
International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 21, April 2015

34

Crypto-Compression System: An Integrated Approach

using Stream Cipher Cryptography and Entropy

Encoding

Bobby Jasuja
Department of Information Technology

Medicaps Institute of Science and Technology,
Indore, India

Abhishek Pandya

Department of Information Technology
Medicaps Institute of Science and Technology,

Indore, India

ABSTRACT
Problems faced in modern communications are not only just

related to security but also concerned with the communication

speed and content size.Now day’s networks demand exchange

of information with more security and reduction in both -data

storage and the time for data transmission. This can be realized

by adopting an integrated approach usingcompression and

encryption techniques, such a system is termed as crypto-

compression system. Encryption is a coding technique that

provides security whereas data compression is also a coding

technique, whose purpose is to reduce both the data storage size

and ultimately the time for data transmission. In this paper, an

algorithm has been proposed which uses the compression and

data encryption techniques. Firstly, data size is reduced through

various compression techniques in order to increase the data

transfer rate. Then the compressed data is encrypted to raise its

security. Thus, technique proposed in this paper is useful in

reducing data size, raising data transfer rate and providing

security during communication. In this proposed system,

encoded string is created from an input string of symbols and

characters based on entropy encoding technique like arithmetic

coding that can be used to achieve high level of compression in

the present network topologies for exchange of data with more

security and compression.

Keywords
Arithmetic coding, one-time pads, stream cipher cryptography,

entropy encoding, crypto-compression system

1. INTRODUCTION
Information security (protection of information stored on

standard disks, tape) is a growing issue among IT organizations

of all sizes. To tackle this growing concern, more and more IT

firms are moving towards cryptography to protect their valuable

information. In addition to above concerns over securing stored

data, IT organizations are also facing challenges with ever-

increasing costs of storage required to make sure that there is

enough storage capacity to meet the organization’s current and

future demands. To keep up with the challenges in association

with the limited IT infrastructure budget and rising storage

capacity needs, some enterpriseshave started using data

compression techniques. An integrated solution to both-

capacity and the security problems has been use of software-

based compression techniques to reduce the number of disk

increasing storage density and encryption techniques to secure

the confidential data on the tapes.

1.1 Cryptography
Cryptography is the process of designing techniques to protect

data. It provides security and integrity of confidential messages

using different forms of encryption and decryption.

Cryptography is a process of storing and transmitting data in a

scrambled form so that only those for whom it is intended can

read and process it. The term is often associated with

scrambling plaintext (ordinary text) into cipher text (this

process is called as encryption), then back again (known as

decryption). Nowadays it’s being used all around us- from ATM

cards to ecommerce websites, in gaming consoles, for

distribution of copyrighted music and film and many more

applications.
Within the context of any application, there are some specific

security principles requirements such as:-

• Authentication: -Securing one’s identity.

•Confidentiality: - Ensuring that no other person can read the

message except the intendedreceiver.

• Integrity: - Assuring that the received message has not been

tempered in any way from the original.

• Non-repudiation:- A mechanism to prove to ensure that sender

cannot disown this message.

There are two types of cryptography based on the number of

keys used in encryption and decryption process-symmetric

cryptography and asymmetric cryptography.

1.1.1 Asymmetric-key Cryptography
In asymmetric-key cryptosystems, the public key is distributed

among senders of message by recipient, while its paired private

key remainssecret to recipient. The public key is used for

encryption, while the private (secret key) is used for decryption.

This algorithm is also known as public key cryptography e.g.

RSA, DSA, and PGP etc.

While Diffie and Hellmanm[1] showed that public-key

cryptography was possible by postulating the Diffie–Hellman

key exchange protocol (a solution that is widely used in secure

data exchange to allow the two parties to secretly agree on

a shared encryption key).Diffie and Hellman's publication

sparked efforts in probing a practical implementation of public-

key encryption system. This was finally published in 1978

by Ronald Rivest, Adi Shamir, and Len Adleman, (whose

solution become known as the RSA algorithm.)

http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/Symmetric-key_algorithm
http://en.wikipedia.org/wiki/Ronald_Rivest
http://en.wikipedia.org/wiki/Adi_Shamir
http://en.wikipedia.org/wiki/Len_Adleman
http://en.wikipedia.org/wiki/RSA_(algorithm)

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 21, April 2015

35

Figure 1: Asymmetric–Key Cryptography

1.1.2 Symmetric-key cryptography
Symmetric-key cryptography [1] refers to encryption technique

in which both sender as well as receiver share the same

keysecretly This was the only kind of encryption known until

June 1976. These are implemented in the form of either block

ciphers or stream ciphers. A block cipher enciphers blocks of

plaintext rather than individual characters.The Data Encryption

Standard (DES) and the Advanced Encryption Standard (AES)

are example of block cipher (designated cryptography

standards by the US government).

