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ABSTRACT 
The importance of the support vector machine and its 

applicability to a wide range of problems is well known. The 

strength of the support vector machine lies in its kernel. In our 

recent paper, we have shown how the Laplacian kernel 

overcomes some of the drawbacks of the Gaussian kernel. 

However this was not a total remedy for the shortcomings of 

the Gaussian kernel. In this paper, we design a Cauchy-

Laplace product kernel to further improve the performance of 

the Laplacian kernel. The new kernel alleviates the 

deficiencies more effectively. During the experimentation 

with three data sets, it is found that the product kernel not 

only enhances the performance of the support vector machine 

in terms of classification accuracy but it results in obtaining 

higher classification accuracy for smaller values of the kernel 

parameter  . Therefore the support vector machine gives 

smoother decision boundary and the results obtained by the 

product kernel are more reliable as it overcomes the problems 

of over fitting.  

Keywords 
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Laplacian kernel, Cauchy-Laplace product kernel. 

1. INTRODUCTION 
Classification of tremendous amount of data is time 

consuming and utilizes excessive computational effort, which 

may not be appropriate for many applications. The high 

number of features in the image space, a large number of 

training samples required and the Huges phenomena are all 

limitations over classifiers. Since the beginning of 21st 

century, classifiers based on statistical learning theory have 

shown remarkable abilities to deal with both high-dimensional 

data and a limited training set. One of the best-known 

methods is the support vector machines (SVMs) which has 

shown promising empirical performance. This is because a 

number of attractive features are overly associated with them: 

ideas of support and non-support training vectors, weighting 

training data, discounting data, regularization, margin and 

bounding of the generalization error.  These are all important 

enough ideas to stand on their own and are often seen in 

simpler settings.  The formulation embodies the Structural 

Risk Minimization (SRM) principle, as opposed to the 

Empirical Risk Minimization (ERM) approach commonly 

employed within statistical learning methods. SRM minimizes 

an upper bound on the generalization error, as opposed to 

ERM which minimizes the error on the training data. It is this 

difference which equips SVMs with a greater potential to 

generalize. The SVM can be applied to both classification and 

regression problems.  

What makes SVM attractive is the property of condensing 

information in the training data and providing a sparse 

representation by using a very small number of data points 

(SVs) (Girosi, 1998). SVM is a linear classifier in the 

parameter space, but it is easily extended to a nonlinear 

classifier of the  -machine type (Aizerman, Braverman & 

Rozonoer, 1964) by mapping the space of the input data 

X=     into a high-dimensional (possibly infinite-

dimensional) feature space F =       . By choosing an 

adequate mapping  , the data points become linearly 

separable or mostly linearly separable in the high-dimensional 

space, so that one can easily apply the structure risk 

minimization. We need not compute the mapped patterns 

     explicitly, and instead we only need the dot products 

between mapped patterns. They are directly available from the 

kernel function which generates     .  The performance of 

SVM largely depends on the kernel. Smola, Scho¨lkopf and 

Mu¨ller (1998) elucidated the relation between the SVM 

kernel method and the standard regularization theory (Girosi, 

Jones & Poggio, 1995). The strength of a support vector 

machines lies in its kernel. However, there are no theories 

concerning how to choose good kernel functions in a data 

dependent way.  

2. THE LAPLACIAN KERNAL 
Before describing our problem, it is necessary to examine 

some properties of the Laplacian kernel. The properties are 

similar to the Gaussian RBF kernel which is preferentially 

used as the SVM kernel. The output of the kernel is dependent 

on the Euclidean distance of x from    (one of these will be the 

support vector and the other will be the testing data point). 

The support vector will be the centre of the Laplacian RBF 

and   will determine the area of influence this support vector 

has over the input data space. The Laplacian kernel         

                 is essentially zero if the distance 

        is much larger than    . That is, for a fixed  , 

vectors in a narrow region around a support vector alone are 

important because outside this region               is 

zero. Thus the kernel is localized to smaller regions around  .  

Consequently the discriminant function      (which defines a 

hyperplane and is a summation involving kernel functions) is 

localized to smaller regions around    resulting in greater 

curvature of the decision boundary. In this regime of the γ 

parameter the classifier clearly over fits the data. This results 

in bumps centered around each support vector.  

