
International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 13, April 2015

10

A Capacious Scrutiny on Automatic Test Packet

Generation

Shastri Saumit C.
M Tech Student,

CSE Department, SGGSIE&T,
Nanded-431606.

U. V. Kulkarni, Ph.D
Professor,

CSE Department, SGGSIE&T,
Nanded-431606.

ABSTRACT

These days networks are not getting any smaller, they are

increasing in size and it is becoming tedious job for network

administrators to debug the network, since they rely on

traditional tools such as ping and traceroute for this job. This

paper puts forward an automated and systematic approach to

test and debug a network called Automatic Test Packet

Generation (ATPG). ATPG produces a model which is not

dependent on devices after reading configuration from routers.

The model is used to generate minimum number of test

packets to cover every link in a network and each rule in

network. ATPG is capable of investigating both functional

and performance problems. Test packets are sent at regular

intervals and separate technique is used to localize faults. The

working of few offline tools which automatically generate test

packets are also given, but ATPG goes beyond the earlier

work in static checking (Checking liveness and fault

localization).

General Terms

Header space analysis, Test packet generation algorithm,

Fault localization algorithm.

Keywords

ATPG system, TPS algorithm.

1. INTRODUCTION
It is not at all easy task to debug a network. The network

administrators face problems like router misconfiguration,

Fiber cut, mislabeled cables, software bug, Faulty interfaces

etc. Network administrators try to overcome these problems

using mostly used tools such as ping and trace route.

Debugging networks is getting more and more difficult as not

only size of networks but also their level of complexity is

increasing day by day. Let us consider few examples of

different types of problems network administrators face in day

to day life.

Consider a router with a line card having a fault, so that it

silently drops test packets, as a result, many users straggling

for connections complain to network administrator. Now if

that administrator is administrating 100 routers he has to go to

each router to see if configuration is not altered, and if the

answer is no, he uses his knowledge of topology to search

faulty device using techniques like ping and trace route [1].

Consider another example where video traffic is put in a

particular queue, and token bucket ratio is low is the reason

why packets are dropped. Such performance faults are not

possible for network administrators to investigate [1].

To make out what difficulties network administrators face and

at present how they overcome these difficulties, a survey is

made in 2011.All responses to that survey is given in [2].From

the survey it is clear that administrators have to fight with

complex symptoms and causes. Many problems associated

with networks occur frequently and it takes much time to

come out of them, so the cost of debugging a network

becomesinsignificant. Pure tools like ping and trace route are

largely used, but now network administrators wish more

refined tools.

This paper put forward an automated and systematic approach

to test and debug a network called Automatic Test Packet

Generation (ATPG). ATPG produces a model which is not

dependent on devices after reading configuration from routers.

Another advantage of ATPG system is that it covers each link

and every rule in network with minimum number of test

packets. Uniformly the test packets are send, and if any fault

is detected, it is triggered by separate mechanism namely fault

localization. ATPG can solve both of the above problems,

hence it can cover both functional and performance faults [1].

The figure 1 is uncomplicated view of network state. In lower

half of the figure there is forwarding table. The function of

forwarding table is to forward each packet. Packet is

consisting of forwarding information base (FIB), access

control lists etc. It is control plane which writes forwarding

state.

Figure 1 can be decomposed in three parts as A, B and C. We

can consider the policy (A), which is compiled by controller

into configuration files which are device specific (B), which

then shows the forwarding behavior of every packet (C). To

ensure the network behaves as per requirement, all the three

steps at all times should remain consistent, that is same as

A=B=C. At the same time, the topology, shown at the bottom

right in the figure, should also be able to satisfy a set of

liveness properties shown by L [1].

It is not too long ago when scientists come up with tools

showing compactness between policies and configuration files

A=B [3], [4], [5], [6], but these tools can’t deal with

performance problems which requires checking of liveness

property L or B=C. ATPG can do this job efficiently [1].

The outline for the rest of the paper is as given below.

1) First take a look at some earlier works related to

automatic test packet generation, some offline tools.

2) Followed by Header Space Analysis [4] used in ATPG

system.

3) Next ATPG System [1] is presented for readers

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 13, April 2015

11

Fig 1: Network state

2. RELATED WORK
In this section some of the earlier techniques used for

automatically generating test packets are given. Nearest

technologies known are few offline tools.

