
International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 10, April 2015

12

A Semantic Approach for the Generation of Test Cases

from Activity Diagram

ABSTRACT
Software testing is the process of evaluating a system or its

modules in the intent to find that the software is acquiring the

efficient requirements or not. In simple words testing is the

execution of the system in order to find their gaps, ambiguity

and inconsistency. Software testing comprises into three

factors: test case generation, test cases execution and test

cases evaluation. This paper implemented a semantic

approach for the generation of test cases on UML model i.e.,

Activity Diagram. In this approach an Activity diagram is

created then it automatically generated a Activity Dependency

table (ADT) from Activity diagram. From the ADT an

Activity Dependency Graph (ADG) is introduced. Finally

After the automatic generation of ADG a consistent test case

are generated. This approach includes the validation of the test

cases by their consistency and efficiency. This approach saves

the cost, time, efforts and increases the quality of generated

test cases.

Keywords
Unified Modeling Language Model (UML), automatic

generated test cases, Model Based testing (MBT), Genetic

Algorithm, branch coverage criterion

1. INTRODUCTION
Software engineering is an approach to the development,

design operation and maintenance of software. Consequently

in software engineering main focus is to assure the quality in

the product, detect the bugs and prevent system from bugs by

testing or analysis. Software development life cycle has its

own phases such as designing, coding, testing and

maintenance phase. But to test the software and find its hidden

bugs/errors/defect has a biggest task in software industry.

Software testing has a vital role in the software development

life cycle. It involves the identification of the error/bug/defect

without correcting it. In the concept of automation testing

where tester writes the script and uses the software to test the

software. Model Based Software Testing is a testing strategy

that depends upon the extraction of test cases from the models

[3, 4, 5, 7]. MBT can detect the faults of different categories

in models which cannot be detected in code based testing.

Detection of faults from the Model can increases the quality,

efficiency and consistency.

Unified Modeling Language (UML) is most dominant

modeling language. It easily analyzes the problem domains by

capturing the requirements, simply reality; specify the

structure and behavior of the system. It also designs the

solution of the problem by structure, documentation.

Basically, in UML model the artifacts are visualize, specify,

construct and document. Activity diagram is one of the most

important diagrams of the UML. It represents the dynamic

behavior of the system [9]. Moreover, Activity diagrams can

be utilized to describe the business and operational step-by-

step workflows of components in a system [1, 2]. Activity

diagram helps to describe the flow of control of the target

system, such as exploring complex business rules and

operations, describing in the business process

As per the Generation of test cases on activity diagram depicts

the automatic generation of the test cases this covers all the

functionalities as well all the scenarios of the software [6, 10].

Test cases for the activity diagram will specify their

functionality, activity, behaviors and interaction of the

modules. Test cases should be consistent and specified.

Organization: In this paper Section II describes the related

work Section III describes the performance evaluation Section

IV describes the conclusion and future scope.

2. RELATED WORK
The building block of this approach is depicted below. This

approach constructs the Activity diagram on modeling tool

like RSA, Magic Draw. To find the dependency between the

activities is automatically generate the table that is Activity

Dependency Table. From the dependency table a dependency

graph is created which is called Activity Dependency Graph.

It is concerned with the activity node and the flow of control

of the activities in the Activity diagram. To examining the

dependency graph Genetic Algorithm is used. ADG covers all

the functionalities and scenarios of the Activity diagram.

Thus, it applies on the branch criterion for the generation of

test cases. This process for the generation of test cases is as

follows:

Fig 1: Building block of the Approach

As the figure, module1 defines the modeling of the activity

diagram when Hotel Management System is considered

module2 depicts the generation of ADT. Whereas, generation

of ADG and final outcomes in the form of test cases. This

Diagram is explained as below.