When γ is large the value of the discriminant function is 

essentially constant outside the close proximity of the region 

where the data are concentrated.  

When γ is small or comparable to 1, a given data point x has a 

non-zero kernel value relative to any example    in the set of 

support vectors. Therefore the whole set of support vectors 

will affect the value of the discriminant function at x, 

resulting in a smooth decision boundary. As γ increases, as 
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described in the above paragraph, the locality of the support 

vector expansion decreases, leading to greater curvature of the 

decision boundary. In general, the function that imbeds the 

original space into the augmented feature space is unknown. 

The existence of such function is however assured by 

Mercer’s theorem (Mercer 1909). The effect of such function 

is confined within the constructed kernel, which must express 

a dot product of the function   from the input space to the 

feature space. Moreover, all used kernels in the literature are 

either dot product functions or distance functions.  By 

adopting the latter formulation, knowing an estimation of the 

Euclidean distance between two points in the original space, 

we examine how much they are correlated in the augmented 

space. In most commonly distance based kernels, points very 

close to each other are strongly correlated particularly when 

the distance appears in the exponential. Our concern is to 

force the images of the original points to be linearly separable 

in the augmented space. In order to get such a behavior, a 

kernel                    must be so as to force the 

function   to turn very close points from the original space 

into weakly correlated elements (as weak as possible) in the 

image space, while still maintaining the closeness information 

from vanishing. To achieve this tradeoff, we need the 

following couple of features: a quick decrease in the 

neighborhood of zero and a moderate decrease toward 

infinity. The Laplacian kernel is comparatively slow in 

descending from 1 as the distance increases from zero. This 

can result in information loss in the implementation of 

classification, particularly when the data points are too wide 

or too narrow in the sense of the distance.  

3. MODEL SELECTION 
We make the following two observations: 

1. For all points x such that                    , the 

exponential kernel function is nearly constant (almost 

zero) and results in tight relationship (or correlation) 

among such points. This results in information loss inside 

the SVM model through the kernel application. 

Separation of points in the feature space suffers a 

constraint. Relations should be absent in the image space 

to achieve successful separation. We have to modify the 

kernel so as to overcome this difficulty. Therefore, over a 

small domain           , the kernel function 

should quickly decrease from 1 as        increase 

from 0 to  , compared to the exponential kernel.  

2. For all points x such that          1, i.e., for points 

which are far separated, the exponential kernel         
            is very nearly zero. This kind of correlation 

is also a limitation for free dispersal of points      in the 

feature space. The property of the kernel to quickly 

decrease towards zero and to be zero nearly zero for all 

      beyond a stage should be overcome by the new 

kernel.  

In fact, the first condition is more prone to occur in data sets 

because consistent data items normally do not differ by large 

values.  

Therefore, we need the following couple of features for the 

new kernel function: a quick decrease in the neighborhood of 

zero and a moderate decrease toward infinity (slower) when 

compared to the exponential kernel. We have to modify the 

exponential kernel to address these issues. 

Motivated by the above aspects, we propose to design a kernel 

which overcomes at least one of these shortcomings and will 

be able to enforce better classification for moderately large 

data sets. We propose the following kernel and describe how 

it overcomes these drawbacks. We consider the product kernel 

given by  
 

        
                 The kernel is the 

product of two kernels, namely the Cauchy kernel.  
 

        
 

(Sangeetha and Kalpana 2011) and the Laplacian 

kernel             . Both these functions are distance 

based kernel functions and monotonic decreasing functions of 

the distance           on the interval [0,   whose 

values lie in the interval [0,1]. Both these functions take the 

value 1 when     and 0 when   . Thus the product 

kernel also decreases from 1 to 0 as r increases. The above 

kernel is a valid Mercer kernel being the product of two 

Mercer kernels. All the diagonal entries in the kernel matrix 

are 1 and all other entries are less than the diagonal entries.  

We check whether the merit of two kernels combined to form 

a hybrid kernel can result in an improvement. It is so expected 

because the Cauchy kernel is a long tailed kernel and can be 

used to give long-range influence and sensitivity over the high 

dimension space (Basak 2008). For a given       , each of 

the two functions is less than 1 and their product is much less 

than the value returned by the Laplacian. Therefore the 

condition (1) above will be surely met. It reminds us that the 

product of two kernels is like the Boolean AND operation. 