2.1 Offline Tools Supporting Automatic

Test Packet Generation
One of the offline tools which have been used for generating

test packets automatically in control plane is NICE [3]. NICE

stands for no bugs in controller execution. NICE is an offline

tool, which brings the bugs in controller program to user’s

notice more efficiently with the help of model checking and

symbolic execution in open flow system. Working with open

flow system programmer have to deal with challenges like

large space of switch state, large space of input packets, large

space of event ordering etc. To overcome these challenges

NICE [3] is of good use.

Working of NICE is shown in Figure 2. NICE programmer

has to supply controller program along with topology of

network which consist of specification of switches and hosts.

The programmer can ask NICE for general correctness of

properties such as, program is not having any forwarding loop

or program is without any black holes. The NICE according to

fixed plan looks into the possible system behavior and checks

it with correctness properties supplied by the programmer.

The programmer has the freedom to configure search strategy

which is desired by him. Finally NICE gives the traces of

property violation or properties which are not up to the mark

with their indications as output [3].

The tool NICE works in control plane similarly in the data

plane there is another offline tool that can be used namely

Anteater [5]. Anteater gathers the network topology and

forwarding information bases (FIBs) of devices, and describes

them as boolean functions. Then an error to be checked is

specified by operator against the network, such errors can be

consistency of forwarding rules between routers, reachability

or loop free forwarding. Anteater makes the combination of

these errors and converts them into examples of Boolean

satisfiability problem (SAT), and makes use of a SAT solver

to perform analysis. If the network state disobeys an invariant,

Anteater provides a specific counterexample, for instance a

packet header, FIB entries, and path thatbrings about the

potential bug.

Fig 2:No bugs In Controller Execution (NICE)

Anteater finds errors through various steps. First of all,

Anteater gathers the contents of FIBs from networking

equipment through terminals, SNMP, or control sessions

maintained to routers. These FIBs can be either simple IP

longest prefix match rules, or more complex actions like

access control lists or modifications of the packet header.

Secondly, the operator forms new invariants or selects from a

menu of standard invariants are to be checked against the

network. This can be done via bindings in Ruby or in a

declarative language that we designed to reorganize the

expression of invariants. Third action is that, Anteater

interprets both the FIBs and invariants into examples of SAT,

which are resolved by SAT solver. Lastly, if the results from

the SAT solver show that the provided invariants are violated,

Anteater will obtain a counterexample to support recognition

[5].

Only a short time ago researchers have come up with SOFT

[7] used to prove the uniformity between various open flow

agents which are liable for linking control and data plane in

the context of SDN [1].

2.2 Other Related Works
Since long time, to examine faults in networks they are

examined on end to end basic. Currently researchers are

passionate about mining inferior quality unorganized data for

example, we can consider router configuration and network

tickets. On the other hand, main offering of ATPG system is

giving dense set of end to end estimate that can occupy each

rule or every link, and not just fault localization [1].

Many examiners have come with different measurement

kindly schemas [8], [11], [9], and [10]. Our approach is

additional to all these. Group by input along with port

compulsions ATPG produces test packets and point of

injection for these packets with the help of distribution of

estimate devices [1].

2.3 Header Space Analysis
The automatic test packet generation uses the framework of

Header space analysis [4], in which it uses a geometric model,

which allows the ATPG system to statistically check the

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 13, April 2015

12

network specifications and configurations to deal with

important classes of failures such as forwarding loops,

reachability failures, traffic isolation and linkage problem.

Another advantage of header space analysis is capability to do

slicing. Slicing assures isolation between system hosts, users

or traffic.

Consider virtual LAN as an example of slicing. Once the

virtual LAN is configured correctly it gives guarantee

thattraffic from one slice cannot leak into other slice, so it

provides more security. In this example slice is virtual LAN.

At the same time by using geometric model of header space

analysis, after enabling the static analysis of network sliced in

more general way the opinion of isolation can be taken further

[4].

A slice is made up of number of different header fields and

consisting of topology of number of switches and links. There

is set of headers on each link and its share of capacity

corresponding to each header. Each slice has the separate

control plane, and it is up to its owner to decide how packets

are routed and processed in that slice.