Stream ciphers, in comparison to the block type, create a long

stream of key of same length as the message, which is

enciphered with the plaintext bit-by-bit e.g. one-time pad. In a

stream cipher technique, the output cipher text is created using a

hidden internal stage that changes as the cipher operates. This

internal stage is initially set up using the privatekey. RC4 is a

widely used stream cipher.

In this paper, one time pads are used as symmetric cryptography

technique for encryption due to its simplicity.

Figure 2: Example of Symmetric-Key Cryptography

1.2 Data Compression
While the history of data compression does not start as early as

classic cryptography, the first model of data compression was

developed in 1838.This early form was known as Morse code.

The model improved in the mid-twentieth century when

Information Theory [2] was introduced by Claude Shannon in

1949. It involved substituting smaller code-words for message

content based on probability. In 1952, Huffman Coding

optimized the practice of assigning smaller code-words to

blocks with high probabilities of occurrence in a text. This idea

was changed in the 1970s when it was realized that the

assignment of smaller code-words need not be based on

probability of blocks occurring, but rather code-words should

be assigned dynamically, with text characteristics unique to a

given piece of data.

In the beginning of the modern technology, storage capacity

was very limited. Moreover, large file sizes were difficult to

handle and cumbersome. Today, while storage capacity is

exponentially increasing and large capacity storage device have

become affordable but over the last decade there has been an

unprecedented explosion in the amount of digital data

transmitted via the Internetand thus the number of digital files

are growing rapidly as well. For this reason, compression

methods for digital files have come into more practical

existence since the early days of computing. Methods of

compression have always existed with computers but now are

consistently improvising to allow for more data to fit on a single

disk.In modern age, companies report that their consumer data

is worth more than their physical company assets and there is a

definite need to focus on how company’s store data. In fact,

more data requires more available space on the computer hard

disk.

• Requires less disk space than an uncompressed file.

• Transfers faster than an uncompressed file.

The advantages of smaller files will always be evident:

Today, computer user interacts with compressed files every day.

The field of data compression is massive and ubiquitous.

However, much of the implemented compression today requires

specialized hardware.The algorithms focused by us are

implemented with common computer hardware on the average

configuration machine.

Data compression also offers an interesting approach for

reducing communication costs using available bandwidth

effectively.Compression algorithms eliminates redundancy in

data representation to decrease the storage required for that data

[3].

There are two forms of data compression: Lossless and Lossy.

The difference in them is related to the ability to get back the

exact contents of the original file. One may think that

compression always need to be lossless and should return the

exact original contents, but in the case of images, videos, and

audio files, the omission of many bytes is acceptable as it goes

unnoticed by the human eyes. Text files like typed documents,

source code and many more cannot afford to lose any bytes in

data compression as critical functionality of the document may

be lost.[4] This factor is controlled using:

Compression Ratio =

Some of the ways of data compression are Huffman Coding,

Arithmetic Coding etc. In this paper Arithmetic Codingis due to

its added advantages over Huffman Coding discussed later in

this paper.

1.3 Compression-Crypto System
While actual methods of cryptography vary but the process can

be abstracted as:

Plain Text

 Encrypted Data

 Plain Text

This simpler form of cryptography parallels the process of Data

Compression:

Plain Text

 Compressed Data

 Plain

text

Looking the summarized form of above two processes,it is clear

that they serve different purposes. Yet compression results in a

file incapable of being read until it undergoes a decompression

process.This looks like a subtle form of cryptography. The

similarities in these processes pose the question: Is there any

commonality or an overlap? In other words: Is there a method

of data compression that offers cryptographic features, or a

http://en.wikipedia.org/wiki/Block_ciphers
http://en.wikipedia.org/wiki/Block_ciphers
http://en.wikipedia.org/wiki/Stream_ciphers
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Cryptography_standards
http://en.wikipedia.org/wiki/Cryptography_standards
http://en.wikipedia.org/wiki/One-time_pad
http://en.wikipedia.org/wiki/RC4

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 21, April 2015

36

form of cryptography that results in an encrypted data of

smaller size than the original plain text?

