
International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 17, April 2015

6

Multi-Density based Incremental Clustering

Lanka Pradeep

Department of computer science and systems
engineering,

Andhra university college of Engineering

A.M.Sowjanya, Ph.D
Department of computer science and systems

engineering,
Andhra university college of engineering

ABSTRACT

Clustering is the task of grouping a set of objects in such a

way that objects in the same group are more similar to each

other than to those in other groups . It is a common technique

for statistical data analysis, used in many fields, including

machine learning, pattern recognition, image analysis,

information retrieval, and bioinformatics. A major difficulty

in design of modern clustering algorithms is that, new datasets

are dynamically added to the existing large database and it is

not efficient to perform data clustering on the entire database

every time a new dataset is added to the database. The new

data added dynamically to the existing database is called

incremental data. DBSCAN is widely used density based

clustering algorithm. However it is known that DBSCAN fails

to identify clusters of different densities. This paper presents a

simple and efficient algorithm that identifies clusters of

different densities and arbitrary shapes with automatic Eps

estimation. Eps is estimated by using distance curve and

difference of slopes and DBSCAN is applied on the data for

each estimated Eps, resulting in multi-density clusters. Then

by making use of formed clusters, incrementally updated data

is clustered.

General Terms

Data mining.

Keywords

Data clustering, Incremental clustering, Multi-density

clustering, Data mining.

1. INTRODUCTION
Data mining is the process of extraction of information from

data set and transform it into an understandable structure for

further use. Clustering is one of the models of data mining,

which finds groups that are different from each other, and

whose members are very similar to each other. It is a process

in which a group of unlabeled patterns are partitioned into a

number of sets so that similar patterns are assigned to the

same cluster, and dissimilar patterns are assigned to different

clusters.

The main problem with the conventional clustering algorithms

is that, they mine static databases and generate a set of

patterns in the form of clusters [12]. Numerous applications

maintain their data in large databases or data warehouses and

many real life databases keep growing incrementally. New

data may be added periodically either on a daily or weekly

basis. For such dynamic databases, the patterns extracted from

the original database become obsolete. Conventional

clustering algorithms handle this problem by repeating the

process of clustering on the entire database whenever a

significant set of data items are added. The process of

rerunning the clustering algorithm on entire database is time

consuming and inefficient.

A solution to handle this problem is to integrate a clustering

algorithm that functions incrementally [3].Incremental

clustering algorithms permit a single or a few passes over the

whole dataset to put the updated item into the cluster. With

respect to the size of the set of objects, algorithms and number

of attributes, incremental clustering algorithms are of scalable

nature [4].

This paper presents a simple and efficient clustering algorithm

that is based on the density based DBSCAN [1] clustering

algorithm. The algorithm identifies arbitrary shaped and

multi-density clusters by estimating Eps parameters of

DBSCAN automatically and iterating DBSCAN for each Eps.

Eps is estimated by using distance curve [2] and difference

between slopes of distance curve. Once the initial clusters are

formed incremental data is clustered by making use of formed

initial clusters. For each data point in the incremental data the

distance between the point and core points of initial clusters is

computed. The nearest core point is picked. If the distance

between the incremental point and the core point is less than

the density radius (Eps) of core point then the incremental

point is added to the cluster belonging to core point otherwise

it is considered as noise point.

2. RELATED WORK
Clustering algorithms may be classified into partitioning,

hierarchical, density, model based and grid based methods [8].

Partitioning algorithms are k-means and k-medoid [8][9].

Hierarchical algorithms create a hierarchical decomposition of

a database, e.g. single-link, complete-link, average-link

method, BIRCH and CURE [8], [9]. Model-based clustering

algorithms attempt to optimize the fit between the given data

and some mathematical models, e.g. decision trees and neural

networks. Density-Based Clustering algorithms group objects

according to specific density objective functions, e.g.

DBSCAN [1]. The proposed algorithm is based on the idea of

DBSCAN.

