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ABSTRACT 

The fuzzy neural networks are adaptive, learns quickly and 

are highly suitable in decision making where uncertainty is 

involved. In this paper the Modified General Fuzzy Min-Max 

Neural Network (MGFMMNN) is described which is 

experimented for the data mining tasks such as classification 

and clustering. The MGFMMNN utilizes fuzzy sets as pattern 

classes in which each fuzzy set is a union of fuzzy set 

hyperboxes. It is an extension of the general fuzzy min-max 

(GFMM) neural network proposed by Gabrys and Bargiala. 

The data mining tasks such as classification and clustering 

have been studied using MGFMMNN and Fisher Iris data set. 

Further, MGFMMNN is trained using Hepatitis Data Set to 

verify its classification and recognition ability. The 

results obtained are awfully persuading and confirms the 

effectiveness of the proposed system. The technique proposed 

is quick and reliably deployable in the applications that need 

classification and clustering.   

General Terms 

Data Mining, Fuzzy Systems, Neural Networks, Pattern 

Recognition. 
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1. INTRODUCTION 
The classification and decision making is a form of data 

analysis that extracts information describing important data 

classes. Such models are entitled as classifiers which predict 

categorical class labels. For instance, we can construct a 

categorization model to sort out bank loan applications as 

either secure or unsafe. Such study can help us with a better 

understanding of the data at large and consequently in the 

decision making.  

At present, the fuzzy neural networks (FNN), the synergistic 

combination of artificial neural networks (ANN) and fuzzy 

systems (FS), combines best of both the worlds, are 

commonly used in the classification and decision making [1]. 

The FNN combines the power of the ANN, such as learning, 

adaption, fault  tolerance, parallelism and generalization with 

human being like thinking and reasoning using FS. An 

enormous literature is available on the FNNs which 

recommends various architectures and algorithms for the 

different applications. 

Patrick K. Simpson proposed supervised learning neural 

network classifier known as fuzzy min-max neural network 

(FMN) that utilizes fuzzy sets as pattern classes where each 

fuzzy set is an aggregate (union) of fuzzy set Hyperboxes. 

This learning algorithm has the ability to learn on-line and in 

a single pass through the data. Its performance is evaluated for 

commonly used and well-known fisher iris data set [2]. 

Simpson has also proposed unsupervised fuzzy min-max 

clustering neural network (FMCN) in which clusters are 

implemented as fuzzy sets using membership function with a 

hyperbox core that is constructed from a min point and a max 

point [3]. Unlike FMN, the FMCN is unsupervised learning 

algorithm. 

Gabrys and Bargiela have proposed general fuzzy min-max 

(GFMM) neural network  for classification and clustering, 

which is a fusion of supervised and unsupervised learning [4]. 

In the continuation of fuzzy min-max neural network 

classifier, Kulkarni U. V. et al. have proposed fuzzy hyperline 

segment neural network classifier (FHLSNN). It  utilizes 

fuzzy sets as pattern classes in which each fuzzy set is a union 

of fuzzy set hyperline segments [5]. The FHLSNN is 

supervised classifier. This classifier when applied for rotation 

invariant handwritten character recognition problem, it 

performed better compared to unsupervised four layer feed-

forward fuzzy neural network (FNN) of Kwan and Cai, [6] 

and GFMM algorithm in terms of recognition rate, training 

time and recall time per pattern. \ 

U.V. Kulkarni et al. have also proposed unsupervised fuzzy 

hyperline segment clustering neural network (FHLSCNN).  

The performance of FHLSCNN is found superior over FMCN 

when applied for clustering of Fisher Iris data [7]. P. M. Patil, 

U. V. Kulkarni and T. R. Sontakke have proposed general 

fuzzy hyperline segment neural network (GFHLSNN). The 

GFHLSNN combined, FHLSNN and FHLSCNN, by 

combination of both supervised and unsupervised learning, 

which is referred as general learning. Therefore, like GFMM 

it can be used for pure classification, pure clustering and 

hybrid classification/ clustering [8]. 

The modifications in the architecture and learning algorithm 

of GFMM have been proposed to improve its performance by 

many researchers. They have suggested different ideas. Kim 

and Yang proposed a weighted fuzzy min-max neural 

network. The membership function proposed in this algorithm 

considers the occurrences of input pattern along with 

frequency of occurrences. In order to overcome low 

automation degree and to achieve the remarkable 

generalization capability Antonello Rizzi et al. proposed the 

two new learning algorithms for GFMM as the adaptive 

resolution classifier and also its pruning version.  

