
International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 1, April 2015

47

Emulation of Shortest Path Algorithm in Software

Defined Networking Environment

Arnav Shivendu
Department of Computer Science

and Engineering
Sikkim Manipal Institute of

Technology, East Sikkim, India

Dependra Dhakal
Department of Computer Science

and Engineering
Sikkim Manipal Institute of

Technology, East Sikkim, India

Diwas Sharma
Department of Computer Science

and Engineering
Sikkim Manipal Institute of

Technology, East Sikkim, India

ABSTRACT

The field of Computer network has evolved a lot since the last

three decades from conventional static networks to

dynamically programmed architecture. The main goal of

Software Defined Networking (SDN) is for the network to be

open and programmable. Traditional network devices like

router and switches can take routing decision and forwarding

of these packets, SDN separate these component into different

planes by pulling different component apart called as Data

plane and Control plane. Hence the switches only have packet

forwarding capability and cannot make any routing decisions,

while decision making is done by the controller. OpenFlow is

the interface that helps the switches and the controller to

communicate. It is a communication protocol that enables the

controller to determine the route of the network packet via the

switches. This project implements the Bellman – Ford

algorithm to find the shortest path between two nodes in a

network using SDN environment. POX API’s has been used

to implement the Bellman – Ford Algorithm.

Keywords

Bellman – Ford, Software Defined Networking (SDN), POX,

Mininet.

1. INTRODUCTION
In traditional networks, the network devices have a control

plane and data plane within the same device[1][16]. Control

plane gives information to generate forwarding table while

data plane forwards the packet based on the entry provided in

the forwarding table. With the changes in network pattern and

type of traffic there is a need to have a network architecture

which is more dynamic and flexible [6]. (Software Defined

Networking) SDN is a technology to separate the control

plane and data plane of network devices. SDN uses a

centralized controller to generate flow tables that configures

the forwarding table responsible for forwarding the packets in

the network[1][5][6]. Controller will typically have core

services to aid in job of interfacing with network nodes and

for providing a programmable interface to network

application [6][7]. Data device or forwarding device receive

packets, take action on those packets and update counters.

Types of action include dropping of packets, modifying the

header, sending packet to single or multiple ports. Instruction

to how to handle the packets originates with SDN controller

[9][10][16]. This device also caches this information for

future use. Future packets of the same type can take a fast

path with no need to contact the SDN controller. Application

programs can be run on top of a controller to monitor and

manage the network in a centralized manner[9] [11].

In a SDN, traffic can be shaped from controller without

configuring the individual switches. The administrator can

build application based on his or her organization

requirement, thus giving flexibility and efficiently managing

traffic. POX [3][12] is a Python based open source SDN

Controller for developing SDN applications. POX [3][12]

controller can be used to run different applications like switch,

load balancer and firewall. Communication between the

controller and the switches is carried by communication

protocol such as OpenFlow[14]. Openflow[1][14] is the most

famous standard protocol used in SDN. Switches are unable to

function without being programmed by the controller. The

figure 1 [13] below describes how the controller coordinates

with the switch using open flow protocol along with the

network application or controller application based on any

organization need and policies.

Fig 1: SDN reference design [13]

2. PRELIMINARIES

2.1 Mininet
Mininet is a network emulator tool that accurately emulates

any type of forwarding element, in terms of function and

performance. SDN network can be created as per required

specifications and testing can be on different network

configurations. Once the testing is done in the SDN solution

on Mininet we can move it to a real physical network[15].

2.2 Bellman – Ford Algorithm
The Bellman – Ford Algorithm has been used as each node

only needs to know its own number and be able to derive the

number of neighbors it has. The calculation of the shortest

path to a given destination is done by hoping neighbor by

neighbor from each source to destination [2].

2.3. POX
POX [4][12] is a Python based open source SDN Controller

for developing SDN applications. POX controller can be used

to run different applications like switch, load balancer, and

firewall.

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 1, April 2015

48

3. THE BELLMAN – FORD

ALGORITHM DESCRIPTION
Given a weighted, directed graph G=(V, E) and a single

source node v, the Bellman - Ford algorithm can return a

shortest path from the source node v to every other node,

where V is the set of nodes and E is the set of edges. Table 1

shows Bellman - Ford algorithm [2] [3], whose input is a

given graph G = (V, E), the edge weight setting cost, number

of nodes n and the single source node v. The dist[u] to store

the distance of the current shortest path from the source node

s to the destination node u, and uses cost[u,i] to store the

previous cost of u to another node i.

 Table 1. The Bellman – Ford Algorithm [3]

Bellman – Ford Algorithm

Input : G(V,E), dist, cost, v,n

Output : dist[|V|]

for i := 1 to n do // Initialize dist.

 dist [i] : = cost [v , i] ;

for k : = 2 to n-1 do

 for each u such that u ≠ v and u has at least

one incoming edge do

 for each < i, u > in the graph do

 if dist [u] > dist [i] + cost [i,u] then

dist [u] : = dist [i] + cost [i,u] ;

4. SIMULATION

4.1 Simulation Setting
Mininet is used to create a network topology as shown in Fig

2 with two hosts, eight switches and a controller.

Fig 2. Network Topology

4.2 Simulation Results
In Fig 3. it can be seen that when the custom SDN application

called “mini” is run it calls the launch function that gives

details regarding the POX controller and whether it is running

or not. It also listens to request on port no. 6633(can be

changed) from a python script that creates the network

topology.