In header space, the meaning of header which is specific to

protocols in not taken into account: A header is seen as

unbroken arrangement of binary representation i.e. zeros and

ones. A header is a point and flow can be seen as region in a

set containing 0 and 1 as elements, that is{0, 1} to the power

L space where, L is upper limit on length of header. By

making use of header space framework one can achieve new,

vector free and protocol unbeliever model of network which

facilitate the process of packet generation by a great deal [4].

3. NETWORK DESIGN
As mentioned in the last section, the automatic test packet

generation (ATPG) system makes use of geometric model of

header space analysis [4]. This section explains some of the

key terms associated with geometric framework of header

space analysis.

3.1 Packet
Packet in a network can be described as a tuple of the form

(port, header) in such a way that, it is the job of port to show

position of packet in a network at instantaneous time. Each

one of the port is allotted with one and only one unique

number [1].

3.2 Switch
Another term used in geometric model of header space

analysis is switches. It is the job of switch transfer Function T,

to model devices in a network. Example of devices can be

switches or routers. There is a set of forwarding rules

contained in each device, which decides how the packets

should be processed. When a packet comes at a switch, a

switch transfer function comperes it with each rule in

descending order of priority. If packet does not match withany

of the rule then it is dropped. Each incoming packet is coupled

with exactly single rule [1].

3.3 Rules
Piece of work for rules is generation of list of one or more

output packets associated with those output ports to which the

packet is transferred, and explain how fields of port are

modified. In other words, rules explains how the region of

header space at entrance in changed into region of header

space at exit [1].

3.4 Rule History
At any moment, every packet has its own rule history, which

can be described as ordered list of rules packet have matched

up to that point as it covers the network. Rule history provides

necessary and important unprocessed material for automatic

test packet generation (ATPG). That is the reason why it is

fundamental to ATPG [1].

3.5 Topology
The network topology is modeled by topology transfer

function. The topology transfer function gives the

specification about which two ports are joined by links. Links

are nothing but rules that forwards a packet from source to

destination with no modification. If there is not a single

topology rule matching an input port, the port is situated at

edge of a network and packet has come to its desired

destination [1].

3.6 Life of a Packet
One can see life of a packet as carrying out or executing

switch transfer function and topology transfer function at

length. When a particular packet comes in a network port p,

firstly a switch function is applied to that packet. Switch

transfer function also contains input port pk.p of that packet.

The result of applying switch function is list of new packets

[pk1, pk2, pk3,]. If the packet reached its destination it is

recorded, and if that is not the case, topology transfer function

is used to call upon switch function of new port. This process

is done again and again unless packet is at its destination [1].

4. ATPG THEORY
Stand on the system standard analyzed above; Automatic test

packet generation system makes use of least possible number

of test packets to study whole forwarding rules in a network,

on the condition that each forwarding rule is capped by at

least one test packet. When the fault is encountered, ATPG is

equipped with fault localization algorithm to resolve the

declining rules or links.

Figure 3 represents the work flow of automatic test packet

generation (ATPG) system.

1) The ATPG system begins by gathering forwarding state

from network, which is represented as first step in the figure.

Work covered in this step is normally not only retrieving

topology of network but also learning forwarding information

base and configuration files etc.

2) The second step follows the first, in which header space

analysis is used by ATPG system to figure out scope of each

terminal.

3) The outcome of second step is taken as input by test packet

generation algorithm to gauge smallest number of test packets

sufficient to test all rules. This completes third step.

4) These test packets are sent regularly by the test terminals as

a penultimate step.

5) Lastly, if an error is disclosed ATPG appeals to fault

localization algorithm to curtail root of error [1].

Readers can see other version of figure 3 in figure 5 given in

[1].

4.1 Origination of Test Packets
The ATPG system can be roughly divided into two parts

namely test packet generation and fault localization. While

developing an algorithm for test packet generation a

supposition is that, set of test terminals may transmit or take

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 13, April 2015

13

in test packets. The target for algorithm is generating

minimum number of test packets to practice every rule in

every switch function, as a result if a fault occurs, it will be

watched by at least one test packet. ATPG system makes use

of test packets selection algorithm (TPS) to generate test

packets.

ATPG must only make use of test terminals that are available

and ATPG must utilize headers that each test terminal is

authorized to send are two important restrictions of which

ATPG must take a notice of at the time of generating test

packets.

