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ABSTRACT 

This paper presents a Harmony Search Optimization (HSO) 

based design methodology for maximizing both the starting 

torque and the efficiency of Induction Motor (IM). HSO is 

inspired the musical process of searching for a perfect state of 

harmony. The harmony in music is analogous to the 

optimization solution vector, and the musician’s 

improvisations are analogous to local and global search 

schemes in optimization techniques. Among the number of 

design variables of the IM, seven variables are identified as 

primary design variables and the HSO based design 

methodology is tailored to optimize the chosen primary 

variables with a view to obtain the global best design. The 

optimal design obtained by the developed methodology for 

two IMs are presented with a view of illustrating the 

superiority.   

General Terms 

Optimization, evolutionary algorithms 

Keywords 

Harmony search optimization, Induction motor design 

Nomenclature 

BW bandwidth 

Eff  efficiency of the motor 

)(xf  objective function to be minimized 

FIT
 

fitness function 

)(xg  a set of inequality constraints 

HM harmony memory 

HMCR harmony memory considering rate 

HMS harmony memory size 

HSO harmony search optimization 

jh  j -th harmony 

j
ih  i -th design variable of j -th harmony in the 

HM 

'h  improvised harmony vector 

IM induction motor 

phI  phase current, A 

rI  equivalent rotor current, A 

scI  short circuit current per phase, A 

maxIter  maximum number of iterations for 

convergence check 

kW  rating of IM 

min"" & 

max""
     

 

minimum and maximum limits of the 

respective variables 

nd  number of decision variables 

ODIM optimal design of IM 

PAR pitch adjusting rate 

PSO particle swarm optimization 

PM proposed method 

tP  total losses 

nlP  no load loss 

cusP  stator copper loss. 

curP  rotor copper loss. 

rand
 

a uniform random number between 0 and 1 

X  a vector of primary design variables 

SFL  slip at full load, per unit 

stT  starting torque, per unit 

i   a set possible range of values of  i -th 

decision variable, that is 

(max)(min) iii hh   

    a set of limit violated constraints 

w   weight values to represent relative 

significance 

  
weight constant of the penalty terms 

 

1. INTRODUCTION 
Although squirrel-cage induction machines are widely used in 

the industry for their easy manufacturing and robustness, their 

applications in electrical transport systems such as subways 

and trains are limited due to inferior starting torque than those 

of permanent-magnet motors. In the light of the fact that the 

resistance of a squirrel-cage motor is fixed and small as 

compared to its reactance that is very large especially at the 

start, the frequency of the rotor currents equals the supply 
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frequency, the starting current of the rotor is very large in 

magnitude and lags by a very large angle, resulting a poor 

starting torque per ampere. It is roughly 1.5 times the full-load 

torque, although the starting current is 5 to 7 times the full 

load current. Hence, such motors are not useful where the 

motor has to start against heavy loads. Therefore it becomes 

imperative that the best architecture and the corresponding 

dimensioning have to be determined in order to maximize the 

starting torque besides improving the efficiency with respect 

to several constraints in applications requiring high starting 

torque such as in traction systems,. The resulting 

mathematical optimization problem is a multiobjective 

optimization problems and usually difficult since the design 

variables contain continuous variables related to the real 

dimensioning parameters and combinatorial variables 

associated with architecture characteristics and discrete 

dimensioning parameters; and their relationship with motor 

specifications are in general nonlinear [1]. 

In recent decades, several classical techniques such as 

nonlinear programming [2], Lagrangian relaxation method 

[3], direct and indirect search methods [4], Hooks and Jeeves 

method [5], Rosenbrock’s method [6],  Powell’s method [7], 

finite element method [8] and sequential unconstrained 

minimization technique [9] have been suggested for IM 

design problem. Many of these methods are most 

cumbersome and time consuming and pose difficulty in 

handling non-linear and discontinuous objectives and 

constraints. Besides a few of them requires derivatives and 

exhibits poor convergence properties due to approximations in 

derivative calculations; and may converge to local solution 

instead of global ones, when the initial guess is in the 

neighborhood of a local solution. 

