W x n q 

 

 
                   (21)                                                                         

where Wkq
are complex memory polynomial coefficients. An 

integer value is given to k as k=0, 1, 2, 3----K. xn and 

 Z nout are the measured discrete input and output complex 

envelope signals of nth sample. q = 0,1,2,3-----Q is the 

memory interval and equal to sampling interval T. Q is the 

maximum memory and K is the maximum polynomial order 

[9]. Since even terms are far away from the center frequency, 

only odd terms are considered. 

Let 

2 1( ) ( ) k

kq nU n q x n q   
                     (22) 

By substituting equation (22) in equation (21),  
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 
0 1

( )
Q K

out kq kq

q k

Z n W U n q
 

 
               (23)                                                                                          

Let 

1

( )
K

q kq kq

k

U W U n q


 
                      (24)                 

By using equation (22) 

       

2 1

1

( )
K

k

q kq n

k

U W x n q 



 
                 (25) 

After substituting this value in equation (23),  

 
0

( )
Q

out q

q

Z n U n q


 
                       (26)                                                                                      

Equation (21) can be represented as memory polynomial 

model with unity delay taps as shown in figure 2. The unity 

delay taps are denoted by the symbol
1

Z


. When 
1

Z


delay 

tap is applied to the sequence of discrete digital values [10-

11]; the tap gives the previous value in the sequence and 

introduces a delay of one sampling interval q. Apply the value
1

Z


to the input value xn gives the previous input  1x nn  . 

 

Fig 2: Memory Polynomial Model with Unity Delay 

 1 ( ) 1nZ x x n q x n    
                     (27)   

Substitute value of q in equation (23) 

  0 0 1 1

1 1

1

( ) ( 1) ....

( )

K K

out k k k k

k k

K

kQ kQ

k

Z n W U n W U n

W U n Q

 



   



 



                                                                  

(28) 

  0 1 2out QZ n U U U U   
                               

(29) 

By substituting values of k & q in equation (23),  

  10 10 20 20

0 0 11 11 21 21

1 1

1 1 2 2

( ) ( ) .....

( ) ( ) ( ) .....

( 1) .....

( ) ( ) ....

( )

out

k k

k k

Q Q Q Q

kQ kQ

Z n W U n W U n

W U n W U n W U n

W U n

W U n W U n

W U n Q

  

  

 

 



 

 (30) 

Equation (30) can be written in matrix form as 

.outZ U W
                              (31) 

Where  

       0 , 1 , 2 1
T

out out out out outZ Z Z Z Z n       (32) 

10 20 0

11 21 1,

1 2 ,

, , ,

, , ,

, ,

T

k

k

Q Q kQ

W W W

W W W
W

W W W

 
 

    
 
      
 

           

10 20 0

11 21 1,

1 2 ,

, , ,

, , ,

, ,

k

k

Q Q kQ

U U U

U U U
U

U U U

 
 

    
 
      
 

        

4. SIMULATION AND RESULTS 
In order to reduce the effect of non-linearity simulations are 

done by using MATLAB. Main channel power of actual 

amplifier is taken as 64.4691. ACPR of actual amplifier is 

taken as lower ACPR2= -47.0499, lower ACPR 1= -59.4759, 

Upper ACPR2= -46.5342, Upper ACPR1= -60.7407.Adjacent 

channel power of actual amplifier is taken as 17.4192dbc, 

4.9932dbc, 17.9349dbc and 3.7284dbc. Training length is 

taken as 20,000.  Polynomial order and memory length is 

varied for simulation. ACPR of modeled PA is measured and 

calculated error after simulation is shown in table 3. Figure 3 

shows the simulation results. The power spectral density of 

the input of the amplifier, output of the amplifier without 

predistortion and output of the amplifier with predistortion is 

shown in Figure 3 

 

Fig 3: Power spectral density of PA with predistorter 

 

Fig 4: Adjacent channel power after linearization using 

memory polynomial PA 
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As seen in the table 3, the best linearization is obtained when 

the memory depth is 2 and order is 7, because for this 

combination error is minimum. Once it reaches its optimal 

polynomial order, the increase in order doesn‟t affect the 

linearization but increase in depth will increase the error rate 

of the amplifier. Due to this, spectrum of modeled PA will go 

away from the main PA, which increases the band width of 

the spectrum. 

Table 3: ACPR measurements for different memory length and polynomial degree 

Memory 

length 

Polynomial 

Degree 

PA Channel 

Power 

(Modeled) 

Adjacent Channel Power Ratio (modeled) 

Error 
ACPR 2 

LOWER 

ACPR 1 

LOWER 

ACPR 1 

UPPER 

ACPR 2 

UPPER 

2 6 64.4921 -12.4334 16.5687 17.2351 -12.3110 .3732 

2 7 64.4921 -12.319 16.5755 17.2502 -12.9913 .3716 

3 6 64.4918 -10.6589 17.4099 17.9965 -12.2707 .3741 

3 5 64.4919 -9.0804 17.3240 17.8824 -9.4474 .3763 

3 7 64.4918 -11.3284 17.4706 18.0493 -11.8459 .3727 

4 5 64.4919 -10.9478 17.3105 17.7285 -11.5830 .3742 

5. CONCLUSION 
This paper proposes a memory polynomial modelling of 

Power amplifier, whose novelty consists in enhancing 

modelling accuracy by means of different combinations of 

nonlinear order and memory depth. Simulation results have 

been analyzed by taking the considerations of the effects of 

different amount of memory depth and nonlinear order. It has 

been observed that the modelling accuracy can be improved 

by suitable combination of memory and nonlinear order. The 

result shows that error in modeling is minimum (0.3716) 

when memory depth is 2 and nonlinear order is 7. 
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