Nandedkar and Biswas have suggested the use of overlapped 

compensatory neurons and the containment compensatory 

neurons to resolve the membership confusion in the 

overlapped area [9].  

Reza Davtalab et al. proposed novel fuzzy Min-Max neural 

classifier that uses modified compensatory neurons.  This 

classifier is suitable for online training, uses supervised 

single-pass method. In this technique for handling overlapping 

areas that are mainly created in borders, a modified 

compensatory node with a radios-based transition function is                                  

used. This modification improved the classification accuracy 

in discriminating cases [10]. H. Zhang et al. proposed data-

core based fuzzy min-max neural network. In this algorithm   

innovative membership function for classifying neurons is 
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proposed on the basis of noise, the geometric center of the 

hyperbox and the data core and the performance is verified 

with different benchmark problems and also with pattern 

classification of oil pipeline [11]. 

The multilayer perceptron (MLP) with error backpropagation 

is awfully popular and widely used neural classifier used for 

lots of problems worldwide by most of the researchers [12]. 

However, the use of MLP with error backpropagation suffers 

from various drawbacks. This learning algorithm is inflexible 

and requires huge training time compared to modern FNNs 

proposed by different researchers as mentioned above.  

This has motivated us to make use of FNN and to explore for 

some better solution to the problem of classification and 

clustering. In spite of various FNNs,  the  GFMM is chosen to 

explore it for data mining tasks as it is  one of the most 

admired FNN algorithms.   

This paper is organized as follows. In Section 2, the 

architecture of the GFMM [4] neural network is enlightened 

and reproduced with brief explanation for the convenience of 

the reader. Few modifications have been suggested in the 

original GFMM. The MGFMMNN learning algorithm with 

modifications is explained in Section 3. The experimental 

procedure, simulation results, description of data set and 

discussions on the results are presented in the Section 4. 

Finally, section 5 gives conclusions and future scope for 

further research. . 

2. ORIGINAL GFMM  
The GFMM neural network algorithm after training constructs 

the neural network as shown in [4]. The input layer consists of 

2*n nodes to accommodate fuzzy input pattern having lower 

and upper bound vectors. The processing nodes (neurons) in 

the input layer does not do any processing. Hence the transfer 

function results in output equal to input.  

The second layer shows the hyperboxes created, and possibly 

expanded and contracted during training phase of the network. 

Hyperboxes are fuzzy sets and characterized by min and max 

points along with membership function.  

The min and max points of the hyperboxes in this layer are 

stored in V and W, the two matrices that are also created 

during training phase. These min and max points of the 

hyperboxes are represented by the connections between first 

and second layer.  

The transfer function of the nodes in this layer is membership 

function. Hence, every hyperbox uses membership function to 

compute its output which is fuzzy membership value. The 

hyperbox membership function uses its min, max points and 

the input pattern to calculate output. The output of hyperbox 

node is fuzzy and is one if pattern is included by fuzzy set 

hyperbox. Otherwise, the membership value decreases as the 

distance of the pattern increases form the hyperbox. The rate 

of decrease depends on the user defined sensitivity parameter, 

10   . During training the number of hyperboxes 

constructed in this layer depends on the user defined 

parameter  , which puts bound on the maximum size of the 

hyperboxes.  

Each third layer node represents class. The output of the third 

layer node represents the degree (possibility value) with 

which the input pattern belongs to that particular class. The 

connections between second and third layer are binary. The 

weight assigned to the link/connection is one if hyperbox 

belongs to that class, else the weight is zero. The node 0c  

represents all the unlabeled hyperboxes from the second layer. 

Each class node in the output layer calculates output by taking 

fuzzy union of the weighted outputs of the hyperboxes of that 

class. 

The steps in the GFMMNN learning algorithm are 

initialization, hyperbox growth, overlap check and hyperbox 

retrenchment. These three steps are just mentioned here for 

the convenience of the reader. It is advised to refer [4] for 

details of these learning steps in detail. In the proposed idea, 

which is discussed in the forthcoming section 3, few changes 

are suggested, leading to improvement in space and time 

complexity of the original GFMM.  

