
International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 8, April 2015

28

A Note on Computational Approach to Travelling Sales

Man Problem

Shaik. Mohiddin Shaw
Narasaraopeta Engineering College,

Narasaraopet

Dharmaiah Gurram
Narasarao PET Engineering College,

Narasaraopet

ABSTRACT
Many real life situations for which there are no optimization

algorithms which can solve polynomial time problems in the

worst case. So researchers are trying for new approximation

algorithms for such kinds of situations. Approximation

algorithms give the solution which is close to the optimal

solution of a particular situation. Traveling Salesman Problem

(TSP) is a typical NP complete problem which lacks

polynomial time algorithm. In this paper it is proposed an

edge removal algorithm, which will give the nearly optimal

solution within a limited time.

General Terms
Optimization, Travelling Sales man Problem

Keywords
Edge Removal Algorithm, Compression Algorithm, Back

Tracking.

1. INTRODUCTION
Traveling Salesman Problem (TSP) is a famous NP hard

problem and also a typical combinatorial optimization

problem in Operation Research. With the increasing of

number of cities, its solving time complexity grows rapidly in

exponential degree, so enumerating each possible route and

searching for the one with the smallest cost to optimally solve

this problem becomes impossible in polynomial time. In the

classical traveling salesman problem, a set of cities has to be

visited in a single tour with the objective of minimizing the

total length of the tour. This is one of the most studied

problems in combinatorial optimization, together with its

dozens of variations. In the asymmetric version of the

problem, the distance from one point to another in a given

space can be different from the inverse distance. This

variation, known as the Asymmetric Traveling Salesman

Problem (ATSP) arises in many applications; for example,

one can think of a delivery vehicle traveling through one-way

streets in a city, or of gasoline costs when traveling through

mountain roads.

2. THE TRAVELING SALESMAN

PROBLEM
The idea of the traveling salesman problem (TSP) is to find a

tour of a given number of cities, visiting each cityexactly once

and returning to the starting city where the length of this tour

is minimized. TSP is of great significance in practical

applications, it can be used to resolve the problems in

allocation, path problem and vehicle scheduling problem and

so on. The standard symmetric traveling salesman problem

can be stated mathematically as follows:

Given a weighted graph G = (V, E), where V is the set of

nodes, E is the set of edges, and the weight cij on the edge

between nodes i and j is a non-negative value, finding the tour

of all nodes that has the minimum total cost.

3. EDGE REMOVAL ALGORITHM
Algorithm:

Step 1: Read the Adjacency Matrix, (distances between

different towns).

Step 2: Apply compression algorithm on the above adjacency

matrix, to remove edges and find cost tables.

Step 3: Sort the edges related to each node in ascending order.

Step 4: calculate the minimum cost array to improve the

efficiency of this algorithm.

Step 5: Apply backtracking on the sorted cost tables obtained

in step 3 using step 4 as an optimization step.

3.1 Example:
Step 1: Input:

0 2 8 15 1 10 5 19 19 3

5 0 6 6 2 8 2 12 16 3

8 17 0 12 5 3 14 13 3 2

17 19 16 0 8 7 12 19 10 13

8 20 16 15 0 4 12 3 14 14

5 2 12 14 9 0 8 5 3 18

18 20 4 2 10 19 0 17 16 11

3 9 7 1 3 5 9 0 7 6

11 10 11 11 7 2 14 9 0 10

4 5 15 17 1 7 17 12 9 0

Step 2: Compression Step:

In this step remove these edges that are no need to visit to

find the optimal solution.

By using single source shortest path algorithms it can be find

the shortest paths from a node to all remaining nodes. For

example, consider node number 1, the paths from node 1 to all

other nodes is like below.