1) ATPG system begins by estimating entire set of test packet

headers that can be forwarded from each test terminal to every

other test terminal. ATPG achieves this by detecting full set of

rules it can work out in entire journey. Thus, ATPG refers to

all pair reachability algorithm [4] to perform this task.

2) Afterwards, ATPG selects greater than or equal to one test

packet from identical class of test packets to use every rule

which is within reachable distance. Automatic test packet

generation can complete this with ease by haphazardly

selecting single packet in each class. This method is capable

of finding only those faults for which all packets screened by

same rule suffer the same fault. Example of such faults

includes link failure. On the other hand if someone desired to

find out faults which are particular to headers, then he has to

select every header in every class. This process is called

sampling.

3) Lastly in the process of generating test packets ATPG goes

to compression. Most of the times while using test packet

selection algorithm there come situation such that same rule

can be used by numerous test packets. Consequently ATPG

chooses smallest family of test packets selected in above step

in such a way that alliance of their rule histories cover total

rules [1].

Fig 3: Working of Automatic Test Packet Generation

4.2 Error Fixing
ATPG sends a set of test packets at regular intervals. If in case

test packets fail to reach their desired target, ATPG is capable

of identifying errors that induced the problem.

If watched performance of a rule is not the same as its normal

behavior then a rule is neglected, in other words it fails.

ATPG monitors where rules fail by applying a result function

R on rule r in a packet pk. A result function takes value 1 if

packet pk follows rule r, if not it takes value 0.

A forwarding of a rule fails if a test packet is not provided to

its planned output port on other extreme.Forwarding of a rule

is successful if either a test packet is provided to its planned

output port, or in case it is a drop rule, it is addressed rightly

ifit is dropped. A link collapse can be characterized by failure

of forwarding rule in the topology function. Further, if output

link is jammed, failure can be determined by waiting time of a

test packet going above a threshold.

Algorithm that discovers defective rules is described below,

makes hypothesis that a test packet will prosper if and only if

it succeeds at every short trip.

1) Let’s begin by thinking about the outcome of steadily

sending the test packets. For each passing test, put all the rules

used by them in a set of passing rules P. Likewise, for each

failing test put all the rules used by them in a set of probably

failing rules F. As per hypothesis, minimally one or more of

the rules in F are defective. Hence, F-P becomes set of suspect

rules.

2) Next responsibility of ATPG is to reduce the size of set of

suspect rules by clearing out that rule in suspect set, which is

working properly. ATPG fulfills this responsibility with the

help of reserved packets as given below. Reserved packets are

those packets which are eliminated by ATPG, during selection

of minimum number of test packets to cover each rule in a

network.

a) ATPG picks those reserved packets from the set of suspect

rules whose rule histories hold one and only one rule and

transmit these packets.

b) Suppose that a reserved packet p contains only one rule r

which is also in a suspect set. If transmitting reserved packet p

is not successful, ATPG concludes that rule r is in error.

Otherwise if transmitting reserved packet p is successful, rule

r is removed from suspect set.

c) ATPG goes on repeating this process for each reserved

packet selected in this step.

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 13, April 2015

14

3) Most of the times, after second step suspect set become

much smaller that ATPG is finished with suspect set. If

situation demands, ATPG can cut down suspect set further by

transmitting those reserved packets that exercise two or more

rules contained in suspect set in same way as mentioned

above in second step. If transmitting reserved packets is

successful ATPG comes to the conclusion that none of the

used rules are defective and removes them from suspect set

[1].

4.3 Superiorities of ATPG System
These are some advantages of using automatic test packet

generation system above conventional tools as given below

1) The set of test packets generated in ATPG system can

cover each reachable rule in a network, taking into account all

port and headers restrictions.

2) By making use of test packet selection algorithm ATPG

generates minimumnumber of test packets to cover every link

and each reachable rule in a network.

3) The time complexity of ATPG has polynomial runtime.

4) To find faulty test terminals with its rule as well as

configurations, fault localization algorithm is used in ATPG.

5) With the help of ATPG system exactness can be improved

by testing functional as well as performance problems [12].

5. CONCLUSION
Network supervisors these days mostly depend on old tools

such as ping and traceroute to correct a network. It is observed

that they are in need of more refined tool for this work.