In recent years nature inspired metaheuristic optimization 

algorithms such as  simulated annealing [10],  genetic 

algorithm (GA) [11], evolutionary algorithm [12],  

evolutionary strategy [13], particle swarm optimization (PSO) 

[14], bacterial foraging [15] and differential evolution [16] 

have been widely applied in solving the IM design problems 

with a view of overcoming the drawbacks of classical 

methods. These algorithms have yielded satisfactory results 

across a great variety of design optimization problems.  

Recently, a Harmony Search Optimization (HSO) that was 

conceptualized using musical process of searching for a 

perfect state of harmony has been suggested for solving 

optimization problems [17,18]. The harmony in music is 

analogous to the optimization solution vector, and the 

musician’s improvisations are analogous to local and global 

search schemes in optimization techniques. The HSO does not 

require initial values for the decision variables and uses a 

stochastic random search that is based on the harmony 

memory considering rate (HMCR) and pitch adjusting rate 

(PAR) so that the derivative information is unnecessary. It 

requires fewer mathematical computations compared to other 

meta-heuristic algorithms and can be easily adopted for 

various types of engineering optimization problems. It has 

been successfully applied in solving various engineering 

optimization problem in [19-21]. 

The aim of this paper is to develop a design methodology 

using HSO for maximizing the efficiency and starting torque 

of IM with a view of effectively exploring the solution space 

and obtaining the global best solution. The developed design 

methodology has been applied in designing two IMs and the 

performances have been studied. The paper is divided into 

five sections. Section 1 presents the introduction, section 2 

overviews HSO, section 3 explains the IM design problem 

and suggests the proposed design method (PM), section 4 

discusses the results and section 5 concludes.  

2. HARMONY SEARCH ALGORITHM 
The HSO is based on the musical process of searching for the 

perfect state of harmony. Musicians, during a rehearsal or a 

performance, try to create pleasing sounds and approach the 

ideal state of harmony. HSO  is inspired from the 

improvisation process of music players. Just as the musicians 

try to improve their music, the HSO seeks for certain values 

for the decision variables that optimize the objective function 

while at the same time satisfying the problem constraints. It 

improves the optimal solution iteration after iteration in the 

same way as a music band improves rehearsal after rehearsal. 

It is simple in concept, few in parameters and easy for 

implementation with theoretical background of stochastic 

derivative.  

In this approach, a Harmony Memory (HM), comprising a 

number of candidate solutions of the problem at hand, is 

defined.  The HM is initialized with random guesses in the 

problem space as:  
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Generating a new harmony is known as “improvisation”. A 

new harmony vector ),,,(' ''
2

'
1 Nhhhh   is generated based on 

the following mechanisms. 

 

Memory considerations:  The value for the first decision 

variable 
'
1h  for the new vector  is chosen from any of the 

values in the specified HM range )( 1
'
1

HMShh   . Values for 

other decision variables ),,,( ''
3

'
2 Nhhh  are chosen in the same 

manner. The HMCR that varies between 0 and 1 is the rate of 

choosing a value from HM, while (1-HMCR) is the rate of 

randomly selecting a value from the possible range of values 

as shown in (2) 

  if  (rand ( ) < HMCR) 

),,,( 21'' HMS
iiiii hhhhh   

  else                      

iii hh  ''
 

   end 
               (2) 

Pitch adjustment: Every component obtained by memory 

consideration is pitch adjusted based on the PAR as 

    if  (rand ( ) < PAR) 

BWrandhh ii  )(''
 

   else     
''
ii hh   

   end 
                  (3) 

Where BW is an arbitrary distance bandwidth. 

 

Update harmony memory: If the new harmony vector 

),,,(' ''
2

'
1 Nhhhh   is better than the worst harmony in the 

HM, then the worst harmony is replaced by the new harmony.  
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Convergence Check: The process of generating new 

harmony vector can be terminated when the number of 

iterations reaches the maximum number of iterations.  

3. PROPOSED METHOD 
The proposed HSO based design method (PM) for ODIM 

involves formulation of the problem, representation of 

harmonies through the chosen design variables and 

construction of a fitness function, FIT .  

