
International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 16, April 2015

19

A Dictionary based Efficient Text Compression

Technique using Replacement Strategy

Debashis Chakraborty

Assistant Professor,
Department of CSE, St.

Thomas’ College of
Engineering and Technology,

Kolkata, 700023, India

Debajyoti Ghosh
Department of CSE, UG

Student,St. Thomas’ College of
Engineering and

Technology, Kolkata, 700023,
India

Piyali Ganguly
Department of CSE,UG

Student,St. Thomas’ College of
Engineering and Technology,

Kolkata, 700023, India

ABSTRACT
The concept of compression comes from the need to store data

using as less space as possible and to ease transfer of data

through a channel. The proposed algorithm deals with

compression of text files using character replacement

technique. For every string of length six, it is compressed by

assigning a single character to it, maintaining a dictionary.

The dictionary is used to decompress the encoded file. This

gives a good compression ratio irrespective of the content of

the text file.

Keywords
Lossless Compression, Character Replacement, Compression

Ratio, Dictionary

1. INTRODUCTION
Data compression is a technique by which the same amount of

data is transmitted by using a smaller number of bits[1,2,3,

4,6]. Data compression offers an attractive approach to

reducing communication costs by using available bandwidth

effectively.Data compression techniques can be divided into

two major classes lossy and lossless. In Lossless data

compression technique bits are reduced by identifying and

eliminating statistical redundancy. The main feature of

lossless data compression technique is, it consists of those

techniques which are able to generate an exact duplicate of the

input data stream after a compress or expand cycle. Lossless

compression is possible because most real world data has

statistical redundancy. Lossy data compression concedes a

certain loss of accuracy in exchange for greatly increased

compression. Lossy compression proves effective when

applied to graphics image and digitized voice. In general, data

compression consists of taking a stream of symbols and

transforming them into codes. If the compression is effective

the resulting stream of codes will be smaller than the original

symbols. The decision to output a certain code for a certain

symbol or set of symbols based on a model. The model is

simply a collection of data and rules used to process input

symbols and determine which code to output. This is a new

data compression algorithm, based on dictionary based text

compression technique. The efficiency of that dictionary

based text compression is, it provides good compression ratio

as well as fast decompression mechanism.

In this paper the main focus is on compression of Text data by

lossless compression technique. The development of a new

algorithm to compress to compress and decompress text data

having a high compression ratio.[3] is what this paper

primarily deals with the proposed algorithm aims at producing

a minimum of 70 % compression irrespective of the content

and the size of the text data.

2. ILLUSTRATIONS

2.1 Algorithm Strategy
The proposed algorithm deals with the replacement of string

of characters [4] by a single character, thus reducing the

effective length of the string. This is done by using printable

and non-printable ASCII characters. As per ASCII standard,

the first 256 ASCII characters are given 1 byte of memory

space. The next group of ASCII characters, ranging from 256

to 4095, is each given 2 bytes of memory space. The next

group of ASCII characters, ranging from 4096 to 65535, is

each given 2 bytes of memory space. The algorithm is aided

by the use of a dynamic dictionary [5] which the algorithm

creates. Taking a string of length six from the input file, we

divide it into two parts, each of length three, and put the first

part in the row and the second part in the column of the

dictionary respectively. At their intersection, we place one of

those printable or non-printable ASCII characters. For the

next set of string of length six from the input file, we divide it

into two parts again and check the existence of the substrings

of length three in the row and column of the dictionary to find

a match [4].If both the row and column entry doesn’t match,

we insert them in the dictionary and add a new symbol. If only

the first substring is matched with a row entry, we insert the

second substring as a column entry and add a new symbol. If

the first substring doesn’t match any row entry but the second

substring matches an entry of the column then the first

substring is entered in the row and a symbol is assigned at

their intersection. If both the substrings matches a row entry

and a column entry respectively then no symbol is inserted,

the next set of string of length six is taken from the input file.

The process continues until the end of file is reached. Now,

since the character replacement is done in a fashion that it is

one character against six, and instead of 6 bytes it is now

either 1 or 2 bytes, on an average a minimum of 65%

compression is achieved. Since it is more unlikely that the

frequency of occurrence of similar 6 consecutive letters will

be high, it is broken into two halves, each of length three and

matching is done for better results. Also the size of the

dictionary remains manageable.

For example, let us consider a string:

“Thisisa$Compression$Algorithm$1234”

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 16, April 2015

20

For our convenience, we assume that space is denoted by $.

We take the input string, read the first 6 characters “This$i”

and break it into two substrings of length three each as: “Thi”

and “s$i”. We then form the dictionary as per the algorithm

and assign a unique character at their intersection.

Table 1: Dictionary Formation (1st step)

Dictionary s$i

Thi Ф

Proceeding in this manner we form the dictionary until
end of string is reached.