The DBSCAN [1] is a base algorithm of density based

clustering. It requires user to specify two global input

parameters i.e. MinPts and Eps. The density of an object is the

number of objects in its Eps-neighborhood of that object.

DBSCAN does not specify upper limit of a core object. So

due to this, the clusters detected by it, are having wide

variation in local density and forms clusters of any arbitrary

shape. DBSCAN starts with an arbitrary point p and retrieves

all points’ density-reachable points from p wrt. Eps and

MinPts. If p is a core point, this procedure yields a cluster wrt.

Eps and MinPts. If p is a border point, no points are density-

reachable from p and DBSCAN visits the next point of the

database. It takes the set D, Eps, minpts as input and labels

each point with a cluster id or rejects it as a noise [1], [8]. Due

to a single global parameter Eps, it is impossible to detect

some clusters using one global-MinPts and Eps value. It does

not perform well on multi-density data sets.

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 17, April 2015

7

KDDClus [2] algorithm utilizes the KD-tree data structure for

efficient processing in high dimensions. However it is

expensive. It computes the kth nearest neighbor distance for

each point during the distance computation using KD-tree

data structure. The patterns corresponding to noise are

expected to have larger k-distance values. The aim is to

determine the knees for estimating the set of Eps parameters.

This Eps value will be accepted from the user through

interaction. A knee corresponds to a threshold where a sharp

change of gradient occurs along the k-distance curve. This

represents a change in density distribution amongst patterns.

Any value less than this density-threshold Eps estimate can

efficiently cluster patterns whose k-NN distances is lower

than that, implying patterns belonging to a certain density.

Analogously all knees in the graph can collectively estimate a

set of Eps's for identifying all the clusters having different

density distributions.

3. PROPOSED ALGORITHM

3.1 Identifying initial clusters
Initial clusters are identified by using DBSCAN on the

database for each estimated Eps’s.

3.1.1 Estimating range of Eps’s
To determine different range of Eps values automatically and

to identify the number of clusters of different densities, first a

k-dist graph for all the points is drawn, for a given k which

will be entered by the user. Initially the average of the

distances of every point to all k of its nearest neighbors is

computed [2]. These averaged k-distances are plotted in an

ascending order and the knees [2] for estimating the set of Eps

values are determined.

A knee corresponds to a threshold where a sharp change of

gradient occurs along the k-distance curve [2]. This represents

a change in density distribution amongst points. Any value

less than this density threshold Eps estimate can efficiently

cluster patterns whose average k distances is lower than that.

To find all possible Eps values, slopes at regular interval are

calculated and then the difference between slopes values at the

same regular interval are found. By setting certain threshold

value different Eps values can be found automatically based

on this threshold value while discarding those with higher

values than threshold.

Fig 1: Sample k-dist plot

Figure 1 shows a sample k-dist plot. Line A shows a sample

k-dist line of a single-density dataset while line B shows a

sample line of a three varied-densities dataset. The shape of

the sorted k-distance plot depends on the distribution of the k-

nearest neighbor distances. The plot will look more “stairs-

like” if the objects are distributed regularly within clusters of

very different densities [2]. For points that are not in a cluster,

such as noise points, the corresponding k-dist line rockets,

connecting two smooth curves which stand for two density

levels. Line b and d in Figure 1 are such lines. Line a, c and e

represent three density regions of the dataset. For different

density regions suitable eps is selected. For example, in

Figure 1, there are three density levels. Line a shows the

densest density level and e shows the sparsest one. Combine

line a and b as a sub-k-dist plot to select Eps1, and then take

line c and d as a sub-k-dist plot for Eps2, e and f for Eps3

finally.