Higher classification accuracy can be achieved by optimizing 

the new kernel function and tuning its kernel parameters. The 

experimentation has shown that, in comparison with the 

Laplacian, the kernel is able to achieve better classification. 

Thus the product kernel function has resulted to overcome the 

drawbacks of undue sparseness and robustness (unduly sparse 

or dense), resulting in wider and uncorrelated disbursement of 

image points in the feature space. Theoretically also we can 

derive the strength of the product kernel. Let    be the 

Laplacian and    be the product kernel. Then if we let   

        , and make expansions of these functions for 

   , we find that the Laplacian kernel behaves  as      

whereas the product behaves as          and we know 

that           is smaller than      ) when       . 

This means the product kernel curve decreases quickly as   

increases in a narrow region      . In fact this prompted 

us to construct the modified product kernel to remedy the 

situation arising in the Laplacian kernel when   is small.  

However, the product kernel cannot do much to prevent the 

sparseness requirement, i.e., behavior for large       given 

by the condition (2). All the points x which are far separated 

in the input space from a test point    have very nearly zero 

kernel value. Our kernel is not able to do much in this regard. 

Therefore we expect our kernel to serve better purpose 

(relative to the Gaussian) only for data sets in which        

is not very large; i.e., examples are not too much separated in 

the input space. However, it cannot be worse than training 

SVM with the Gaussian or a Laplacian. Motivated by these 

ideas, we attempt the problem of classification of data sets 

using a Support Vector Machine using the product kernel. The 

data sets considered are described during the discussion. Now 

we present a very brief overview of linear SVM followed by 

non-linear SVM. 

4. SVM CLASSIFIER 
Support vector machines are an example of a linear two-class 

classifier. The data for two class learning problem consists of 

objects labeled with one of two labels corresponnding to the 

two classes; for convenience we assume the labels are +1 

(positive examples) or -1 (negative examples). 

In what follows boldface x denotes a vector with components 
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  . The notation    will denote the i th vector in a data set 
                    where    is the label associated with    

The objects    are called patterns or examples. We assume 

that the examples belong to some set X. Initially we assume 

that the examples are vectors, but once we introduce kernels, 

this assumption will be relaxed at which point they could be 

any continuous or discrete objects.  

A key concept required for defining a linear classifier is the 

dot product between two vectors, also referred to as an inner 

product or scalar product defined as           
 
 . A linear 

classifier is based on a linear discriminant function of the 

form           

The vector w is known as the weight vector, and b is called 

the bias. Consider the case     first. The set of points 

x such that         are all points that are perpendicular to 

w and go through the origin – a line in two dimensions, a 

plane in three dimensions, and more  generally a hyperplane.  

The bias b translates the hyperplane away from the origin. 

The hyperplane                  

divides the space into two.The sign of the discriminant functio

n       in Eq.(2) denotes the side of the hyperplane a point is 

on. The boundary between regions classified as positive and 

negative is called the decision boundary of the classifier. The 

decision boundary defined by a hyperplane is said to be linear 

because it is linear in the input. A classifier with a linear 

decision boundary is called a linear classifier.  Conversely, 

when the decisioin boundary of a classifier depends on the 

data in a non-linear way the classifier is said to be non linear. 

5. NON LINEAR CLASSIFIER 
The machinery of linear classifiers can be extended to 

generate non-linear decision boundaries. The naïve way of 

making a non-linear classifier out of linear classifier is to map 

our data from  the input space X to a feature space F using a 

non-linear function      . In the feature space F the 

discriminant function is                                                                                                      

(3) Kernel methods avoid the step of explicitly mapping the 

data to a higher dimensional feature space. Suppose the 

weight vector can be expressed as a linear combination of the 

training examples, that is,        
 
    . Then,      

     
     

   . In the feature space F, this expression takes 

the form              
        

   . The representation 

in terms of the variables    is known as the dual 

representation of the decision boundary. As indicated above, 

the feature space F may be high dimensional, making this 

trick impractical  unless the kernel function         is defined 

as                    - a dot product – that can be 

computed efficiently.  In terms of the kernel function, the 

discriminant function is               
     

   . 