Table 2: Dictionary Formation (2nd step)

Dictionary $Co

s$a Ξ

Table 3: Dictionary Formation (3rd step)

Dictionary Ess

Mpr ©

Table 4: Dictionary Formation (4th step)

Dictionary $Al

Ion

Table 5: Dictionary Formation (5th step)

Dictionary Ith

Gor

Table 6: Dictionary Formation (6th step)

Dictionary 234

m$1

After forming the dictionary, the file is compressed by

character replacement technique with the help of the

dictionary. After compression the compressed file will be:

Фξ©

Using the dictionary we can again generate the original file

without any loss of information. Thus the algorithm proposed

is lossless.

2.2 Algorithm
A text file is taken as input and the following compression

algorithm is used on it to compress the original file.

Steps for Compression:

1. Open the text file.

2. Read the first six characters of the file.

3. Generate a dictionary with two fields, row and

column and a third field, symbol, at their

intersection.

4. Divide the string into two parts and place them in

row and column respectively.

5. Allocate a symbol/character value to the field

‘symbol’.

6. Read the next sequence of six characters from the

file.

7. Divide the string into two parts and put the parts in

two separate string variables, first part and second

part respectively.

8. Compare first part with row and second part with

column in the dictionary.

9. If an entry is found in the dictionary,

9.1. If only row value match, make a new column

entry for the dictionary and put the string in it.

Assign a character to the intersection of the

existing row value and new column value.

9.2. If only column value match, make a new row

entry for the dictionary and put the string in it.

Assign a character to the intersection of the

new row value and existing column value.

10. Repeat steps 6 to 9 until end of file is reached.

11. Store the dictionary in the compressed file.

12. Rewind to the start of the source file.

13. Read six characters from the file and place the

characters in two string files first part and second

part sequentially 3 characters each.

14. Compare first part with row and second part with

column in the dictionary.

15. When a match is found, place symbol value in

compressed file.

16. Repeat steps 13 to 15 till end of file is reached.

After the compression of the original file is done, the

compressed file is decompressed using the decompression

algorithm. The technique is lossless because after

decompression the decompressed file will be identical to that

of the original file.

Steps for Decompression:

1. Open the compressed file.

2. Reconstruct the dictionary from the stored values in

the compressed file.

3. Read one character at a time from the compressed file.

4. Search the symbol contents of the dictionary for a

match.

5. Once a match is obtained,

5.1 Read the row and column value at the

intersection where a symbol match has been

obtained.

5.2 Place the row and the column strings respectively

in the decompressed file.

5.3 Repeat steps 3 to 5 till end of file is reached.

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 16, April 2015

21

2.3 Measuring Compression Performances
Performance measure [1, 4,9] determines whether a

compression technique is efficient or not depending upon

certain criteria. Depending on the nature of application there

are various criteria to measure the performance of

compression algorithms. The two most important factors are

time complexity and space complexity. There is always a

trade-off between the two. The compression behavior depends

on the category of compression algorithm: lossy or lossless.

Following are some measurements to calculate the

performances of lossless algorithms.

Compression Ratio: The ratio between size of compressed

file and the size of source file.

Compression Factor: The inverse of Compression Ratio is

the Compression factor. It is the ratio between the size of

source file and the size of compressed file.

Saving Percentage: It calculates the shrinkage of the

source file as a percentage.

Based on the above three metrics we calculate the

compression performance and efficiency. The smaller the

compression ratio the better would be the performance of the

compression algorithm. Again for better compression

algorithms, the compression factor must be high. The saving

percentage [3, 5, 7, 8] gives the idea about the percentage of

compression actually done. Using these parameters we

measure the performance and efficiency of our proposed

algorithm and compare it with other standard algorithms. We

can show that for the proposed algorithm in case of worst case

analysis also we get a minimum compression with saving

percentage 70%. For other cases, the saving percentage may

reach as high as 80% as well. That is where the proposed

algorithm scores more even though there is a trade-off with

the space complexity that the algorithm faces.

2.4 Calculation
For the proposed algorithms, the performance of the same for

the worst case compression is analyzed here. We take the

worst case analysis where no matching is found and every

time a new entry is inserted in the dictionary. The analysis

done is independent of the content of the file.

1stpart: For first 256 symbols

Size taken up by 1st 256 bytes in the compressed file:

256*1=256 bytes

Original size of the file for those 256 symbols

representation:

256 * 6=1536 bytes.

Hence, Compression ratio:

256/1536 = 0.167

Saving Percentage:

 (1536-256)/1536 = 83.33%.

2
nd

part:For next 3840 symbols

Size taken up by symbols from256 to 4095 in the

compressed file:

3840*1=3840 bytes.

Size of the symbols from256 to 4095 in the original file:

3840 *6=23040 bytes.

