
International Journal of Computer Applications (0975 – 8887)  

Volume 116 – No. 15, April 2015 

38 

Improving Current Hadoop MapReduce Workflow and 

Performance 

Hamoud Alshammari 
Department of Computer Science 
221 University Ave, University of 

Bridgeport 
Bridgeport, CT, USA 

 
 

Jeongkyu Lee 
Department of Computer Science 
221 University Ave, University of 

Bridgeport 
Bridgeport, CT, USA 

 
 

Hassan Bajwa 
Department of Electrical Engineering 

221 University Ave, University of 
Bridgeport 

Bridgeport, CT, USA 
 

ABSTRACT 
This study proposes an improvement andimplementation of enhanced 

Hadoop MapReduce workflow that develop the performance of the 

current Hadoop MapReduce.  This architecture speeds up the process 

of manipulating BigData by enhancing different parameters in the 

processing jobs. BigData needs to be divided into many datasets or 

blocks and distributed to many nodes within the cluster. Thus, tasks 

can access these blocks in parallel mode and be processed easily. 

However, accessing the same datasets each time the job is executed 

causes data overloading problem, so we developed the current 

MapReduce workflow to improve the performance in terms of data 

size that is read in the relative jobs.This work uses a bioinformatics 

DNA datasets to implement the solution. 

Index Terms 
Cloud Computing, Hadoop, bioinformatics, BigData. 

1. INTRODUCTION 
BigData analysis in cloud computing is considered as one of the very 

important topics because of the continuous increasing in data size. 

BigData is defined as huge datasets that cannot be processed using 

any traditional applications, plays a significant role in many aspects 

of society such as communications, retails, finance and science[1]. 

Bioinformatics datasets areconsidered as a BigData not only because 

of its size but also due to its complexity and dimensions[2]. The 

features that BigData has are volume, velocity and variety of the data, 

each of one of these features can be considered as a significant 

challenge and contribute of the bioinformatics data[3]. 

MapReduce is a popular algorithm that manipulates BigData with 

high efficiency, fault-tolerance, good scalability, and simple 

programming [4].MapReduce algorithm has two main functions map 

and reduce functions. Map functions work in parallel mode to process 

specific tasks, produce initial results, and then pass the initial results 

to the next step which  

is the reduce functions. Reduce functions also work in parallel mode 

to get the map initial results and collect the results into one final 

result to be the only result of the whole job [5]. 

Different tools have been used to process BigData; one of the most 

popular tools is Hadoop. It has been developed using MapReduce 

algorithm, which divides the data to many blocks in the same size [5]. 

The process of representing data in Hadoop goesthroughtwo main 

steps.First, divides the data into many blocks,seconddistributes these 

blocks between nodes in the cluster Hadoop Distributed File System 

(HDFS)format [6, 7].Some processing limitations have been 

addressed in cloud computing such as network bandwidth, data 

security and processing costs [8, 9]. 

In this study, we present anenhanced Hadoop MapReduce algorithm 

workflow and use it for fining sequence in bioinformatics data. We 

built a lookup table that stores ametadatafor relative jobs in order to 

reduce the number of read operations during fining sequence. 

Compared to native Hadoop, the proposed framework reduces the 

number of blocks that is read during the computation. In section II we 

cover the importance of Hadoop to the bioinformatics data. In section 

III overviews the Hadoop infrastructure in cloud computing. Section 

IV discusses the proposed enhanced Hadoop MapReduce architecture 

and Workflow.We discuss the implementation and results in section 

V. We have the conclusion in section VI. 

2. HADOOP AND BIOINFORMATICS 

APPLICATIONS 
The limitation in the memory can cause some limitations in the data 

processing jobs. One of the common jobs in bioinformatics is finding 

sequence in the chromosomes, however, this process remains a 

challenge due to the increasing in compute and memory limitations 

[10]. 

Human DNA genome datasets are presented in 24 chromosomes each 

in a single text file. DNA chromosomes datasets are considered as a 

big data even it is not very huge data but because it is an unstructured 

and unrelated data. So, with this kind of data any process could have 

some complexities to be achieved with a high degree of reliability 

and efficiency[11].  

Figure 1 shows the process of finding sequence in DNA flowchart 

using <key, value> format. One of the most popular sequences is a 

Zinc Finger, which is represented by the sequence GGGGCGGGG. 