2.1 Modeling of Activity Diagram
Modeling of Activity Diagram should be created on the

modeling tool like RSA, Magic Draw. In this illustration an

Amandeep
Department of Computer Science

and Engineering
Chandigarh University, Mohali,

Punjab, India

Pratibha
Department of Computer Science

and Engineering
Chandigarh University, Mohali,

Punjab, India

Ishdeep Singla
Department of Computer Science

and Engineering
Chandigarh University, Mohali,

Punjab, India

Activity

Diagram

Generation

of ADT

Generation

of ADG

Test Case

Generation

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 10, April 2015

13

Activity Diagram for the Hotel Management System is

considered and described as below with figure 2.

An activity diagram of the Hotel management system is

shown in figure 2 firstly as per diagram, the user visited the

hotel and met with the receptionist and asked him/her about

the requirements which they are giving to the customer. The

receptionist checked his/her requirements (like room, rates,

facilities etc.) and told him/her their details. Customer

provides the requirement details to the receptionist and

receptions checked the availability of the rooms. If the

requirements matches with the customer requirement then

receptionist informed him/her with their satisfaction, then

receptionist has generated the bill. After the generation of the

bill the customer paid the bill as parallel receptionist managed

the database. Moreover, by paying the bill to the receptionist,

the receptionist provided the receipt to the customer for the

verification that his/ her submission of the bill is successful

submitted. Finally the permission is granted and room is

allocated to the customer. The control transfer points are

handled by using swim lanes. Three swim lanes are

considered, one for the customer, receptionist and for the

manager who is handling this management. The input and the

output of each activity are shown using parameter nodes.

Fig 2: Hotel Management System Activity diagram

2.2 Automatic Generation of ADT
ADT is Activity Dependency Table which is automatically

generated from the activity diagram. ADT is fully dependent

upon the Activity diagram. The four columns of the ADT are:

i) Symbol: A unique number is assigned to the activities for

their verification. From figure 1 first activity is performed by

customer is visit a hotel, is assigned as ‘A’ symbol. As

Similar scenarios is taken for other activities.

ii) Activity Name: It describes the activities which are

performed by the actors. Example from Figure 2 visit a hotel

is a activity which are performed by the customer.

iii) Dependency: It describes the dependency of the one

activity on other activity. As shown in Figure 2 symbol ‘A’

has no dependency but as similar symbol ‘B’ is depending on

the output of the Symbol ‘A’.

iv) Controlling entity: Where it manages who is performing

the action.

Table 1. Activity Dependency Table

Symbol Activity Name Dependency Controlling

Entity

A Visit a Hotel Customer

B Check

Customer

Requirements

A Receptionist

C Ask Details B Receptionist

D Provide Details C Customer

E Check

Availability of

rooms

D Receptionist

F Generate Bill E Receptionist

G Pay Bill F Customer

H Generate

Database

F Receptionist

I Statistics H Manager

J Issue Receipt G Receptionist

K Show Receipt

to Employee

J Customer

L Show Receipt

to Customer

K,F Receptionist

From Figure 3 ADT is generated automatically by fetching the

XMI code from the Activity diagram a dependency table is

generated. A Modeling tool has generated the code file should

be by ‘.XMI’ extension. By extracting the relevant

information from the XMI code; lexical tree will shows their

dependencies behavior and interaction. After getting the

dependencies and controlling entities automatically generate

ADG.

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 10, April 2015

14

2.3 Generation of Activity Dependency

Graph
ADG is Activity Dependency Graph which is generated from

the Dependency Table. ADG is required for the generation of

the test cases where a required path is followed. From

Dependency table it is not possible to find the exact path of

the activities. Activity Dependency Graph is relies on the

Dependency table. It is necessary to generate the ADG

because it follows an exact path which is easy to generate the

test cases. From the output of this table the activity

dependency graph is generated.

 Fig 4: Activity Dependency Graph

From figure 4, ADG has taken the input values from the ADT

as such ‘A’ is independent whereas ‘B’ is dependent on the

‘A’. Including ‘B’ depends upon other two activities i.e., ‘C’

and ‘D’. These same procedures are followed in every path.