 

 

 

 

           

 

              

 

 

 

 

 

       

                      

Fig 1: Topology of MGFMMNN Neural Network 
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3. MGFMMNN ALGORITHM 
The fuzzy input pattern may have lower and upper bounds as 

defined in [4]. Therefore, Gabrys and Bargiala have used 2*n 

nodes in the input layer to accept the input pattern with these 

two bounds. However, it is very rare to see such patterns and 

most of the times while experimenting  with real world 

applications, in geometrical sense, the input pattern is a point 

in n-dimensional Euclidean space. Therefore, it is  assumed 

that input pattern is a point with equal lower and upper 

bounds. Hence input is represented as,  

 ][ u

h

l

hh XXX  , but  where u

h

l

h XX  .           (1) 

This assumption reduces the requirement of the number of 

nodes in the input layer to n. The modified GFMM neural 

network uses only n nodes in the input layer as shown in 

figure 1. The input layer is designated as RF  layer and 

accepts n dimensional input pattern whose lower and upper 

bound are always equal. This proposed modification requires 

changes in the representation of hyperbox nodes in the second 

BF  layer and as in [4] this layer consists of the hyperboxes 

that are created during training. The representation of 

hyperboxes is as used by Simpson [2-3]. For the convenience 

of the reader this representation is reproduced in figure 2, 

where the implementation of a hyperbox and its associated 

membership function as a neural network assembly is shown 

for the jth hyperbox node. The input nodes accept each 

dimension of the hth input, u

h

l

hh XXA  . There are two 

connections from each input node to the output node, one 

connection represents the min value for that dimension and 

the other connection represents the max value for that 

dimension. 

 

 

 

 

 

 

 

 

 

Fig 2: Hyperbox Implementation 

This proposed modification not only reduces the input nodes 

to half but also leads to improvement in the space and  time 

complexity of the algorithm. The input representation in [4] 

requires space to store lower and upper bounds even if all the 

samples in data set are points. This representation requires 

twofold space.  

The proposed modification further leads in improvement of 

time complexity. It can be seen by calculating the time saved 

during training and recall phases, if the  network is 

implemented in software. Let D be the number of patterns in 

the dada set used for training,  be the time in seconds 

required for computation of output for each of the nodes in 

input layer. Hence, time saved in one iteration is n . Total 

time saved during training for one pass with D data samples 

will be Dn . Assuming training is performed in N  passes 

the total time saved will be DnN *** seconds. However, 

during recall phase time saved per pattern will be only n  

seconds. 

As in [4], the connections between BF  and CF  are binary 

and each CF  node represents class.  

Further, the equations of case 1 and 2 that are used in [4] 

during overlap test and removal are modified as,  

case 1: kijikiji wwvv   and 

case2 : jikijiki wwvv  ,                                       (2) 

since it is observed that previous conditions in [4] are unable 

to find dimension of minimum overlap if jiki wv   in case 1 

and kiji wv   in case 2. The correction is obtained by 

equation (2). Except these changes all other things have been 

kept consistent with the original GFMM neural network 

algorithm [4]. 

4. EXPERIMENTAL RESULTS 
The Fisher Iris Database is [13] standard and very well-liked 

data set which is used by numerous researchers for verifying 

the performance of the their proposed algorithms for 

classification and clustering. This is one of the best known 

databases to be found in the pattern recognition literature 

containing samples of three categories. One class is linearly 

separable from the other 2; however, the latter are not linearly 

separable from each other. 

This data set is prepared by Ronald Fisher. In all four features 

of 150 irises samples of three classes/types are recorded. Class 

1 is Setosa; Class 2 is Verginica; and class 3 is Versicolor. 

Features measured are petal width (PW), petal 

length (PL), sepal width (SW), and sepal length (SL) along 

with its class. This data set is downloaded from repository 

[13].  

The algorithm is implemented using Java with Eclipse as 

an integrated development environment. The MGFMMNN 

algorithm uses normalized pattern space i.e. 
nI . Therefore, 

the data set is normalized such that all the values are relatively 

scaled to lie in the range 0 to 1. 

A. Example 1—Classification of Fisher Iris Data Set   

In the first experiment all 150 available data patterns have 

been used for training and testing; however in the second 

experiment 25 randomly selected patterns from each class 

have been used for training and the remaining 75 for testing. 

The first experiment created 82 hyperboxes for 0.037  

with no misclassifications. To verify the effect of sensitivity 

parameter   on learning, the experiment was carried out by 

varying   from 1 to 50 in steps of 5, it created same number 

of hyperboxes. However, further increase in its value resulted 

in increase of number of hyperboxes because for large values 

of gamma fuzzy set hyperboxes starts returning very low 

membership for the patterns falling outside the hyperboxes. 

Few of these results obtained are listed in the Table 1. 