 

Figure 1: Sequence Detection using MapReduce  

Many variables in DNA sequences can change the degree of 

performance of Hadoop MapReduce algorithm, such as the number 

of that the sequence is located in the chromosomes and the length of 

the sequence itself. However, there are different formats of DNA that 



International Journal of Computer Applications (0975 – 8887)  

Volume 116 – No. 15, April 2015 

39 

can be used in couple applications based on the user needs. In 

addition, users can reformat the data of DNA in format that they need 

[12]. 

3. HADOOP CLOUD COMPUTING 

INFRASTRUCTURE  
Hadoop infrastructure contains a support system that works aside 

with Hadoop, which is named by Hadoop Ecosystem, this ecosystem 

contains different components such as Zookeeper, HBase, Hive [13]. 

In addition, hadoop is divided into two main components, which are 

Hadoop Distributed File System and MapReduce. Figure 2, shows 

the component of the current Hadoop MapReduce architecture. 

3.1 Hadoop Distributed File System (HDFS) 
In the current Hadoop and MapReduce framework, the client sends 

MapReduce job to the Hadoop cluster administrator (NameNode), 

which is also the master of the cluster. Before sending a job to the 

NameNode, the data source files should be divided into 64 or 128 

MB of blocks, and then uploaded to the Hadoop Distributed File 

System (HDFS). Data blocks are distributed among different Data 

Nodes within the cluster. Any new job must have the name of the 

data file in HDFS, the source file of MapReduce code (e.g. Java file), 

and the name of the file where the result will be stored in the HDFS.  

The current Hadoop MapReduce architecture follows the concept of 

“write-onceread-many”. No changes can be made in a source file in 

HDFS. Multiple jobs with the same data set work independent of 

each other. Each job has the ability to access the data from all blocks. 

Iterative computations, computations that need to pass over the same 

data many times, are unable to utilize the native cloud computing 

architecture very efficiently.  

Several research groups have presented locality aware solutions to 

address the issue of latency while reading data from DataNodes [19]. 

Hadoop falls short of query optimization and reliability of 

conventional database systems. In our research, we discovered that 

each time we executesame MapReduce job, it requires sameamount 

of time to find same results. Also, when we search for supper-

sequence that contains the original sequence, which means there is no 

relationship between jobs. 

3.2 HadoopMapReduce Algorithm 
Many Hadoop MapReducejobs, especially tasks associated with the 

science data such as the genomic data,focusonthe similarities 

between the sequences, superstring and sub-sequence 

searches[14].These operations may apply different MapReduce jobs 

on the same data frequently. Hadoop workflow is shown in Figure2.  

In current Hadoop architecture, client A sends a request to 

NameNode. In case the data is in local file system, the request 

includes the need to copy the data files to the Hadoop Distributed File 

System in DataNodes. NameNode replays the IP addressesofthe 

DataNodes to the client A. Then, client Aformats the data files,and 

sendsmultiple copies of each data block to different DataNode. These 

steps are from step 1 to step 5 in figure 2. 

Following these steps, client A sends a MapReduce job (job1) to the 

JobTracker daemon with the name of the data source file that is 

stored in HDFS. Then, the JobTracker divides the job into many tasks 

and sends these tasks to all TaskTrackers who hold the blocks of the 

source data.Each TaskTracker executes a specific task on each block 

then sends the results back to the JobTracker. JobTracker collect the 

results and create a one final result then sends it to Client A. These 

steps are from step 6 to step 9 in figure 2. 

 

Figure 2: Current Hadoop MapReduce Architecture 

If client A launch the same job again on the same datasets, then all 

steps above will be repeated.  

As shown in Figure 2,assume that ClientA and Client B are searching 

for the same sequence inBigData source files. Once Client A finds 

the sequence, Client B willfollow the samestepsin order to find the 

sameresults (steps 10 to 13). Since each job is independent, clients do 

not share results.Repeated results may occur, and therefore, process 

redundancy remains a major, unsolved problem in native Hadoop 

infrastructure.  

Figure 3 shows the flowchart workflow of the current Hadoop 

MapReduce algorithm, which is a simple algorithm that has no conditions 
unless writing the data to HDFS: 

 

Figure 3: Current Hadoop MapReduce Algorithm Workflow 

In a DNA sequence-matching task,whenthe sequence exists in a 

specific Block in a DataNode, a superstring sequencecontaining that 



International Journal of Computer Applications (0975 – 8887)  

Volume 116 – No. 15, April 2015 

40 

sequence can only be found in the same block. Current Hadoop 

frameworkdoes not support caching of data. It ignores the location 

ofDataNodes that contain asequence, and reads data from all 

DataNodes for every new job.  