Thus, Compression ratio:

3840/23040 = 0.167

Saving Percentage:

 (23040-3840)/23040 = 83.33%

3
rd

part:For next 61440 symbols

Size taken up by symbols from4096 to 65535 in the

compressed file: 61440*2=122880 bytes.

Size of the symbols from 4096 to 65535 in the original

file: 61440 *6=368640 bytes.

Thus, Compression ratio:

122880/368640 = 0.333

Saving Percentage:

(368640-122880)/368640 = 66.67%

For calculating the worst case scenario, we have to consider

that all the entries of the dictionary have been filled, i.e. the

dictionary contains all possible entries and every string

combination is present in the file once. In doing so we

consider the total size of the compressed file with respect to

that of the original file. In such situation, the compression

measure will be as follows:

 Original file size:

(256*6) + (3840*6) + (61440*6) =393216 bytes.

Compressed file size:

(256*1) + (3840*1) + (61440*2) =126976 bytes.

Final Compression ratio:

126976/393216 = 0.323

Saving Percentage:

(393216-126976)/393216 = 67.7%

Thus, in the worst case analysis we can say that approximately

the compression will be more than that of 65% irrespective

of the content of the file. The storage of the dictionary in the

compressed file will increase the size of the compressed file

affecting the compression ratio for smaller files. However, in

larger files, the dictionary size should become relatively

insignificant.

2.5 Experimental Results
The proposed algorithm when implemented on any arbitrary

file size shows compression ratio and saving factors matching

the one shown in calculation theoretically. The algorithm

works on different file sizes irrespective of the content of the

file and yields the same results. Since the decompressed files

are rebuild using the dictionary so there is no loss of

information and hence the algorithm proves itself to be

lossless. The figure below shows the compression ratio

graphically where the plotting is done as original file size vs.

the compressed file size. The ratio between the compressed

file size and the original file size gives the compression ratio

which can be easily depicted from the chart. The experimental

Compression Factor = (2) size before compression
size after compression

Compression Ratio = (1) size after compression
size before compression

Saving Percentage = % (3)

(size before compression–
size after compression)

size before compression

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 16, April 2015

22

result shows the saving percentage to be above 70% always.

The chart given below displays the stability of the

compression ratio [3, 5] achieved irrespective of the file size.

We observe that as the file size increases the saving

percentage decreases. But theoretically it is shown that it is

always above 70% even if worst case compression is done,

which is better than or comparable with existing standard

algorithms. The comparison with two of the existing standard

algorithm for text compression is also done in order to

compare the compression ratio and saving percentage.

 Fig.1. Graph of Original File Size vs.

Compressed File Size

A brief analysis of the result of proposed algorithm shows that

a stable compression ratio is achieved irrespective of the file

size and the content of the file. Table 7 shows the original size

and size after compression of the text files taken under

consideration. It also shows a comparative study of the

compression ratio of the existing standard algorithms and the

proposed algorithm. The algorithms taken under consideration

are Huffman Encoding and LZW encoding algorithms. [11,

12, 13, 14]

Table 7: Comparative study of algorithms

File

Name

Origi-nal

File

Size

(in KB)

Compr-essed

File Size for

Proposed

Algo-rithm

(in KB)

Compr-

essed

 File Size

for Winrar

Compressi

on

(in KB)

Compr-

essed File

Size for

Arithmetic

Compressi

on

(in KB)

sample1.ja

va
828 132 223 315

sample2.ja

va
1019 163 265 387

sample4.do

c
978 156 264 371

sample5.do

c
867 139 234 321

sample6.do

c
714 116 179 264

sample8.ht

m
578 93 156 219

sample9.ht
m

922 147 224 350

Table 8: Comparisons of Compression Performance

File Name

Saving

Percentage

of Proposed

Algorithm

(%)

Saving

Percentage of

Winrar

Compression

(%)

Saving

Percentage of

Arithmetic

Compression

(%)

sample1.txt 84.05 73.06 61.95

sample2.txt 84.00 73.99 62.02

sample4.doc 84.04 73.00 62.06

sample5.doc 83.96 73.01 62.97

sample6.doc 83.75 74.93 63.02

sample8.htm 83.91 73.01 62.11

sample9.htm 84.05 75.70 62.03

The Compression performance is shown in Table 8 with the

help of saving percentage and compression ratio. The

comparative study shows that for the input text files, the

saving factor for the proposed algorithm is in the range of

84% approximately which is higher than that of two existing

standard

algorithms: Huffman encoding and LZW encoding. The

compression ratios can also be clearly depicted from the table

above. This algorithm gives better result than winrar and

arithmetic compression also. The stable compression ratio is

the area where the proposed algorithm scores over the existing

standard algorithms in comparison.