If a compression method that requires a key to be decompressed

be difficult to decompress without the key, then one may

conclude that data compression is an appropriate form of

cryptography. Conversely, if there is no form of data

compression that offers cryptographic features, then there might

not exist any overlap in these two processes that share similar

methods[12].

The main similarity between data compression and

cryptography exists within the compressed or encrypted file:

For a human observer, this file is unreadable data, and thus

useless until it undergoes a reversing process: decompression or

decryption. However, it quickly becomes apparent that one is

comparing apples and oranges. The priorities of each process

are very different, as seen below:

Table 1: Cryptography vs. Data Compression Prioritized List

Cryptography Data Compression

1.)Security (Integrity and Confidentiality)

2.) Practicality (Availability)

3.) Convenience (Speed)

1.)Compression factor

2.)Convenience (Speed)

3.)Security (Confidentiality)

Here, one can see that a combination method would require

some form of compromise in either security or compression

factor- ultimately this is detrimental to the end result. That is, if

data is important then sender need complex encryption and file

size is unimportant. If security is sacrificed for better

compression ratio, then the security of the data does not never a

main concern. Therefore, one can conclude that the two

processes, despite their similar structure, do not aim to

complement each other, so their direct combination can be

cumbersome. In fact, tremendous complexity in modern

cryptographic methods leaves no space for an attempt to

compress data- additionally, if a compression method is

somehow injected into the encryption algorithm, there would be

a known structure and similar pattern in the cypher text–which

might deduce the original encryption. However, in a review of

the Pretty-Good-Protection routine, researchers were less

successful in cracking encryptions that were first compressed.

This vagueness in answer to above questions suggests that there

is still development opportunities to connect these fields.

There also occurs a problem of the sequence of applying these

two processes i.e. Compression should be applied first before

Encryption or Encryption should be applied first before

compression.

Encryption can also be applied before compression in some

particular situations such as when it is desired to transmit

redundant data over an insecure and bandwidth-constrained

channel [5]. Traditionally, data from a source is first

compressed and then encrypted before it is transmitted over a

channel to the receiver. In many cases this approach is

benefitting, but there exist scenarios where there is a need to

reverse the order of data encryption and compression. Consider

a network of low cost sensor nodes that transmit confidential

information over the internet to a recipient. So sensor nodes

need to encrypt data to hide it from potential intruder, but they

do not necessarily want to compress it as that would require

additional hardware cost. On the other hand, the network

operator responsible for transferring the data to the recipient

wants to compress the data in order to maximize the utilization

of its resources. It is important to note that the network operator

might not be trustworthy and hence is not provided access to the

key used for encryption and decryption of data.

Figure 3:Flow-Chart for Encryption before Decryption

Process

Compression should be applied first before encryption

[5]because of the following reasons:

 Compressing data last won’t reduce the file size

much- Good encryption makes any input data (like

redundant data) appear random. But compression

works by removing redundancy and won’t work well

on random data.

 Compressing data first should decrease the

effectiveness of many attacks-Compression works by

removing the redundancy in the data. A common

cryptanalysis (breaking cipher) method relies on

finding repeated data. Compressing data should

reduce its effectiveness.

 Brute force attacks will take longer- Brute force

attacks work by trying out various possible keys

combination and checking if the output data makes

any sense. By compressing data first, an attacker has

to decrypt the data and then decompress it before

seeing if the output data makes any sense. This takes

much longer, and if an attacker doesn’t know sender’s

compressing the data at all, he/she might never be

able to deduce the input.

 The opponents get less exposure to cipher text for

analysis- Lesser the data the enemy has to analyse,

the fewer hints they have about the internal state of

sender’s cipher and its key.

 Compressing a file after encrypting it is inefficient-

Cipher text produced by a complex encryption

algorithm generally has a uniform distribution of

characters. As a result, a compression algorithm will

be unable to find high percentage of redundant

patterns in such text and as a result there will be little

data compression. In fact, if data compression

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 21, April 2015

37

algorithm is able to significantly compress the cipher

text, then this indicates a high level of inefficiency in

the cipher text (evidence of poor encryption).