4. ENHANCED HADOOP MAPREDUCE 
In current Hadoop architecture, NameNode can recognize the 

location of the blocks in HDFS by DataNode IP address. NameNode 

is a responsible for receiving jobs from the clients,and divides the 

jobs into tasks and assigns these tasks to the DataNodes 

(TaskTrakers). The process ofrecognizing which DataNode contains 

the blocks with the required data gives the NameNode a capability to 

direct the tasks to specific DataNodes without going through the 

whole cluster. Proposed architecture leverages on a metadata table to 

identify the blocks with common features. Any job with the same 

common featuresshould only read the data from the specific blocks 

that contains the sequence.This solution eliminates the process 

ofreading the entire data blocks again. 

In terms of hardware, network, and nodes, the enhanced Hadoop 

MapReduce architecture is identical to the original Hadoop. 

However, the enhancing is processed on the software level. We added 

features in the NameNode that allows it to save specific data 

(metadata of blocks) in a lookup table named the Common Job 

Blocks Table (CJBT). CJBT stores some information about the jobs 

and the location of the blocks that store the results of these jobs. It 

allows the related jobs to get some information about the location of 

the required sequence in the HDFS without checking the entire 

cluster.  

Typically, a sequence is aligned through the use of dynamic 

programming and conventional alignment algorithms. Every CJBT 

contains common features. A common feature may consist of a 

sequence or a subsequence that is identified and updated in CJBT. In 

addition, the Common Feature in CJBT can be compared and updated 

each time a client submits a new job to Hadoop. A typical CJBT 

consists of three main components or columns, which are explained 

in Table 1: 

Table1: Common Job Blocks Table components 

Common Job Name 
Common 

Feature 

Block 

Name 

Sequence_Alignment 
GGGC B1 B2 B3 

GGGG B5 B4  

Fining_Sequence 

TTTAGCC B3 B6  

GCCATTAA B1 B3 B4 

AATCCAGG B3 B5  

Common Features store data that is shared between jobs like DNA 

sequence. Enhanced Hadoop architecture supports caching, which 

enables output (or part of output) to be written in CJBTafter the 

reduce step. JobTracker directs any new job with the shared common 

features to blocks listed in CJBT. However, feature selection should 

be done carefully since the response time for the jobs can increase if 

the common features exist in every DataNode. For example, in 

genomic data, regulatory sequences and protein binding sites are 

highly recurring sequences. Using such sequences as common 

features can degrade the performance of the proposed architecture. 

Feature format, also, depends upon the job and the datasets. For 

example, in sequence alignment jobs, a nucleotide in a sequence is 

represented by capital letters, and a sequence is composed of several 

letters as shown in Table1. The way that we build the CJBT is by 

having a training phase that comes before launching jobs. Also, by 

having new jobs, we can create a new record in the CJBT. 

Figure 4 shows the flowchart workflow of the enhanced Hadoop 

MapReduce algorithm, which contains couple testing steps searching 

for common features on the CJBT.  

 

Figure 4: Enhanced Hadoop MapReduce Algorithm Workflow 

As the same as the current Hadoop, first, we test the data is it in 

HDFS format or no. After launching a job, we tested either this job 

uses or new architecture by having a common job name from a list 

that we have in the user API or not. If not, it goes to be processed via 

a traditional way. Otherwise, we tested either it has a common feature 

or not. If it doesn’t have a common feature, which means it has new 

features that are not related to any previous job, it goes to be 

processed via a traditional way. Otherwise it means it has a common 

job name and a common feature, NameNode checks the CJBT and 

retrieves block that contain the common feature and assigns the job to 

read data from these blocks. 

5. IMPLEMENTATION AND RESULTS 
We simulated the enhanced Hadoop MapReduce architecture and we 

built the CJBT using Apache HBase NoSQL database. The reason of 

using HBase is because its compatibility with Hadoop and its, also, 

works on top of Hadoop and using shell user interface. We apply that 

using Linux OpenSUSE as an operating system.  

