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ABSTRACT 

Clustering is the task of grouping a set of objects in such a 

way that objects in the same group are more similar to each 

other than to those in other groups . It is a common technique 

for statistical data analysis, used in many fields, including 

machine learning, pattern recognition, image analysis, 

information retrieval, and bioinformatics. A major difficulty 

in design of modern clustering algorithms is that, new datasets 

are dynamically added to the existing large database and it is 

not efficient to perform data clustering on the entire database 

every time a new dataset is added to the database. The new 

data added dynamically to the existing database is called 

incremental data. DBSCAN is widely used density based 

clustering algorithm. However it is known that DBSCAN fails 

to identify clusters of different densities. This paper presents a 

simple and efficient algorithm that identifies clusters of 

different densities and arbitrary shapes with automatic Eps 

estimation. Eps is estimated by using distance curve and 

difference of slopes and DBSCAN is applied on the data for 

each estimated Eps, resulting in multi-density clusters. Then 

by making use of formed clusters, incrementally updated data 

is clustered. 

General Terms 

Data mining.  

Keywords 

Data clustering, Incremental clustering, Multi-density 

clustering, Data mining.  

1. INTRODUCTION 
Data mining is the process of extraction of information from 

data set and transform it into an understandable structure for 

further use. Clustering is one of the models of data mining, 

which finds groups that are different from each other, and 

whose members are very similar to each other. It is a process 

in which a group of unlabeled patterns are partitioned into a 

number of sets so that similar patterns are assigned to the 

same cluster, and dissimilar patterns are assigned to different 

clusters. 

The main problem with the conventional clustering algorithms 

is that, they mine static databases and generate a set of 

patterns in the form of clusters [12]. Numerous applications 

maintain their data in large databases or data warehouses and 

many real life databases keep growing incrementally. New 

data may be added periodically either on a daily or weekly 

basis. For such dynamic databases, the patterns extracted from 

the original database become obsolete. Conventional 

clustering algorithms handle this problem by repeating the 

process of clustering on the entire database whenever a 

significant set of data items are added. The process of 

rerunning the clustering algorithm on entire database is time 

consuming and inefficient. 

A solution to handle this problem is to integrate a clustering 

algorithm that functions incrementally [3].Incremental 

clustering algorithms permit a single or a few passes over the 

whole dataset to put the updated item into the cluster. With 

respect to the size of the set of objects, algorithms and number 

of attributes, incremental clustering algorithms are of scalable 

nature [4]. 

This paper presents a simple and efficient clustering algorithm 

that is based on the density based DBSCAN [1] clustering 

algorithm. The algorithm identifies arbitrary shaped and 

multi-density clusters by estimating Eps parameters of 

DBSCAN automatically and iterating DBSCAN for each Eps. 

Eps is estimated by using distance curve [2] and difference                         

between slopes of distance curve. Once the initial clusters are 

formed incremental data is clustered by making use of formed 

initial clusters. For each data point in the incremental data the 

distance between the point and core points of initial clusters is 

computed. The nearest core point is picked. If the distance 

between the incremental point and the core point is less than 

the density radius (Eps) of core point then the incremental 

point is added to the cluster belonging to core point otherwise 

it is considered as noise point. 

2. RELATED WORK 
Clustering algorithms may be classified into partitioning, 

hierarchical, density, model based and grid based methods [8]. 

Partitioning algorithms are k-means and k-medoid [8][9]. 

Hierarchical algorithms create a hierarchical decomposition of 

a database, e.g. single-link, complete-link, average-link 

method, BIRCH and CURE [8], [9]. Model-based clustering 

algorithms attempt to optimize the fit between the given data 

and some mathematical models, e.g. decision trees and neural 

networks. Density-Based Clustering algorithms group objects 

according to specific density objective functions, e.g. 

DBSCAN [1]. The proposed algorithm is based on the idea of 

DBSCAN. 

The DBSCAN [1] is a base algorithm of density based 

clustering. It requires user to specify two global input 

parameters i.e. MinPts and Eps. The density of an object is the 

number of objects in its Eps-neighborhood of that object. 