Figure 4: Flow-Chart for Compression before Decryption

Process

2. LITERATURE & SURVEY
In the last decade, an unprecedented explosion of textual

information occurred through the use of the Internet, digital

library and information retrieval system.By the year 2004 the

National Service Provider backbone had an estimated traffic

around 30000Gbps and that the growth continued to be 100%

every year. Currently, text data competes for 55% of the total

internet traffic. Some of the existing system used compression

along with RSA algorithm for mobile communication.Such

systems were able to provide a solution to SMS security

problem [6]. The solution that is used in this system is to

compresses the SMS text in order to reduce its length, then

encrypt it using RSA algorithm. But RSA is a Public Key

Encryption method. A disadvantage of using public-key

cryptography for encryption is speed. This system is known as

Hybrid Compression Encryption (HCE) system. One more

exiting system uses crypto-compression to provide us an

errorless secure transmission of medical information data like

Image, Audio, Video files of patient etc. This system uses

lossless compression technique like Sequitur for efficient

bandwidth utilization of communication channel. The

combination of McEliece public-key cryptosystem with

compression provides confidentiality in the transmission. But

this system has a limitation with length- its efficiency drops as

the data length increases. Also such system requires very large

public key which makes it very difficult to adapt in many

practical situations.

Now a day’s Arithmetic coding is commonly used. It is a

statistical method whose compression ratio is very good.

Therefore, in this paper Arithmetic coding is used with private

key encryption system because private key encryption system is

fast with ease in mathematical implementation.

3. PROPOSED WORK
The proposed algorithm is based on the concept of entropy

encoding like arithmetic coding in which each word of text file

is converted into floating point number (lie in range between 0

and 1).Then this floating point number is converted into binary

number and after that symmetric key is used to encrypt this

binary number. Finally after encryption, resultant is again a

binary number. This binary number is again converted into

decimal number again and sends to the receiver.

Figure 5: Crypto Compression Model

3.1Arithmetic Coding
It is known fact that the Huffman coding generates minimum

redundancy codes compared to other algorithms. But the

disadvantage of Huffman is that- it produces codes of the

encoded data of different sizes. Therefore it becomes very

difficult for the decoder to know that it has reached the last bit

of a code. On the other hand, arithmetic coding (viewed as a

generalization of Huffman coding) efficiently represents more

frequently occurring sequences of pixels values with fewer bits.

Moreover, arithmetic coding typically has a better compression

ratio than Huffman coding because it produces a single symbol

rather than several separate code-word.

To achieve better compression factor than Huffman coding,

arithmetic coding uses decimal numbers to represent text.

Arithmetic Coding is a lossless compressioninvented by

JormaRissane and turned into a practical method by Witten,

Neal and Cleary [7]. It is not restricted by the bounds of integer

expression in computers(requiring rounding all decimal

numbers to the nearest whole integer to be represented as bits)

rather arithmetic coding accepts real numbers [8]. Arithmetic

coding defines a range for each character in a word based on its

frequency occurrences. Arithmetic coding encodes the entire

word into a single number (fraction n where 0.0≤n< 1.0)[9].

The coding algorithm is symbol wise recursive i.e. it executes

upon and encodes (or decodes) one symbol per recursive

cycle.On each iteration, the algorithm partitions an interval

between 0 and 1 and retains one of the partition as the new

interval. The word is recovered by magnitude comparison of the

code to recreate the scenario when the encoder must have

successively partitioned and retained each subinterval.

Let us see an example, suppose the word-HELLO is to be

encoded. Arithmetic Coding is fast on a computer but can be

very slow manually, so word HELLO is chosen because it has 5

total letters (4 unique letters), so it can show compression.

Firstly,computation of the probabilities and intervals of each

character in the given word is to be done, the lowest possible

interval for a character to occupy in HELLO is 1/ 5 (because

there are 5 characters). A character’s interval length in this word

equivalent to 1/5*Total Occurrence’s.[4]

Table 2: Arithmetic Coding Intervals for HELLO

Character Probability Interval

H 0.20 0.00-0.20

E 0.20 0.20-0.40

L 0.40 0.40-0.80

O 0.20 0.80-1.00

To encode any string, the total interval (0−1) is divided

repeatedly and the character’s high and low interval values are

added to the encoded value in the order that the encoder reads

each letter. This process is difficult to follow manually.