Table 2 contains some sequences that we use for training purposes to 

establish CJBT. Sq1 is a common sequence in human DNA, which is 

the Zinc Finger protein, and it is located on every single 



International Journal of Computer Applications (0975 – 8887)  

Volume 116 – No. 15, April 2015 

41 

chromosome. One of the observations is the longest sequence 

requires more CPU processing time, and that is clear in Sq5. 

Table2: Common features for sequence alignment 

No Symbol Common Feature 

1 Sq1 GGGGCGGGG 

2 Sq2 AAGACGGTGGTAAGG 

3 Sq3 CATTTCTGCTAAGA 

4 Sq4 GAATGTCCTTTCTCT 

5 Sq5 GATCTCAGCCAGTGTGAAA 

Figures 5 and 6 present the numbers of read operations and the CPU 

time for the sequences presented in Table 4. The histograms in 

figures below demonstrate the CPU time and the number of read 

operations for selected queries in native and enhanced Hadoop 

architecture. It is observed that the proposed architecture outperforms 

native Hadoop in almost all cases.  

 

Figure5: Number of read operations of selected queries in Native 

Hadoop and Enhanced Hadoop. 

As we see in Figure 5 one of the results that we got by applying the 

Enhanced Hadoop workflow. This experiment shows the improving 

in the performance by reducing the data size that is read to execute a 

job. We developed that by using the metadata of the related jobs and 

specify the related sections or blocks on the dataset, and select these 

data blocks to be the whole source of the data for that job. 

There are 5 DNA sequences that we use for searching purposes on 

the DNA data as shown in Figure 5. The number of read operations 

clearly is less in the Enhanced Hadoop than that in the Native 

Hadoop in the first sequence, which is “AAGACGGTGGTAAGG”. 

In Native Hadoop it is 119 operations and in Enhanced Hadoop it is 

only 15 operations, and the percent of the improving is about 86% 

less in the number of read operations. Also, the rest of the results 

show the huge developing and best results comparing with native 

Hadoop. 

The improving of the framework is related to the frequently of 

finding the sequence in the data. So, if the sequence is exists on all 

data blocks, the MapReduce job will read the all blocks again, and 

that is clear in the result from (Sq1) which is “GGGGCGGGG”. So, 

the number of read operations stays the same in Native Hadoop and 

Enhanced Hadoop. 

 

 

Figure6: Overall CPU performance of selected queries in native 

Hadoop and enhanced Hadoop. 

Figure 6 shows that CPU execution time in Native Hadoop and 

Enhanced Hadoop. It shows excellent results in CPU execution time 

for the sequences that are exist in some location in the data. For 

example, it gives about 86% of reducing in the CPU time execution 

in (Sq2).  

However, one of the observations is, when searching for highly 

conserved sequencese.g. (Sq1) in Table4, we found poor 

performances in the enhanced Hadoop compared to the native 

Hadoop. That comes from the required time for NameNode to access 

the CJBT and search for the required common name and common 

features. 

6. CONCLUSION 
This paper discusses the limitations of the current Hadoop 

MapReduce architecture and workflow. We proposed an Enhanced 

Hadoop MapReduce algorithm to speed up and improve the 

performance of Hadoop.We focus on building a lookup table to store 

a metadata of the jobs to use it when we run the same job again or run 

different jobs that are relative to the original job. This way improved 

the performance of current Hadoop MapReduce in different levels 

such as CPU processing time and number of read data operations. 

Although proposed architecture improves the Hadoop MapReduce 

job performance, there are couple points that we need to discuss and 

develop as future work. For example, the size of the lookup table, 

analyzing the Enhanced Hadoop workflow mathematically and 

determine the optimum size of the common feature.  

7. ACKNOWLEDGMENTS 
We would like to mention about the environment that we use to 

develop the work, which is the Cloud Computing Cluster CCC at the 

University of Bridgeport. We would thank all CCC members either 

people or organizations.  

8. REFERENCES 
[1] S. Lohr, "The age of big data," New York Times, vol. 11, 2012. 

[2] V. Marx, "Biology: The big challenges of big data," Nature, vol. 

498, pp. 255-260, 06/13/print 2013. 

[3] T. White, Hadoop: The definitive guide: " O'Reilly Media, Inc.", 

2012. 

[4] J. B. Buck, N. Watkins, J. LeFevre, K. Ioannidou, C. Maltzahn, 

N. Polyzotis, et al., "SciHadoop: Array-based query processing 

in Hadoop," in High Performance Computing, Networking, 

Storage and Analysis (SC), 2011 International Conference for, 

2011, pp. 1-11. 