DBSCAN does not specify upper limit of a core object. So 

due to this, the clusters detected by it, are having wide 

variation in local density and forms clusters of any arbitrary 

shape. DBSCAN starts with an arbitrary point p and retrieves 

all points’ density-reachable points from p wrt. Eps and 

MinPts. If p is a core point, this procedure yields a cluster wrt. 

Eps and MinPts. If p is a border point, no points are density-

reachable from p and DBSCAN visits the next point of the 

database. It takes the set D, Eps, minpts as input and labels 

each point with a cluster id or rejects it as a noise [1], [8]. Due 

to a single global parameter Eps, it is impossible to detect 

some clusters using one global-MinPts and Eps value. It does 

not perform well on multi-density data sets. 
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KDDClus [2] algorithm utilizes the KD-tree data structure for 

efficient processing in high dimensions. However it is 

expensive. It computes the kth nearest neighbor distance for 

each point during the distance computation using KD-tree 

data structure. The patterns corresponding to noise are 

expected to have larger k-distance values. The aim is to 

determine the knees for estimating the set of Eps parameters. 

This Eps value will be accepted from the user through 

interaction. A knee corresponds to a threshold where a sharp 

change of gradient occurs along the k-distance curve. This 

represents a change in density distribution amongst patterns. 

Any value less than this density-threshold Eps estimate can 

efficiently cluster patterns whose k-NN distances is lower 

than that, implying patterns belonging to a certain density. 

Analogously all knees in the graph can collectively estimate a 

set of Eps's for identifying all the clusters having different 

density distributions. 

3. PROPOSED ALGORITHM 

3.1 Identifying initial clusters 
Initial clusters are identified by using DBSCAN on the 

database for each estimated Eps’s. 

3.1.1 Estimating range of Eps’s 
To determine different range of Eps values automatically and 

to identify the number of clusters of different densities, first a 

k-dist graph for all the points is drawn, for a given k which 

will be entered by the user. Initially the average of the 

distances of every point to all k of its nearest neighbors is 

computed [2]. These averaged k-distances are plotted in an 

ascending order and the knees [2] for estimating the set of Eps 

values are determined. 

A knee corresponds to a threshold where a sharp change of 

gradient occurs along the k-distance curve [2]. This represents 

a change in density distribution amongst points. Any value 

less than this density threshold Eps estimate can efficiently 

cluster patterns whose average k distances is lower than that. 

To find all possible Eps values, slopes at regular interval are 

calculated and then the difference between slopes values at the 

same regular interval are found. By setting certain threshold 

value different Eps values can be found automatically based 

on this threshold value while discarding those with higher 

values than threshold. 

 

Fig 1: Sample k-dist plot 

Figure 1 shows a sample k-dist plot. Line A shows a sample 

k-dist line of a single-density dataset while line B shows a 

sample line of a three varied-densities dataset. The shape of 

the sorted k-distance plot depends on the distribution of the k-

nearest neighbor distances. The plot will look more “stairs-

like” if the objects are distributed regularly within clusters of 

very different densities [2]. For points that are not in a cluster, 

such as noise points, the corresponding k-dist line rockets, 

connecting two smooth curves which stand for two density 

levels. Line b and d in Figure 1 are such lines. Line a, c and e 

represent three density regions of the dataset. For different 

density regions suitable eps is selected. For example, in 

Figure 1, there are three density levels. Line a shows the 

densest density level and e shows the sparsest one. Combine 

line a and b as a sub-k-dist plot to select Eps1, and then take 

line c and d as a sub-k-dist plot for Eps2, e and f for Eps3 

finally.   