We saw that a linear decision boundary can be “kernalized”, 

i.e., its dependence on the data is only through dot product.  In  

order for this to be useful, the training algorithms need to be 

kernalized as well. It turns out that a large number of machine 

learning algorithms can be expressed using kernels – 

including ridge regression, the perceptron algorithm and 

SVMs (Scho’lkopf and Smola (2002) and Cristianini and 

Shawe-Taylor (2000)). 

We use the term linearly seperable to denote data for which 

there exists a linear decision bounday that seperates positive 

from negative examples. Initially we assume linearly 

seperable data and later indicate how to handle data which is 

not linearly seperable.  

A natural desideratum is to try to find a decision boundary 

that maximizes the geometric margin since this would reflect 

a very confident set of predictions on the training and a good 

“fit” to the training data. Specifically this results in a clasifier 

that separates the positive and negative training examples with 

a gap (“geometric margin”). The method of maximizing this 

gas is through optimization.  It can be shown that the margin 

width is 2/   . 

We have the concept of a margin and now we can formulate 

the maximum margin  classifier. We will first define the hard 

margin SVM, applicable to a linearly seperable data set, and 

then modify it to handle non-seperable data. The maximum 

classifier is the discriminant function that maximizes the 

geometric margin       which is equivalent to 

minimizing 
 

 
   

 
. This leads to the following constrained 

optimization problem. 

           
 

 
   

 
     subject to:     

           

       (4)   

The constraints in this formulation ensure that the maximum 

margin classifier classifies each example correctly, which is 

possible since we assumed that the data is linearly seperable.  

In practice, data is often not linearly seperable; and even if it 

is, a greater margin can be achieved by allowing the classifier 

to misclassify some points. To allow errors we replace the 

inequality constraints in Eq. (4) with     
          

               where       are slack variables that allow 

an example to  be in the margin (      , also called a 

margin error) or to be misclassified       . Since an 

example is misclassified if the value of its slack variable is 

greater than 1,       is a bound on the number of 

misclassified examples. Our object of maximizing the margin 

i.e., minimizing 
 

 
   

 
will be augmented with a term       

to penalize misclassification and margin errors. The 

optimization problem now becomes 

            
 

 
   

 
     

 
     subject to 

    
                                                                                

(5) 

The constant C > 0 sets the relative importance of maximizing 

the margin and minimizing the amount of slack. This 

formulation is called the soft margin SVM, and was 

introduced by Cortes and Vapnik (1995). Using the method of 

Lagrange multipliers, we can obtain the dual formulation 

which is expressed in terms of variables    (Cotes and Vapnik 

(1995), ScholKopf and Smola (2002) and Cristianini and 

Shawe-Taylor (2000)). 

             
 

 
            

   
 
   

 
   

 
    subject to   

   
 
                                                                                     

6. RESULTS AND DISCUSSION 
We introduced the Cauchy-Laplace product kernel and using 

it we trained the support vector machine for the classification 

of the data using three data sets from the UCI Machine 

Learning Repository data bases. We have explained that the 

Cauchy-Laplace product kernel is a Mercer kernel that can 

overcome the drawbacks of the Laplacian kernel. These 

factors are well explained in Section 3 and we arrived at the 

fact that for values of   small or comparable to 1, the product 

kernel decreases from 0 faster than the exponential kernel 

taken alone in a small neighborhood of 0, namely for 

increasing values of             . The results are 
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shown in the tables given below for various data sets 

considered for this purpose and illustrate how the product 

kernel can achieve better classification accuracy. The 

following table shows the classification results for the diabetic 

data set  

Table 1: The classification results for the diabetic data 

base 

  value Gaussian 

kernel 

 Laplacian 

kernel 

 Product 

kernel 

0.001 72.1345 75.1592 76.5625 

0.005 69.2708 74.9469 78.2552 

0.01 65.8854 75.1592 77.0833 

0.05 65.3646 75.3715 77.7344 

0.1 66.2344 75.1592 77.8646 

0.5 65.3646 73.4607 77.0833 

1.0 65.1042 81.8182 77.2135 

5.0 65.1066 80.3922 76.6927 

 

In our recent paper (Chandrasekhar and Akthar 2014), we had 

compared the Gaussian and Laplacian kernels and noted the 

better performance of the Laplacian kernel. In the above table, 

we have one extra column shown for the product kernel. We 

find that the product kernel has increased the classification 

performance better than that in the case of the Laplacian for 

smaller values of   as we expected under theoretical 

consideration. However, the Laplacian performs better than 

the product kernel giving highest accuracy of nearly 82 when 

  = 1.When we examine the examples in the diabetic data 

base, we find that        is rarely very small and therefore 

even the Laplacian kernel works well. We will find the power 

of the product kernel in the case of other data sets. 