International Journal of Computer Applications (0975 – 8887)  

Volume 116 – No. 15, April 2015 

42 

[5] A. B. Patel, M. Birla, and U. Nair, "Addressing big data problem 

using Hadoop and Map Reduce," in Engineering (NUiCONE), 

2012 Nirma University International Conference on, 2012, pp. 

1-5. 

[6] W. Xu, W. Luo, and N. Woodward, "Analysis and optimization 

of data import with hadoop," pp. 1058-1066. 

[7]  S. Wu, F. Li, S. Mehrotra, and B. C. Ooi, "Query optimization 

for massively parallel data processing," in Proceedings of the 

2nd ACM Symposium on Cloud Computing, 2011, p. 12. 

[8]  L. D. Stein, "The case for cloud computing in genome 

informatics," Genome Biol, vol. 11, p. 207, 2010. 

[9] M. C. Schatz, B. Langmead, and S. L. Salzberg, "Cloud 

computing and the DNA data race," Nature biotechnology, vol. 

28, p. 691, 2010. 

[10] P. C. Church, A. Goscinski, K. Holt, M. Inouye, A. Ghoting, K. 

Makarychev, et al., "Design of multiple sequence alignment 

algorithms on parallel, distributed memory supercomputers," in 

Engineering in Medicine and Biology Society, EMBC, 2011 

Annual International Conference of the IEEE, 2011, pp. 924-

927. 

[11] H. Alshammari, H. Bajwa, and J. Lee, "Hadoop Based Enhanced 

Cloud Architecture," presented at the ASEE, USA, 2014. 

[12] S. Leo, F. Santoni, and G. Zanetti, "Biodoop: Bioinformatics on 

Hadoop, Parallel Processing Workshops, International 

Conference on, pp. 415-422, 2009 International Conference on 

Parallel Processing Workshops, 2009," 2009. 

[13] A. H. Zookeeper, "http://hadoop.apache.org/zookeeper/," 

accessed Feb 2015. 

[14] A. Matsunaga, M. Tsugawa, and J. Fortes, "CloudBLAST: 

Combining MapReduce and Virtualization on Distributed 

Resources for Bioinformatics Applications," in eScience, 2008. 

eScience '08. IEEE Fourth International Conference on, 2008, 

pp. 222-229. 

9. AUTHOR’S PROFILE 
Hamoud Alshammari (First Author) received a BS in Computer 

Information Systems from King Saud University, Saudi Arabia in 

2002. He received his first MS degree in Business MBA from 

Yarmok University, Jordan. Then, he received the second MS degree 

in Computer Science from University of Bridgeport, CT-USA. He is 

doing his Ph.D. in Computer Science and Engineering at University 

of Bridgeport, CT-USA. Alshammari is doing his research in 

BigData and Hadoop MapReduce performance. He is also has 

interesting in data analysis. Mr. Alshammari is a member in Upsilon 

Pi Epsilon Honor Society. 

Dr. Jeongkyu Lee received a B.S. from Sungkyunkwan University 

in Mathematic Education and an M.S. from Sogang University in 

Computer Science, both of Seoul, Korea in 1996 and 2001, 

respectively. He worked as a database administrator for seven years 

with companies including IBM. In fall 2002, he entered the Doctoral 

program in Computer Science and Engineering at the University of 

Texas at Arlington. Currently he is an Associate Professor of 

Computer Science at the University of Bridgeport. His research 

interest is in the multimedia database management and big data 

analytics. His work also includes techniques for multimedia data 

mining, video processing, multimedia ontology, and medical 

imaging.   

 

Dr. Hassan Bajwa received his BSc degree in Electrical Engineering 

from NYU Polytechnic University of New York in 1998. From 1998 

to 2001 he worked for Software Spectrum. He received his MS from 

the City College of New York in 2003, and his Doctorate in 

Electrical Engineering from City University of New York in 

2007.Currently he is an Associate Professor of Electrical Engineering 

at the University of Bridgeport. His research interests include 

modeling and simulation of Nano-electronic architectures, low power 

sensor networks, flexible electronics, bioelectronics, and 

Bioinformatics

 

IJCATM : www.ijcaonline.org 

http://hadoop.apache.org/zookeeper/,