Table 1. Algorithm for estimating Eps’s 

     /* d: the sample dataset 

         k: number of nearest neighbors to be considered for eps                     

estimation */ 

EpsDBSCAN(d, k) 

for each point p ∈ d 

      Np[ ]= GetNeighbors (p, k) 

      for each point p’ ∈  Np 

             Distance=Σ GetDistance(p,p’) 

      Dist[]=Distance/k 

 

SortAscending(Dist[]) 

Plot Dist[] on y axis  

 

for(int i=0;i<d.size();i+=k) 

       SlopeValues[]= GetSlope(Dist[i],Dist[i+k]) 

       DistValueAtSlope[]=Dist[i+k] 

 

for(int i=0;i<SlopeValues.size();i++) 

        SlopeDifference=SlopeValues[i]-SlopeValues[i+1] 

        If(SlopeDifference > threshold * SlopeValues[i]) 

                 Eps[ ]=DistValueAtSlope[i]  

 

 return Eps[ ] 

3.1.2 Multi-density clustering 
Clusters having different densities or intensity are called multi 

density clustering [2]. After determining the number of 

different Eps values clusters can be formed starting from the 

lowest Eps value in the sorted k-dist graph, by iteratively 

executing DBSCAN for each of the Eps estimated considered 

in ascending order marking the points in the already detected 

clusters as “visited”. The value of minpts is taken equal to the 

value of k in k-dist plot which is a user input parameter. In 

this manner all clusters are determined in a multi-density 

framework, in a decreasing order of density, with noise being 

modeled as the sparsest region [2]. 

Table 2. Algorithm for multi-density based clustering 

       /* d: the sample data set.  

       Eps’s: the estimated Eps’s in ascending order  

       Minpts: the value of Minpts is equal to k in k-dist graph*/ 

MULTIDBSCAN(d, Eps’s,Minpts) 

     for each Eps ∈ Eps’s 

               objs =cluster from DBSCAN(d, Eps,Minpts) 

               remove objs from d 

     mark d as noise objects 
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3.2 Clustering incremental data 
Once the initial clusters are identified the incremental data is 

clustered based on the initial clusters. A cluster contains at 

least one core point [1]. For each unlabeled incremental data 

point, find the closest core point. If their distance is less than 

the Eps of the core point then the unlabeled instance is 

considered to be in the same cluster as the core point. 

Otherwise, it is labeled as noise. As density of clusters may 

differ in multi-density clustering, core points belonging to 

different clusters may have different Eps values and core 

points belonging to same cluster have same Eps value. 

 

Fig 2: Assignment of incremental data 

For example, in figure 2 point q is considered as noise point 

because the distance between q and core point is more than 

the Eps of core point. Similarly point p is labeled into same 

cluster as core point because the distance between p and core 

point is less than Eps of core point.  

If the number of noise points are equal to MinPts, then a new 

cluster is formed comprising of these noise points.  The point 

having the least kth nearest neighbor distance among these 

noise points is selected as core point of the newly formed 

cluster, where k is equal to value of MinPts. The Eps of the 

core point is equal to the kth nearest neighbor distance. 

For example, in figure 3 Minpts is equal to 7. The point C is 

selected as core point of the newly formed cluster because it 

has the least kth nearest neighbor distance, in this case k is 

7.Value of eps is least kth nearest neighbor distance from 

point C, where k is 7 in this case. 

 

Fig 3: Forming new cluster 

This process is repeated for every point in the incremental 

data. 

Table 3. Algorithm to cluster incremental data 

/* di: incremental dataset 

    C: set of core points 

    Eps: set of eps’s 

    Minpts: equal to value of k entered by user in previous       

steps. 

*/ 

IncrmentalCluster(di, C, Eps, Minpts) 

for each point p ∈ di 

      find some C[x] such that dist(C[x],p) is minimum 

      if(dist(C[x],p) < = Eps[C[x]]) 

           add p to cluster belonging to C[x] 

      else 

           add p to Noise 

      if(count(Noise)>=minpts) 

            K=minpts 

            form new cluster M 

            C[n+1]=m such that dist(m,mK) is minimum 

            Eps[C[n+1]]=dist(m,mK) 

            Where m,mK∈ M 

              

 

4. EXPERIMENTAL RESULTS 
Experiments were carried out on Intel core i5 2.40GHz 

processor with 4GB RAM, 64 bit windows 8 operating 

system. Programs were implemented in C++. Algorithm was 

applied on Compound dataset obtain from research 

department of The University of EDINBURGH Schools of 

informatics specially provided for testing new algorithms. To 

convert the static database into dynamic half of the points are 

used for initial clustering and the remaining points are 

considered as incremental data points. 