Table 1. Algorithm for estimating Eps’s

 /* d: the sample dataset

 k: number of nearest neighbors to be considered for eps

estimation */

EpsDBSCAN(d, k)

for each point p ∈ d

 Np[]= GetNeighbors (p, k)

 for each point p’ ∈ Np

 Distance=Σ GetDistance(p,p’)

 Dist[]=Distance/k

SortAscending(Dist[])

Plot Dist[] on y axis

for(int i=0;i<d.size();i+=k)

 SlopeValues[]= GetSlope(Dist[i],Dist[i+k])

 DistValueAtSlope[]=Dist[i+k]

for(int i=0;i<SlopeValues.size();i++)

 SlopeDifference=SlopeValues[i]-SlopeValues[i+1]

 If(SlopeDifference > threshold * SlopeValues[i])

 Eps[]=DistValueAtSlope[i]

 return Eps[]

3.1.2 Multi-density clustering
Clusters having different densities or intensity are called multi

density clustering [2]. After determining the number of

different Eps values clusters can be formed starting from the

lowest Eps value in the sorted k-dist graph, by iteratively

executing DBSCAN for each of the Eps estimated considered

in ascending order marking the points in the already detected

clusters as “visited”. The value of minpts is taken equal to the

value of k in k-dist plot which is a user input parameter. In

this manner all clusters are determined in a multi-density

framework, in a decreasing order of density, with noise being

modeled as the sparsest region [2].

Table 2. Algorithm for multi-density based clustering

 /* d: the sample data set.

 Eps’s: the estimated Eps’s in ascending order

 Minpts: the value of Minpts is equal to k in k-dist graph*/

MULTIDBSCAN(d, Eps’s,Minpts)

 for each Eps ∈ Eps’s

 objs =cluster from DBSCAN(d, Eps,Minpts)

 remove objs from d

 mark d as noise objects

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 17, April 2015

8

3.2 Clustering incremental data
Once the initial clusters are identified the incremental data is

clustered based on the initial clusters. A cluster contains at

least one core point [1]. For each unlabeled incremental data

point, find the closest core point. If their distance is less than

the Eps of the core point then the unlabeled instance is

considered to be in the same cluster as the core point.

Otherwise, it is labeled as noise. As density of clusters may

differ in multi-density clustering, core points belonging to

different clusters may have different Eps values and core

points belonging to same cluster have same Eps value.

Fig 2: Assignment of incremental data

For example, in figure 2 point q is considered as noise point

because the distance between q and core point is more than

the Eps of core point. Similarly point p is labeled into same

cluster as core point because the distance between p and core

point is less than Eps of core point.

If the number of noise points are equal to MinPts, then a new

cluster is formed comprising of these noise points. The point

having the least kth nearest neighbor distance among these

noise points is selected as core point of the newly formed

cluster, where k is equal to value of MinPts. The Eps of the

core point is equal to the kth nearest neighbor distance.

For example, in figure 3 Minpts is equal to 7. The point C is

selected as core point of the newly formed cluster because it

has the least kth nearest neighbor distance, in this case k is

7.Value of eps is least kth nearest neighbor distance from

point C, where k is 7 in this case.

Fig 3: Forming new cluster

This process is repeated for every point in the incremental

data.

Table 3. Algorithm to cluster incremental data

/* di: incremental dataset

 C: set of core points

 Eps: set of eps’s

 Minpts: equal to value of k entered by user in previous

steps.

*/

IncrmentalCluster(di, C, Eps, Minpts)

for each point p ∈ di

 find some C[x] such that dist(C[x],p) is minimum

 if(dist(C[x],p) < = Eps[C[x]])

 add p to cluster belonging to C[x]

 else

 add p to Noise

 if(count(Noise)>=minpts)

 K=minpts

 form new cluster M

 C[n+1]=m such that dist(m,mK) is minimum

 Eps[C[n+1]]=dist(m,mK)

 Where m,mK∈ M

4. EXPERIMENTAL RESULTS
Experiments were carried out on Intel core i5 2.40GHz

processor with 4GB RAM, 64 bit windows 8 operating

system. Programs were implemented in C++. Algorithm was

applied on Compound dataset obtain from research

department of The University of EDINBURGH Schools of

informatics specially provided for testing new algorithms. To

convert the static database into dynamic half of the points are

used for initial clustering and the remaining points are

considered as incremental data points.