3.1 Problem Formulation 
The ODIM problem involves large number of design 

variables. Many of these variables fortunately have a little 

influence either on the objective function or on the specified 

constraints.  However, to ease the curse of high 

dimensionality, the following seven variables are identified as 

primary design variables (9/1).   
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The ODIM problem is formulated by defining an objective 

function through blending both the objectives with suitable 

weight values and a set of constraints as   

Maximize   stTwEffwxf )1()( 
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3.2 Representation of Design Variables 
The harmony, h  is represented to denote the chosen primary 

design variables, defined by Eq. (4),  in vector form as: 

   721721 ,,,,, xxxhhhh iiii                  (13) 

3.3 Fitness Function 
The algorithm searches for optimal solution by maximizing a 

fitness function FIT , which is formulated from the objective 

function of  Eq. (5) and the penalty terms representing the 

limit violation of the explicit constraints of Eq. (6). The 

fitness function is written as 

Maximize     
 




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
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FIT

2
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3.4 Solution Process 
The process of generating a new harmony from the HM, 

which is generated randomly through memory considerations, 

pitch adjustment and memory update, may be called an 

iteration. The iterations are continued till the number of 

iterations reaches the a specified maximum number of 

iterations. The algorithmic steps of the PM are summarized 

below: 

1. Read the IM data 

2. Choose HSO parameters such as ,HMS ,HMCR

,PAR BW  and maxIter  

3. Randomly generate initial HM consisting as many 

randomly generated solution vectors as the  HMS  

4. Perform the following for each harmony in the HM  

 Obtain the primary design variables  from the 

harmony. 

 Compute the remaining secondary variables of 

the design problem. 

 Evaluate FIT   using  Eq.(14) 

5. Rank the HM  based on the fitness function FIT  

values  

6. Set iteration counter  0t  

7. Increment the iteration counter  1 tt  

8. Evaluate )(tPAR  and )(tBW  

9. Improvise a new harmony vector 'x   based on the 

probability HMCR  

10. Adjust the pitch of each element of the new harmony 

based on the probability )(tPAR  

11. Perform the following for new harmony 

 Obtain the primary design variables  from the 

new harmony. 

 Compute the remaining secondary variables of 

the design problem. 

 Evaluate  FIT   using  Eq.(14) 

12. Update the HM by the new harmony, if the new 

harmony is better than the worst harmony of the HM  

13. Repeat steps 7-12 till the number of iterations, t , 

reaches the maximum number of iterations,
 

maxIter  
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14. The best harmony in the HM is the optimal solution. 

15. Stop. 

4. NUMERICAL RESULTS 
The proposed HSO based method is used to obtain the optimal 

design of two IMs. The first motor under study is rated for 7.5 

kW, 400 V, 4 pole, 50 Hz and the second one for 30 kW, 400 

V, 6 pole, 50 Hz. The effectiveness of the PM is illustrated 

through comparing the performances with that of the GA 

based design approach. In this regard, the same set of primary 

design variables, fitness function and design equations, 

involved in the PM, are used to develop the GA based design 

approach. The software packages are developed in Matlab 

platform and executed in a 2.67 GHz Intel core-i5 personal 

computer. There is no guarantee that different executions of 

the developed design programs converge to the same design 

due to the stochastic nature of the GA and HSO and hence the 

algorithms are run 20 times for each IM and the best ones are 

presented.  

Initially the designs are obtained by optimizing the individual 

objectives of efficiency and starting torque by setting the w
 

values as 1 and 0 respectively, and presented in Table 1 for 

both the motors.  It is clear from the table that the PM is able 

to obtain the better efficiency when 1w  and better starting 

torque when 0w than that of the GA approach. However, it 

is to be noted that the other performance value of efficiency 

for the case with 0w and starting torque for the case with 

1w  are inferior, as the respective function is omitted in the 

optimization process.  