HiVal 1.0 /*Upper limit of Interval*/

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 21, April 2015

38

LoVal 0.0 /*Lower limit of Interval*/

WHILE (more characters to process)

 Char Next message character

 Interval HiVal – LoVal

CharHiVal Upper interval limit for char

 CharLoVal lower interval limit for char

 HiVal LoVal + Interval * CharHiVal

 LoVal LoVal + Interval *CharLoVal

END WHILE

OUTPUT (LoVal)

 Pseudo Code for Arithmetic Coding

Following this pseudo-code, the proceeding table is generated

with the referenced charLoVal, charHival, LoVal, and HiVal

variables:

Table 3: Arithmetic Coding of HELLO

Character Interval Char

LoV

al

Char

HiV

al

LoVal HiVal

 0.00000 1.00000

H 1.0000 0.00 0.20 0.00000 0.20000

E 0.2000 0.20 0.40 0.04000 0.08000

L 0.0400 0.40 0.60 0.00160 0.00240

L 0.0080 0.60 0.80 0.00480 0.00640

O 0.0016 0.80 1.00 0.00128 0.00160

Encoded Message: 0.00128

The final LoVal is the encoded message, in case of HELLO

encodes to 0.00128. While difficult to follow arithmetic

encoding algorithm on paper, it is easily implemented in a

computer. Decryption is similar, reverse looking to match

successively divided ranges with character high and low values

in frequency. The important feature of arithmetic coding is that

it does not represent real numbers with integer values, but rather

can represent them exactly with decimal values. However, error

checking is critical in arithmetic encoding

compression/decompression algorithms because computers see

arithmetic encoded data as numbers in floating point

representation. This leads to potential problems of underflow in

addition and sometimes missing a zero condition. However if

errors are kept in, arithmetic encoding obtains better

compression ratios as it can represent exact probabilities. It is

far slower than Huffman Encoding due to extra efforts required

when dealing with floating point numbers in the computer.

3.2One Time Pads
The method was presented in 1918 by Gilbert Vernam and

Joseph Mauborgne. One time pads have a unique cryptographic

quality that it cannot be broken because cypher text contains no

information about the key other than its length. The basic

principle is to create a random key of the same length as the

plain text message and add the two together, character by

character:

It is important to note that each plain text L translated to a

different cypher text character: D,P,Z etc. randomly: there is an

equal probability that these characters could translate to any

other character or not even change at all.

Decrypting the message: simply subtract the key from the

cypher Text.

[10]When implemented in a computer, the message and key are

simply bit strings that undergo an EXCLUSIVE OR operation

for encryption. This is then just done again between the cypher

text and key to decrypt.

For a one time pad to be truly unbreakable, the key must be

generated randomly and never used again (‘one time’). This

creates difficulties in the practice use of a onetime pad because

a random key would require rolling a 26-sided dice for every

character in the key.If the key is not truly random or is based on

a pseudo random number generator, then there exists the

possibility to regenerate the same key. Once the random key is

created, it must be sent in full to the recipient along with the

message because without the key, the cypher text is

unbreakable,

In summary, one time pads have the ability to be completely un-

crack able, but require a random key of equal length to the

original message.

Message H E L L O W O R L D

Key +S G S E G F A I O T mod 26

Cypher Values 25 10 3 15 10 1 14 25 25 22

Interpreted as letters Z K D P K B O Z Z W

4. DESIGN

4.1Compress and Encryption of message
Step 1:-

 Initialize Lower limit=0.0, Upper limit=1.0

 While there are still symbols to encode

 Current range = Upper limit - Lower limit

 Upper limit = Lower limit + (Current range * Upper

limit of current symbol)

 Lower limit = Lower bound + (Current range * Upper

limit of current symbol)

 End while

Step 2:-

 The string may be encoded using any value within the

range and after that the output decimal number is

converted into binary format.

Step 3:-

 Limit the number of bits obtained in step 2 by using

the formula:-

No of bits=log (┌2/upper limit last encoded symbol -

lower limit last encoded symbol┐)

Step 4:-

 Select randomly any one time pad of message length

(Compressed message) andXOR it with result of

step3.

Step 5:-

 Rotate 2 (or more) bits right depending on

requirement.