In day to day life, internet service providers as well as big

data center operators face problems in testing liveness of a

network. On the other hand, conducting tests between each

pair of border ports is not only incomplete but also

unappreciable. One can come out of this problem by digesting

on device specific configuration files, creating headers and

links reached by them. Lastly finding least number of test

packets to cover each link. To overcome all these problems

require method like ATPG.

 By testing all rules inclusive of all drop rules ATPG is able to

test reachability strategy. That is not all; by using performance

scales such as delay and loss of test packets ATPG can

calculate performance soundness of a network. ATPG uses

simple fault localization method constructed with the help of

header space analysis [4] to localize faults. Regular model of

ATPG system helps to cover maximum links or rules in a

network with minimum number of test packets.

6. FUTURE SCOPE
ATPG provides better solution for network organizers

hanging on old tools for computing a network. ATPG has a

favorable future opportunity considering,ATPG is blessed

with ascendency of overcoming not only functional but also

execution blemish.

Combined with all these upper hands there are few issues

which remained to be addressed in the future such as, ATPG

cannot cope with routers with a change in internal state;

ATPG has restriction that it can rightly model rules only when

parameters along hash function are known; Another problem

is of dealing with rules that are out of sight; ATPG fails to

reveal errors which exists for time less than time between two

consecutive tests; While using sampling at times ATPG can

fail to reach some flaws.

7. ACKNOWLEDGMENTS
Authors are grateful to SGGSIE&T College for its

encouragement and support to write this paper. Authors also

like to thank authors of all the papers which have been

referred in writing this paper.

8. REFERENCES
[1] Hongyi Zeng, Peyman Kazemian, George Varghese and

Nick McKeown,” Automatic Test Packet

Generation,”IEEE/ACM TRANSACTIONS ON

NETWORKING, VOL. 22, NO. 2, APRIL 2014

[Online].Available:http://yuba.stanford.edu/~nickm/pape

rs/atpg-ton.pdf

[2] “Troubleshooting the network survey,” 2012 [Online].

Avaible:http://eastzone.github.com/atpg/docs/NetDebug

Survey.pdf

[3] M. Canini,D.Venzano, P. Peresini,D.Kostic, and J.

Rexford, “A NICE way to test OpenFlow applications,”

in Proc. NSDI, 2012, pp. 10–

10[Online].Available:http://infoscience.epfl.ch/record/17

0618/files/nsdi-final

[4] P. Kazemian, G. Varghese, and N. McKeown, “Header

space analysis: Static checking for networks,” in Proc.

NSDI, 2012, pp. 9–9.

[5] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.

Godfrey, and S. T. King, “Debugging the data plane with

Anteater,” Comput. Commun. Rev., vol. 41, no. 4, pp.

290–301, Aug. 2011.

[6] M.Reitblatt,N.Foster, J. Rexford, C. Schlesinger, and

D.Walker, “Abstractions for network update,” in Proc.

ACM SIGCOMM, 2012, pp. 323–334.

[7] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and D.

Kostic, “A SOFT way for OpenFlow switch

interoperability testing,” in Proc. ACM CoNEXT, 2012,

pp. 265–276.

[8] N. G. Duffield and M. Grossglauser, “Trajectory

sampling for direct traffic observation,” IEEE/ACM

Trans. Netw., vol. 9, no. 3, pp. 280–292, Jun. 2001.

[9] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T.

Anderson, A. Krishnamurthy, and A. Venkataramani,

“iplane: An information plane for distributed services,”

in Proc. OSDI, Berkeley, CA, USA, 2006, pp. 367-380.

[10] P. Yalagandula, P. Sharma, S. Banerjee, S. Basu, and S.-

J. Lee, “S3: A scalable sensing service for monitoring

large networked systems,” in Proc. INM, 2006, pp. 71–

76.

[11] “OnTimeMeasure,”[Online].Available:

http://ontime.oar.net/

[12] Shrikant B. Chavan, Soumitra Das,”Review paper of

Automatic Test Packet Generation and Fault

Localization,” Multidisciplinary Journal of Research in

Engineering and Technology, Volume 2, Issue 2, Pg.419-

423.

IJCATM : www.ijcaonline.org