3. PERFORMANCE EVALUATION
The final Test cases are generated using a particular defined

algorithm called Generating TestCasesSuite. Genetic

Algorithm is used for the generation of final test cases.

Algorithm Used:

Fig 5: Generated Test Cases

Generation of test cases in early software development life

cycle will reduces the complexity as well provides an efficient

software testing planning.

4. CONCLUSION AND FUTURE SCOPE
We have implemented a semantic approach for the generation

of test cases automatically from behavioral diagram i.e.,

Activity Diagram. From the Activity diagram a ADTs and

ADGs are generated for the generation of test cases. It also

achieves full predicate coverage. It is efficient and effective

approach for the generation of test cases. In future, we will

expect this approach for other UML diagrams to generate test

cases and achieve higher coverage including with the

1. To Apply Genetic Algorithm, assigning weightage (wi) to

node using the SDT table

a. Start the process with the start message assigns the value as

one.

b. Using the dependency table check the next message.

c. Increment the value and assign it to the next.

d. If the current message is decision, then

i. Increment the value and assign it to the true side of the

decision.

ii. And also for the false side of the decision.

e. Repeat the step until it reaches the end message.

2. To calculate fitness value

a. for each node calculate the number of incoming node(a)

and the number of outgoing

nodes (b)

b. F = Σ n (ai * bi) + wi

i=1

3. Select the initial test data by random and calculate the

fitness value for test data.

4. Generate the random number r

a. if r<0.8 perform crossover

b. else if r<0.2 perform mutation

5. Repeat this process until all the message paths have been

covered

6. Best Test path generated.

7. End.

 A B C

 E D

 K

 F

 J

 H

 I

 G

 L

Test Case : A-B-C-D-E-F-H-I-J-K-L

Test Case : A-B-C-D-E-F-H-I-J-G-F

Test Case :A-B-C-D-E-F-G-J-K-L

Test Case : L-K-J-G-F

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 10, April 2015

15

prioritization of the test cases expecting with detection of

faults.

5. REFERENCES
[1] B. Berenbach, D. Paulish, J. Kazmeier, A. Rudorfer. 2009.

Software and Systems Requirements Engineering in

practice. The McGraw-Hill Companies Inc., USA.

[2] Cartaxo, Emanuela G., Francisco G. Oliveira Neto, and

Patrícia DL Machado. 2007. Test case generation by

means of UML sequence diagrams and labeled transition

systems. Systems, Man and Cybernetics ISIC.

International Conference on IEEE.

[3] Prasanna, M., and K. R. Chandran. 2009. Automatic test

case generation for UML object diagrams using genetic

algorithm. International Journal of Advance Soft

Computer Application.

[4] B.B. Agarwal, S.P. Tayal, M. Gupta. 2010. Software

Engineering and testing. In Infinity Science Press, Jones

and Bartlett, Hingham, Toronto.

[5] R. Black.2007. Pragmatic Software Testing: Becoming an

Effective and Efficient Test Professional. In John Wiley &

Sons, Bulverde, Texas.

[6] Santosh Kumar Swain, Durga Prasad Mohapatra, and

Rajib Mall. 2010. Test Case Generation Based on Use

case and Sequence Diagram. In International Journal of

Software Engineering, IJSE Vol.3 No.2.

[7] C. Mingsong, Q. Xiaokang, and L. Xuandong. 2006.

Automatic test case generation for UML activity

diagrams. In International Workshop on Automation of

software test, pp. 2-8.

[8] Magic Draw UML. Available from:

www.magicdraw.com..

[9] Debasish Kundu and Debasis Samanta. 2009. A novel

approach to generate test cases from UML activity

diagrams. In Journal of Object Technology, 8(3):65–83.

[10] Stefania Gnesi, Diego Latella, and Mieke Massink.

Formal test-case generation for UML statecharts. In

Proceedings of the Ninth IEEE International Conference

on Engineering Complex Computer Systems Navigating

Complexity in the e-Engineering Age, pages 75–84,

Washington, DC, USA,

IJCATM : www.ijcaonline.org