The results are shown in Table 2 below for the experiment 

conducted on heart data base with 270 examples and 14 

attributes. 

Table 2: Classification results for the heart data base 

  value Gaussian 

kernel 

 Laplacian 

kernel 

 Product 

kernel 

0.001 65.5556 55.5556 81.6667 

0.005 60.3704 55.5556 80.8333 

0.01 55.5556 55.5556 81.3559 

0.05 55.5556 58.5185 78.5124 

0.1 60.3212 55.5556 80.6723 

0.5 55.5556 58.5185 82.6513 

1.0 55.5556 75.9259 82.3529 

5.0 55.5444 83.3333 80.3279 

                        

We find that the product kernel performed very well, as 

expected for smaller values of  . The accuracy is as high as 

82.65. However, overall maximum classification 83.33 is 

achieved by the Laplacian kernel for   = 5. But it may be case 

of over fitting. The values beyond 5 are not tabulated as the 

results are nearly equal. It is to be noted that the classification 

percentage obtained for smaller values of   is more reliable 

than that obtained for larges values of   for the reasons 

already stated. There may be over fitting and the model will 

learn characters that are true about the training examples that 

do not hold for the overall truth or concept we are trying to 

learn (i.e., do not generalize). Generalization error is the 

excess error rate we observe when scoring new examples 

versus the error rate we saw in learning the training data. So 

we cannot expect generalization using accuracy obtained for 

larger  . In this way, the product kernel is significant in 

predicting the classification better. The accuracy determined 

is uniform and consistent with respect to values of  . 

When γ is small or comparable to 1, a given data point x has a 

non-zero kernel value relative to any example    in the set of 

support vectors. Therefore the whole set of support vectors 

will affect the value of the discriminant function at x, 

resulting in a smooth decision boundary. As γ increases, as 

described in the above paragraph, the locality of the support 

vector expansion decreases, leading to greater curvature of the 

decision boundary. As a result, the hyper plane can be bumpy 

and over fitting can occur. 

The classification results for the C M C data base with 3772 

vectors and 22 attributes are shown in Table 3. 

Table 3: Classification results for the C M C data base 

  value Gaussian 

kernel 

 Laplacian 

kernel 

 Product 

kernel 

0.001 51.1881 57.1881 67.1419 

0.005 54.8540 57.5017 67.6740 

0.01 54.9219 57.4338 67.0120 

0.05 55.3293 57.7733 67.2777 

0.1 55.6008 56.4834 66.5309 

0.5 52.8853 63.4759 66.0557 

1.0 48.5404 66.9382 66.8703 

5.0 43.3809 66.7217 66.6667 

                    

While the Gaussian kernel gives an accuracy of 55.6 for 

     , the Laplacian kernel gives 66.93 for    . The 

product kernel gives an accuracy of 67.67 for smaller values 

of  . Though the accuracy given by the product kernel is the 

maximum among the three, the important information to note 

is that it is achieved for smaller values of  . Since the support 

vector machine gives smoother hyper plane for smaller values 

of  , the result obtained using the product kernel is more 

reliable than that obtained using the Laplacian kernel which 

gives the maximum accuracy only for larger values of  . It is 

likely that over fitting may have arisen. So, it is safer to 

consider the classification result given by the product kernel.  

7. CONCLUSION 
It is shown that the Cauchy-Laplace product kernel brings out 

better classification performance over the Laplacian kernel in 

classifying data using a support vector machine. The 

important information to note is that better classification is 

achieved for smaller values of kernel parameter . Since the 

support vector machine gives smoother hyper plane for 

smaller values of  , the result obtained using the product 

kernel is more reliable than that obtained using the Laplacian 
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kernel which gives the maximum accuracy only for larger 

values of   and it is likely that over fitting may have arisen. 

So, it is safer to consider the classification result given by the 

product kernel.  
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