Step 6:-

 Convert the result of step 5 into decimal format again.

Output: - Output is floating point number corresponding to the

input symbols.

4.2 Decompression and Decryption of

message
(Convert the floating point number received into original text

Algorithm)

Step 1:-

 Convert the received floating point number into

binary format.

Step 2:-

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 21, April 2015

39

 Rotate 2 bits (or more depending on encryption

algorithm) to left.

Step 3:-

 Selected one time pad is XORed with the result of

step2

Step 4:-

 Convert the result back into decimal form.

Step 5:-

 Encoded value=Coded input

 Until string is not fully decoded do-

 Identify the symbol containing the encoded value

within its probability range

 Current range = upper limit of current symbol -

Lower limit of current symbol

 Encoded value = (encoded value - Lower limit of

current symbol) /current range

 End while

Output: The output is the original symbol

4.3 Example
Table 4: Arithmetic Coding Intervals

Symbol Probability Range (lower

bound, upper

bound)

a 30% (0.00,0.30)

b 15% (0.30,0.45)

c 25% (0.45,0.70)

d 10% (0.70,0.80)

e 20% (0.80,1.00)

Compression and encryption-

Data to be encoded and encrypted is “abd”

Step1:-

Encode ‘a’

 Current range= 1 - 0 = 1

 Upper bound= 0 + (1 × 0.3) = 0.3

 Lower bound= 0 + (1 × 0.0) = 0.0

Encode ‘b’

 Current range= 0.3 - 0.0 = 0.3

 Upper bound= 0.0 + (0.3 × 0.45) = 0.135

 Lower bound= 0.0 + (0.3 × 0.3) = 0.09

Encode’d’

 Current range= 0.135-0.09 = 0.045

 Upper bound= 0.09 + (0.8 × 0.045) = 0.126

 Lower bound= 0.09 + (0.7×0.045) = 0.1215

Step 2:-

 The word-abd may be encoded using any value within

the range (0.126, 0.1215).Now output is

0.12375(arithmetic mean of lower and upper bound)

and its binary equivalent=

.00011111101011100001010001.

Step 3:-

 No of bits= log┌2/0.0045┐=┌log444.44┐=8bits

Step 4:-

 So after reducing number of bits binary value is

0.00011111.

Step 5:-

 One time pad is – 11010100

 Data- 00011111 from step 4.

 After XORing the output is- 11001011

Step 6:-

 Rotate 2 bits right the result is 11110010

Step 7:

 0.11110010 in decimal is 0.96875

Decompression and Decryption-

Step 1:-

 Received data is 0.96875and binary format of

received data is 0.11110010

Step 2:-

 Apply 2 left shifts to result of step1 the result is

11001011

Step 3:-

 Apply selected one time pad and Xored it with the

result of step2 the result is 00011111

Step 4:-

 Convert .00011111 into decimal i.e. 0.1210

Step 5:-

 Decoded first symbol 0.1210 is within (0.00, 0.30)

0.1210 encodes 'a'

 Remove effects of 'a' from encode value i.e. Current

range = 0.30 - 0.00 = 0.30

 Encoded value = (0.1210 - 0.0)/0.30 = 0.40330

 Decoded second symbol 0.40330 is within [0.300,

0.450) 0.4033 encodes 'b'

 Remove effects of 'b' from encode value i.e. Current

range = (0.45 - 0.30) = 0.15

 Encoded value = (0.4033 - 0.30)/0.15 = 0.6886

 Decoded third symbol 0.6886 is within (0.70, 0.80)

0.6886 encodes’d’

Figure 6: Crypto Compression System Flow Chart[11]

5. EVALUATION
The proposed technique has the following key features:

 It provides precision control to convert entire string or

file.

 It uses both data Compression and Cryptography

technique. Therefore conversion timeof compressed

as well as encrypted data (generated through crypto-

compression system) to plain text and vice-versa is

usually high as compared to encrypted text

conversion to plain text or compressed text

conversion to plain text.

 It is a highly secured way of transmission ascipher

text generated for same information always different

due to one- time pad usage during encryption.

Moreover,it is a private key encryption technique.