Table 1 Comparison of Performances by Individual 

Objectives ARPN IJEST 

w  Motor Performance GA [11] PM 

1 

1 
Eff  86.708 86.742 

stT  0.857 0.755 

2 
Eff  90.497 90.574 

stT  0.395 0.368 

0 

1 
Eff  81.124 79.868 

stT  10.063 10.354 

2 
Eff  84.139 84.340 

stT  16.142 16.448 

 

Table 2 Comparison of Results with multiple objectives 

for Motor-1 

  GA PM 

Primary 

Design 

Variables 
x  

1x  1.91436 1.44334 

2x  0.44522 0.48141 

3x  13311.74 12727.18 

4x  0.45166 0.44537 

5x  3.63006 3.95638 

6x  4.91137 4.72236 

7x  1.20089 1.20093 

Constraints 

)(xg  

21 g  1.708 1.707 

22 g  1.097 1.154 

05.03 g  0.027 0.027 

5.14 g  12.498 12.402 

705 g  33.778 37.180 

5.06 g  0.498 0.500 

75.07 g  0.871 0.870 

Performances 
Eff  84.559 84.608 

stT  4.632 4.597 

 

The optimal design with multiple objectives are presented in 

Table 2 and 3 for motor 1 and 2 respectively. The 

corresponding performances in terms of efficiency and 

starting torque are also presented in the respective tables of 2 

and 3.  It can be observed from these tables that GA and HSO 

offer a compromised solution that lies in between the 

respective best and worst objective function values obtained 

with individual objectives. The quality of the compromised 

solutions cannot be estimated as it depends on the weight 

values assigned to the individual objectives and the range of 

the each objective function values. It is known that another 

compromised solution can be obtained by simply changing the 

weight parameter of each objective.  

The Tables 2 and 3 also include the values of the constraints 

of Eq. (6) along with their limits. It can also be observed from 

these tables that both the methods bring the constraints such 

as maximum flux density, slip at full load, starting to full load 

torque ratio,  etc.,  of Eq. (6) to lie within the respective limit, 

as the constraints are added as penalty terms in the fitness 

function of Eq. (14).   

Table 3 Comparison of Results with multiple objectives 

for Motor-2 

  GA PM 

Primary 

Design 

Variables 
x  

1x  1.25331 1.98324 

2x  0.39837 0.53788 

3x  11506.52 14699.59 

4x  0.89624 0.27214 

5x  2.74812 2.91453 

6x  3.62740 4.60577 

7x  1.10138 1.10044 

Constraints 

)(xg  

21 g  1.354 1.901 

22 g  0.986 1.391 

05.03 g  0.018 0.016 

5.14 g  13.289 14.178 

705 g  25.807 37.390 

5.06 g  0.498 0.489 

75.07 g  0.850 0.855 

Performances 
Eff  88.710 88.669 

stT  4.710 5.295 

 

5. CONCLUSIONS 
HSO is a powerful population based heuristic algorithm for 

solving multimodal optimization problems. An elegant 

methodology involving HSO for solving ODIM problem has 

been outlined. It determines the optimal values for primary 

design variables. The results on two IMs clearly demonstrates 

the ability of the PM to produce the global best design 

parameters that maximizes the efficiency and starting torque 

as well of the IM. It has been exhibited that the new approach 
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encourages the continued use of HSO and will go a long way 

in serving as a useful tool in design problems. 

6. ACKNOWLEDGMENTS 
The authors gratefully acknowledge the authorities of 

Annamalai University for the facilities offered to carry out 

this work. 

7. REFERENCES 
[1] Kentli. K. (2009). A survey on design optimization 

studies of induction motors during the last decade, 

Journal of Electrical and Electronics Engineering, 9(2): 

969-975. 

[2] Menzies. R.W and Neal. G.W. (1975). Optimization 

program for large induction motor design, Proc.I.E.E., 

11(6), 643-646. 

[3]  Gyeorye Lee, Seungjae Min, and Jung-Pyo Hong. 

(2013). Optimal shape design of rotor slot in squirrel-

cage induction motor considering torque characteristics, 

IEEE Transactions on Magnetics, 49(5): 2197-2200. 

[4] Bharadwaj. D.G., Venkatesan.K and Saxena.R.B. (1978). 