 

Fig 4: Dataset used for experiment 

Half of the data set is used for initial cluster formation and the 

other half is given as input to algorithm as incremental data. 

Figure 5 shows initial cluster formation with K=5. Where K is 

number of nearest neighbors. 

 

Fig 5: Initial clusters formed with k=5 

After the initial clusters are formed, using the initial clusters 

incremental data is clustered. The result of incremental 

clustering is as shown in figure 6. 
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Fig 6: Incremental data clustering 

The green cluster in figure 6 comprises of the incremental 

data. Although the algorithm clusters the incremental data 

efficiently it fails to distinguish noise present in the 

incremental data in some cases. 

5. CONCLUSION 
This paper presents a simple and efficient algorithm for 

clustering incremental data based on density. The proposed 

approach has two modules namely, initial clustering and 

incremental clustering. First the initial cluster are obtained by 

sequentially applying dbscan algorithm with various eps 

values estimated and then incremental data is clustered based 

on the initial clusters. Algorithm was applied on Compound 

dataset obtain from research department of The University of 

EDINBURGH Schools of informatics. The experimental 

results indicate that the proposed algorithm identifies clusters 

efficiently. Future scope will be to find an efficient way to 

identify noise in the incremental data, which the algorithm 

fails to identify in some cases and to find the value of K 

internally thus making the entire process automatic. 

6. REFERENCES 
[1] M Ester, H-P. Kriegel. J. Sander, and X, Xu. 1996. “A 

density-based algorithm for discovering clusters in large 

spatial databases”. KDD’96.  

[2] Sushmita Mitra, Jay Nandy, KDDClus: A simple method 

for multi-density clustering, in: Proc.2011 International 

Workshop on Soft Computing Applications and 

Knowledge Discovery (SCAKD’2011), Moscow, 2011, 

72-76. 

[3] Chien-Yu Chen, Shien-Ching Hwang, and Yen-Jen 

Oyang,"An Incremental Hierarchical Data Clustering 

Algorithm Based on Gravity Theory", Proceedings of the 

6th Pacific-Asia Conference on Advances in Knowledge 

Discovery and Data Mining, Pages: 237 - 250, 2002. 

[4] Dan Simovici, Namita Singla, "Metric Incremental 

Clustering of Nominal Data", ICDM, pp: 523-526, 2004. 

[5] M. Charikar, C. Chekur, T. Feder, and R. Motwani, 

Incremental clustering and dynamic information 

retrieval,in Proc. of the 29th Annual ACM Symposium 

on Theory of Computing, 1997, pp. 626–635..  

[6] Jiawei Han, Micheline Kamber, “Data Mining Concepts 

and Techniques”, Harcourt India Private Limited, 2001. 

[7] Seokkyung Chung and Dennis McLeod, "Dynamic 

Pattern Mining: An Incremental Data Clustering 

Approach",Journal on Data Semantics, Vol. 2, pp. 85-

112, 2005. 

[8] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, 

“Introducing to Data Mining”, Pearson Education Asia 

LTD, 2006. 

[9] Jason D. Peterson, “Clustering overview”, 

http://www.cs.ndsu.nodak.edu/~jasonpet/CSCI779/Clust

ering.pdf. 

[10] Wikipedia “cluster analysis”, 

http://en.wikipedia.org/wiki/Cluster_analysis. 

[11] M. H. Marghny, Rasha M. Abd El-Aziz and Ahmed I. 

Taloba, “An Effective Evolutionary Clustering 

Algorithm: Hepatitis C Case Study”, Computer Science 

Department, Egypt, International Journal of Computer 

Applications, vol. 34, No.6, pp. 0975-8887, 2011. 

[12] Sowjanya, A.M. and M. Shashi, 2010. Cluster 

featurebased incremental clustering approach (CFICA) 

for numerical data. IJCSNS Int. J. Comp. Sci. 

NetworkSecurity, 10. 

[13] R. Ding, Q. Wang, Y. Dang, Q. Fu, H. Zhang, and D. 

Zhang. Yading: Fast clustering of large-scale time series 

data. In VLDB, 2015. 

 

 

 

 

IJCATM : www.ijcaonline.org 