For example-suppose we are given three file (.txt) with

following sizes:

Table 5: Conversion Time for Various Size Text Files

File

(.txt)

Size

(in KB)

One Time

Pad

(in sec)

Huffman

Coding

(in sec)

Proposed

Technique

(in sec)

File 1 135 0.31 0.75 1.02

File 2 670 2.00 3.50 4.50

File 3 1380 5.60 7.10 9.20

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 21, April 2015

40

Figure 7: Conversion Time Comparison

 In an ideal channel, the reduction of transmission time

is directly proportional to the amount of compression.

Therefore transmission time of data compressed using

Huffman coding only and data generated through the

proposed system are almost equivalent. But when

compared to data transmission after one time padding

(encryption)this does not hold true. Clearly Huffman

coding generated data and the proposed system

generated data are clear winners in this aspect.

Table 5: Transfer Time for Various Size Text Files

File

(.txt)

Size

(in KB)

One Time

Pad

(in sec)

Huffman

Coding

(in sec)

Proposed

Technique

(in sec)

File 1 135 2.30 1.80 1.70

File 2 670 7.90 5.10 4.92

File 3 1380 13.70 9.50 9.15

Figure 8: Transfer Time Comparison

 In short, we can say that proposed technique

generated cipher text takes less bandwidth of channel

when compared to one time pad whereas when it is

compared to Huffman coding, bandwidth requirement

of both the technique are almost same but proposed

technique is much more secured way of transmission.

Figure 9: Total Time (Conversion +Transfer time)

Comparison

6. CONCLUSION
This analysis answered the original question- Is there any

efficient method of combining encryption and compression?

Answer is simple: It will be self-defeating to compromise. The

two processes may have different priorities and combining

those compromises and desegregation the quality. However,

evaluationdone through this paper suggest that when the

processes are done in series: files are first compressed and then

encrypted, the processes can work off each other, for a better

result.

The proposed technique provides an excellent integration of

data compression with the cryptography to increases the data

security and transfer rate during data transmission. Size of data

is reduced using the arithmetic encoding data compression

technique and after that compressed data can be encrypted to

provide the security. The Present network scenario demands

exchange of information with reduction in data storage and time

for data transmission along with security. Technique proposed

in this paper fulfils above requirements as this technique use the

concept of data compression and encryption.

7. ACKNOWLEDGMENT
We would like to express our gratitude and a special thanks to

the editors and the reviewers for giving very insightful and

encouraging comments.

8. REFERENCES
[1] http://en.wikipedia.org/wiki/Cryptography

[2] Shannon C. E. “A Mathematical Theory of

Communication”. The Bell System Technical Journal, Vol.

27

[3] Dr. V.K. Govindan and B.S. Shajeemohan -“An intelligent

text data encryption and compression for high speed and

secure data transmission over internet”

[4] Null, Linda, and Julia Lobur. Essentials of Computer

Organization and Architecture. Sudbury, MA: Jones &

Bartlett Learning, 2012

[5] Dr.Mukesh Sharma and Smiley Gandhi- “Compression and

Encryption: An Integrated Approach” International Journal

of Engineering Research & Technology (IJERT) Vol. 1

Issue 5, July – 2012

[6] Tarek M Mahmoud, Bahgat A. Abdel-latef, Awny A.

Ahmed and Ahmed M Mahfouz -“Hybrid Compression

Encryption Technique for Securing SMS”, International

Journal of Computer Science and Security (IJCSS),

Volume (3): Issue(6)

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 21, April 2015

41

[7] I.H. Willen, RandfordM.Neala and John G.Cleary -

“Arithmetic Coding for Data Compression”,

Communications of the ACM Volume 30 Issue 6.

[8] V.Kavitha and K.S Easwarakumar,“Enhancing Privacy in

Arithmetic Coding” ICGSTAIML journal, Volume 8,

Issue I,2008

[9] J.A Storer-“Data Compression: Methods and Theory”

Computer Science Press.

[10] Trappe, Wade, and Lawrence C. Washington. Introduction

to Cryptography: with Coding Theory. Upper Saddle

River, NJ: Prentice Hall, 2002.Print

[11] Schneier, Bruce. Applied Cryptography: Protocols,

Algorithms, and Source Code in C. New York: Wiley,

1996. Print

[12] H. Kruse and A. Mukherjee. - “Data Compression Using

Text Encryption”, Proc. Data Compression Conference,

IEEE Computer Society Press, 1997

IJCATM : www.ijcaonline.org