Computer aided design of polyphase cage induction 

motors, Proc. Int. Conf. On Electrical Machines, 

Brussels, Belgium, 1(SP2/1): 1-10 

[5] Faiz. J and Sharifian. M.B.B. (2001). Optimal design of 

three phase induction motors and their comparison with a 

typical industrial motor, Comp. and Elect. Eng. 27: 133-

144. 

[6] Bharadwaj. D.G., Venkatesan.K and Saxena.R.B. (1979-

a). Induction motor design optimization using 

constrained Rosenbrock method (Hill Algorithm), 

Comput. Elec. Engg. 6(1): 41-46.  

[7] Ramarathnam, R., Desai.B.G., and Subba Rao. V. 

(1973). A comparative study of minimization techniques 

for optimization of induction motor design. IEEE 

Transactions on Power Apparatus and Systems PAS-92 

(5): 1448–1454. 

[8] Parkin T. S and Preston T.W, (1993). Induction Motor 

Analysis Using Finite Element", Proc.IEE, The Eighth 

International Conference on Electrical Machines and 

Drives, 20-24. 

[9] Bharadwaj. D.G, Venkatesan.K.and Saxena.R.B. (1979-

b). Nonlinear programming approach for  optimum cost 

induction motors--SUMT algorithm, Comput. and Elect. 

Engg., 6(3): 199-204. 

[10] Bhuvaneswari.R and Subramanian.S. (2005). 

Optimization of three phase induction motor design using 

simulated annealing algorithm, Electric Power 

Components and Systems, 33: 947-956. 

[11] Prakash.P.S and Aravindhababu.P. (2014). GA based 

design for improving starting torque of induction motor, 

International Journal of Engineering Science and 

Technology, 6(12): 816-821. 

[12]  Jan Pawel Wieczorek, Ozdemir Gol and Zbigniew 

Michalewiez. (1998). An evolutionary algorithm for the 

optimal design of induction motors, IEEE Trans. 

Magnetic, 34(6): 3882-3887. 

[13] Kim MK, Lee CG, Jung HK. (1998). Multiobjective 

optimal design of three-phase induction motor using 

improved evolution strategy, IEEE Trans. on Magnetics, 

34(5): 2980-2983. 

[14] Sakthivel. V.P,  Bhuvaneswari. R  and  Subramanian. S. 

(2010-a). Economic design of three-phase induction 

motor by particle swarm optimization, J. Electromagnetic 

Analysis and Applications, 2: 301-310. 

[15] Sakthivel. V.P,  Bhuvaneswari. R  and  Subramanian. S. 

(2010-b). Design optimization of three-phase energy 

efficient induction motor using adaptive bacterial 

foraging algorithm, The International Journal for 

Computation and Mathematics in Electrical and 

Electronic Engineering, 29 (3): 699-726 

[16] Thanga Raj.C, Radha Thangaraj, Millie Pant, Pascal 

Bouvry, and Ajith Abraham. (2012). Design optimization 

of induction motors with differential evolution 

algorithms with an application in textile spinning, 

Applied Artificial Intelligence, 26: 809–83. 

[17] Geem. Z.W, Kim. J.-.H, Loganathan. G.V. (2001). A 

new heuristic optimization algorithm: harmony search, 

Simulation, 76(2): 60-68. 

[18]  Lee. K.S and Geem.Z.W. (2005). A new meta-heuristic 

algorithm for continuous engineering optimization: 

harmony search theory and practice, Comput. Methods 

Appl. Mech. Engrg. 194(3): 3902-3933. 

[19] Prakash.P.S and Aravindhababu.P. (2014). Harmony 

search optimization based design of cost effective 

induction motor, International Review on Modelling and 

Simulations, 7(6): 912-917. 

[20] Kumaran Jayaraman and Ravi G. (2014). Long-Term 

Forecasting of Electrical Energy Using ANN and HSA, 

International Review on Modelling and Simulations 

(IREMOS),  7(3): 489-496. 

[21] Karthikaikannan Dharmaraj and Ravi G. (2014). Optimal 

Reactive Power Dispatch of Power System using 

Improved Harmony Search Algorithm, International 

Review on Modelling and Simulations (IREMOS), 9(3): 

620-639. 

 

 

IJCATM : www.ijcaonline.org 