 

bj= f ( Ah,Vj,Wj) 
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Table 1. Effect of sensitivity parameter on learning 

0.037  

  1 10 20 30 40 50 

Hyperboxes 82 82 82 82 115 115 

In the range 10   , the number of hyperboxes remained 

consistent to 82 yielding no misclassification. Hence, in 

normalized pattern space, 
nI , one can optimally use the value 

in the range, 10   . 

In the second experiment, MGFMMNN created 28 

hyperboxes for 0.0632 , and 1  with no 

misclassifications. In this experiment to verify the effect of 

 , i.e. the maximum size of the hyperbox  on the learning, it 

is varied in the range 1.00   in steps of 0.01 and few 

readings with steps of 0.1. The number of hyperboxes created 

along with misclassifications are noticed for these different 

values of  .  The results obtained are listed in Table 2. 

Table 2 shows that increase on bound of maximum size of 

hyperbox, decreases the number of hyperboxes created during 

training process with increase in resulting misclassifications. 

Table 2. Effect of hyperbox size on learning  

1  

  Hyperboxes Misclassifications 

0 74 0 

0.01 74 0 

0.02 62 0 

0.03 49 0 

0.04 33 0 

0.05 33 0 

0.06 29 0 

0.07 21 1 

0.08 19 4 

0.09 14 3 

0.1 14 3 

0.2 7 6 

0.3 3 7 

B. Example 2—Clustering of Fisher Iris Data Set 

To check the performance of clustering, Fisher Iris data set is 

used and modified GFMM neural network is trained using 

150 patterns without using class information means treating 

all patterns as if belonging to unlabeled class. The confusion 

matrices obtained after clustering are given through tables 3 to 

5.  

Table 3. No confusion for 120 hyperboxes 

Hyperbox size = 0.0251 

Number of Hyperboxes  = 120 

Overall Confusion = 0 % 

Class 1 2 3 

1 100%   

2  100%  

3   100% 

Table 4. 16.66% confusion for 81 hyperboxes 

Hyperbox size = 0.03 

Number of Hyperboxes  = 81 

Overall Confusion = 16.66 % 

Class 1 2 3 

1 100%   

2 30% 68% 2% 

3 18%  82% 

Table 3 and 4 shows that increase on bound of maximum size 

of hyperbox, decreases the number of hyperboxes created 

during training process with increase in resulting 

misclassifications hence in overall confusion after clustering. 

Similar results obtained by further increasing hyperbox size 

resulting decrease in number of hyperboxes resulting in 

further increase in confusion are shown in Table 5 and 6.   

Table 5. 29.33% confusion for 57 hyperboxes 

Hyperbox size = 0.04 

Number of Hyperboxes  = 57 

Overall Confusion = 29.33% 

Class 1 2 3 

1 100%   

2 52% 48%  

3 56%  44% 

Table 6. 44% confusion for 39 hyperboxes 

Hyperbox size = 0.05 

Number of Hyperboxes  = 39 

Overall Confusion = 44 % 

Class 1 2 3 

1 100%   

2 72% 28%  

3 60%  40% 

To have the more clarity the chart is provided in figure 3 

which shows that during clustering as we increase hyperbox 

size, number of hyperboxes decrease, however overall 

confusion increases.  
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Fig 3: Performance of clustering 

C. Example 3— Classification using Hepatitis Data Set 

The number of instances in this data set are 155 [13]. The 

number of attributes including class are 20. The data set 

includes two classes, Die and Live. Some of the attributes in 

few of the instances are missing. Therefore, these missing 

attributes are replaced by the average value of that attribute 

over all the instances of that class.  

Train data consisting of 120 instances is used during learning. 

As required it took few passes during which   is adjusted 

appropriately to train the MGFMMNN. Remaining 35 sample 

are used for testing the recognition ability of the classifier. 

The trained MGFMMNN yields 100% classification accuracy. 

However, recognition rate obtained during testing is  88%.   

5. CONCLUSION AND FUTURE SCOPE 
Like original GFMM, the MGFMMNN can be used for data 

mining tasks such as classification and clustering. As long as 

there are no matching sample belonging to two different 

classes, the recognition rate for training set is 100%. 

Since all the manipulations involve only simple compare, add, 

and subtract operations like GFMM, the resulting algorithm is 

extremely efficient due to suggested modifications. The 

assessment of space and time complexity shows that the 

MGFMMNN is superior than original GFMM.  

Further modifications in original GFMM are possible by 

removing bound on maximum size of hyperbox and allowing 

creation of hyperboxes till they grow without overlapping and 

hence indirectly the algorithm automatically shall put bound 

on the size instead of user defined approach by providing it in 

the beginning.   
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