3. CONCLUSION
A new algorithm for text compression has been recommended

in this paper, where the key element is the usage of printable

and non-printable ASCII characters to replace strings of

characters. Character Replacement is the main feature that is

highlighted. The creation of a dynamic dictionary which

comes in handy while decompressing, is another striking

feature which in turns makes the algorithm a lossless one. The

stable compression ratio and saving factor being more than

70% even in the worst case analysis makes this algorithm

efficient than most of the existing standard algorithms. The

comparative study in tabular form supports the argument. The

high saving factor achieved regardless of the file size and the

content of the file makes this algorithm useful. The basic

purposes of data compression are to reduce the file size for

storage and for transmission of the same over a channel. With

the compression ratio achieved using the proposed algorithm,

both the purposes can be served. With proper implementation

the space-time tradeoff can also be handled effectively. The

proposed algorithm has an overhead, the dictionary, but in

case of lager files the overhead becomes negligible. The space

complexity may be reduced by selection of proper data

structure. With better implementation techniques these issues

can be handled easily. However, the algorithm is

recommended for text compression because of its high saving

percentage, stable compression ratio and lossless nature.

4. ACKNOWLEDGEMENT
First, we would like to thank Professor Subarna

Bhattacharjee, [15] for her valuable advice, provision and

constant encouragement. Her constant assessments and

0
20
40
60
80

100
120
140
160
180

828 1019 978 867 714 578 922

C
o

m
p

re
ss

ed
 F

ile
 s

iz
e

Original File size

Plot: Original File size vs. Compressed
File Size

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 16, April 2015

23

reviews gave us the much needed theoretical clarity. We owe

a substantial lot to all the faculty members of the Department

of Computer Science and Engineering and the Department of

Information Technology.

We would also like to thank our friends for tolerantly listening

to our explanations. Their reviews and comments were

exceptionally helpful. And of course, we owe our capability to

complete this project to our families whose love and

encouragement consumes remained our cornerstone.

5. REFERENCES
[1] Debra A. Lelewer and Daniel S. Hirschberg, “Data

Compression”, Journal ACM Computing Surveys

(CSUR), Vol. 19 Issue 3, Sept. 1987, pp. 261-296

[2] Khalid Sayood, “An Introduction to Data Compression”,

Academic Press, 1996.

[3] David Solomon, “Data Compression: The Complete

Reference”, Springer Publication, 2000.

[4] Mark Nelson,”The Data Compression Book”.

[5] Debashis Chakraborty, Sandipan Bera, Anil Kumar

Gupta and Soujit Mondal,, “Efficient Data Compression

using Character Replacement through Generated Code”,

IEEE NCETACS 2011, Shillong, India, March 4-

5,2011,pp 334.

[6] Mark Nelson and Jean-Loup Gaily, “The Data

Compression Book”, Second Edition, M&T Books.

[7] Gonzalo Navarro and Mathieu A Raffinot, “General

Practical Approach to Pattern Matching over Ziv-Lempel

Compressed Text”, Proc. CPM’99, LNCS 1645,

Pages14-36.

[8] M. Atallah and Y. Genin, “Pattern matching text

compression: Algorithmic and empirical results”,

International Conference on Data Compression, vol II:

pp. 349-352, Lausanne, 1996.

[9] Shrusti Porwal, Yashi Chaudhary, Jitendrajoshi, Manish

Jain, “Data Compression Methodologies for Lossless

Data and Comparision between Algorithms”,

International Journal of Engineering Science and

Innovative Technology (IJESIT), Vol. 2 Issue 2, March

2013.

[10] Timothy C. Bell, “Text Compression”, Prentice Hall

Publishers, 1990.

[11] J.G. Cleary and I.H.Witten, “Data Compression using

adaptive coding and partial string matching”, IEEE

Trans. Commun., Vol. COM-32, no. 4, pp. 396-402,

Apr.1984.

[12] Pankaj Kumar Ankur Kumar Varshney, “Double

Huffman Coding”,International Journal

[13] of Advanced Research in Computer Science and

Software Engineering, Volume 2, Issue 8, August 2012.

[14] Nishad PM, R.ManickaChezian, “Enhanced LZW

(Lempel-Ziv-Welch) Algorithm by Binary Search with

Multiple Dictionary to Reduce Time Complexity for

Dictionary Creation in Encoding and Decoding”,

International Journal of Advanced Research in Computer

Science and Engineeering.

[15] Dheemanth H N, “LZW Data Compression”, American

Journal of Engineering Research (AJER), Volume-03,

Issue-02, pp-22-26.

[16] S. Bhattacharjee, J. Bhattacharya, U. Raghavendra,

D.Saha, P. Pal Chaudhuri, “A VLSI architecture for

cellular automata based parallel data compression”,

IEEE-2006,Bangalore, India, Jan 03-06.

IJCATM : www.ijcaonline.org