 Fig 3. Running Custom Application “mini”

In Fig 4. it can be observed that whenever a switch is added to

the network after running a python script called “ex.py”

containing the specification of the network it generates a

“Switch connection event”.

Also when a new link is added or removed it generates

“Received LinkEvent” and “Remove LinkEvent”

respectively.

Fig 4. Adding of switches and links dynamically

Once all the switches and links have been detected,

transmission of packets is now possible. When host “h1”

pings “h2”, Bellman - Ford algorithm finds the shortest path

for the transmission as shown in Fig 5. The packet starts

getting transmitted one by one along the path. Initially ARP

packet is sent to discover the IP addresses of each of the

network devices involved and the flow table of the switches

involved.

Fig 5. Routing along shortest path

In fig 6, it can be observed that that the throughput of the

network using a TCP stream comes out to be 38.6 Kbits/sec

when the bandwidth is 10 Mbits/sec.

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 1, April 2015

49

Fig 6. Routing along shortest path

5. SUMMARY AND CONCLUSIONS
In this paper, the Bellman – Ford algorithm has been

implemented in a Software Defined Networking environment

using Mininet and POX to demonstrate the dynamic

programmability using controller. The field of software

defined networking is quite recent, but growing at a very fast

pace. There are important research challenges to be addressed

like security. If an organization requires a specific type of a

network behavior it can develop or install application to do

what it needs, this application may be common networking

function for example traffic engineering, policy routing,

firewall and security. SDN has the potential to facilitate the

deployment and management of network applications and

services with greater efficiency. In future load balancing and

firewall can be emulated based on our campus requirements.

The firewall policies could be different for any organization,

considering that fact SDN gives the flexibility to develop

application based on individual campus requirement like

during a online examination in a university, the priority and

higher bandwidth link can be given to html pages during that

hour. Similarly load balancing can be implemented based on

link cost and number of controllers.

6. REFERENCES
[1] Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam

Nguyen, Katia Obraczka, Thierry Turletti, "A Survey of

Software-Defined Networking: Past, Present, and Future

of Programmable Networks", Vous Consultez L'Archive

Hal, 19 Jan, 2014.

[2] David Walden," The Bellman-Ford Algorithm and

Distributed Bellman-Ford".

[3] Shivani Sanan, Leena Jain, Bharti Kappor, “Shortest

Path Algorithm”, International Journal of Application or

Innovation in Engineering & Management (IJAIEM).

[4] S.K. Kaur, Japinder Singh, Navtej Singh Ghumman,

"Network Programmability Using POX Controller"

International Conmference on Communication,

Computing and Systems (ICCS 2014)

[5] N. McKeown, T. Anderson, H. Balakrishnan, G.

Parulkar, L. Peterson,J. Rexford, S. Shenker, and J

Turer, “OpenFlow: enabling innovation in campus

networks,” SIGCOMM Comput. Commun. Rev., vol. 38,

no. 2, pp. 69–74, Mar. 2008.

[6] N. Mckeown, “How SDN will Shape Networking,”

October 2011. [Online]. Available:

http://www.youtube.com/watch?v=c9-K5O qYgA

[7] ONF, “Open networking foundation,” 2014. [Online].

Available: https://www.opennetworking.org

[8] D. Drutskoy, E. Keller, and J. Rexford, “Scalable

network virtualization in software-defined networks,”

IEEE Internet Computing, vol. 17, no. 2, 2013, pp. 20

[9] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka,

and T. Turletti, “A survey of software-defined

networking: Past, present, and future of programmable

networks,” Communications Surveys Tutorials, IEEE,

vol. 16, no. 3, pp. 1617–1634, Third 2014.

[10] K. Greene, “MIT Tech Review 10 Breakthrough

Technologies: Software-defined Networking,”

http://www2.technologyreview.com/article/412194/tr10-

software-defined-networking/, 2009

[11] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang, and

A. Arefin, “Anetwork-state management service,” in

Proceedings of the 2014 ACM Conference on

SIGCOMM,

[12] M. McCauley, “POX,” 2012. [Online]. Available:

http://www.noxrepo.org/

[13] Masayoshi Kobayashi, Srini Seetharaman, Guru Parulkar,

Guido Appenzeller , Joseph Little , Johan van Reijendam ,

Paul Weissmann, Nick McKeown “Maturing of

OpenFlow and Software-defined Networking through

deployments“.(2013),

http://dx.doi.org/10.1016/j.bjp.2013.10.011

[14] OpenFlowTutorial.

<http://www.openflow.org/wk/index.php/OpenFlow_Tut

orial>.

[15] B. Lantz, B. Heller, N. McKeown, A network in a laptop:

rapid prototyping for software-defined networks, in:

Proceedings of the Ninth ACM SIGCOMM Workshop on

Hot Topics in Networks, 2010.

[16] Diego Kreutz, Fernando M. V. Ramos, Paulo Verissimo,

Christian Esteve Rothenberg,Siamak Azodolmolky and

Steve Uhlig,” Software-Defined Networking: A

Comprehensive Survey” Proceedings of the IEEE

(Volume:103, Issue: 1) pp 14-76, Dec 2014

IJCATM : www.ijcaonline.org