Fig 4: Dataset used for experiment

Half of the data set is used for initial cluster formation and the

other half is given as input to algorithm as incremental data.

Figure 5 shows initial cluster formation with K=5. Where K is

number of nearest neighbors.

Fig 5: Initial clusters formed with k=5

After the initial clusters are formed, using the initial clusters

incremental data is clustered. The result of incremental

clustering is as shown in figure 6.

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 17, April 2015

9

Fig 6: Incremental data clustering

The green cluster in figure 6 comprises of the incremental

data. Although the algorithm clusters the incremental data

efficiently it fails to distinguish noise present in the

incremental data in some cases.

5. CONCLUSION
This paper presents a simple and efficient algorithm for

clustering incremental data based on density. The proposed

approach has two modules namely, initial clustering and

incremental clustering. First the initial cluster are obtained by

sequentially applying dbscan algorithm with various eps

values estimated and then incremental data is clustered based

on the initial clusters. Algorithm was applied on Compound

dataset obtain from research department of The University of

EDINBURGH Schools of informatics. The experimental

results indicate that the proposed algorithm identifies clusters

efficiently. Future scope will be to find an efficient way to

identify noise in the incremental data, which the algorithm

fails to identify in some cases and to find the value of K

internally thus making the entire process automatic.

6. REFERENCES
[1] M Ester, H-P. Kriegel. J. Sander, and X, Xu. 1996. “A

density-based algorithm for discovering clusters in large

spatial databases”. KDD’96.

[2] Sushmita Mitra, Jay Nandy, KDDClus: A simple method

for multi-density clustering, in: Proc.2011 International

Workshop on Soft Computing Applications and

Knowledge Discovery (SCAKD’2011), Moscow, 2011,

72-76.

[3] Chien-Yu Chen, Shien-Ching Hwang, and Yen-Jen

Oyang,"An Incremental Hierarchical Data Clustering

Algorithm Based on Gravity Theory", Proceedings of the

6th Pacific-Asia Conference on Advances in Knowledge

Discovery and Data Mining, Pages: 237 - 250, 2002.

[4] Dan Simovici, Namita Singla, "Metric Incremental

Clustering of Nominal Data", ICDM, pp: 523-526, 2004.

[5] M. Charikar, C. Chekur, T. Feder, and R. Motwani,

Incremental clustering and dynamic information

retrieval,in Proc. of the 29th Annual ACM Symposium

on Theory of Computing, 1997, pp. 626–635..

[6] Jiawei Han, Micheline Kamber, “Data Mining Concepts

and Techniques”, Harcourt India Private Limited, 2001.

[7] Seokkyung Chung and Dennis McLeod, "Dynamic

Pattern Mining: An Incremental Data Clustering

Approach",Journal on Data Semantics, Vol. 2, pp. 85-

112, 2005.

[8] Pang-Ning Tan, Michael Steinbach, Vipin Kumar,

“Introducing to Data Mining”, Pearson Education Asia

LTD, 2006.

[9] Jason D. Peterson, “Clustering overview”,

http://www.cs.ndsu.nodak.edu/~jasonpet/CSCI779/Clust

ering.pdf.

[10] Wikipedia “cluster analysis”,

http://en.wikipedia.org/wiki/Cluster_analysis.

[11] M. H. Marghny, Rasha M. Abd El-Aziz and Ahmed I.

Taloba, “An Effective Evolutionary Clustering

Algorithm: Hepatitis C Case Study”, Computer Science

Department, Egypt, International Journal of Computer

Applications, vol. 34, No.6, pp. 0975-8887, 2011.

[12] Sowjanya, A.M. and M. Shashi, 2010. Cluster

featurebased incremental clustering approach (CFICA)

for numerical data. IJCSNS Int. J. Comp. Sci.

NetworkSecurity, 10.

[13] R. Ding, Q. Wang, Y. Dang, Q. Fu, H. Zhang, and D.

Zhang. Yading: Fast clustering of large-scale time series

data. In VLDB, 2015.

IJCATM : www.ijcaonline.org