Table1:

Source

Node

Destination

Node

Minimum

Path

Node

to be

visited

first

Cost

1 2 (1 2) 2 2

1 3 (1 3) 3 8

1 4 (1 5 8 4) 5 5

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 8, April 2015

29

1 5 (1 5) 5 1

1 6 (1 5 6) 5 5

1 7 (1 2 7) 2 4

1 8 (1 5 8) 5 4

1 9 (1 5 6 9) 5 8

1 10 (1 10) 10 3

In the next case extract the fields’ node to be visited first and

cost where those values in the 2nd and 4th column of the above

table are equal. That is, nodes extracted for the above table

are 2, 3, 5, 10.

Now the cost tables are generated for above extracted nodes

and their costs.

Table 2: Cost table for node 1.

Node

Number

Cost

2 2

3 8

5 1

10 3

Cost tables for all the other nodes are given below:

Table 3: Cost Table for node 2.

Node

Number

Cost

 1 5

 3 6

5 2

7 2

10 3

Table 4: Cost Table for Node 3.

Node

Number

Cost

6 3

9 3

10 2

Table 5: Cost table for Node 4.

Node

Number

Cost

5 8

6 7

9 10

Table 6: Cost Table for Node 5.

Node

Number

Cost

6 4

8 3

Table 7: Cost Table for Node 6.

Node

Number

Cost

1 5

2 2

8 5

9 3

Table 8: Cost Table for Node 7

Node

Number

Cost

3 4

4 2

Table 9: Cost Table for Node 8.

Node

Number

Cost

1 3

3 7

4 1

5 3

6 5

9 7

10 6

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 8, April 2015

30

Table 10: Cost table for Node 9.

Node

Number

Cost

6 2

Table 11: Cost table for Node 10.

Node

Number

Cost

1 4

2 5

5 1

Step 3: Sort the above tables based on their ascending

order of their costs.

Table 12: Sorted Cost table for Node 1.

Node

Number

Cost

5 1

2 2

10 3

3 8

Cost tables for all the other nodes are given below:

Table 13: Sorted Cost Table for node 2.

Node

Number

Cost

5 2

7 2

10 3

1 5

3 6

Table 14: Sorted Cost Table for Node 3.

Node

Number

Cost

10 2

6 3

9 3

Table 15: Sorted Cost table for Node 4.

Node

Number

Cost

6 7

5 8

9 10

Table 16: Sorted Cost Table for Node 5.

Node

Number

Cost

8 3

6 4

Table 17: Sorted Cost Table for Node 6.

Node

Number

Cost

2 2

9 3

1 5

8 5

Table 18: Sorted Cost Table for Node 7

Node

Number

Cost

4 2

3 4

Table 19: Sorted Cost Table for Node 8.

Node

Number

Cost

4 1

1 3

5 3

6 5

10 6

3 7

9 7

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 8, April 2015

31

Table 20: Sorted Cost table for Node 9.

Node

Number

Cost

6 2

Table 21: Sorted Cost table for Node 10.

Node

Number

Cost

5 1

1 4

2 5

Step 4: Now calculate the minimum cost array

The minimum_cost_array size is equal to the number of

nodes. So,

minimum_cost_array[1]

 = Sorted_Cost_Table[1][2] = 1

Minimum_Cost_Array[2]

= minimum_Cost_Array[1] + Sorted_Cost_Table[2][2]

= 1 + 2 = 3.

Minimum_Cost_Array[3]

= minimum_Cost_Array[2] + Sorted_Cost_Table[3][2]

= 3 + 2 = 5.

Minimum_Cost_Array[4]

= minimum_Cost_Array[3] + Sorted_Cost_Table[4][2]

= 5 + 7 = 12.

Minimum_Cost_Array[5]

= minimum_Cost_Array[4] + Sorted_Cost_Table[5][2]

= 12 + 3 = 15.

Minimum_Cost_Array[6]

= minimum_Cost_Array[5] + Sorted_Cost_Table[6][2]

= 15 + 2 = 17.

Minimum_Cost_Array[7]

= minimum_Cost_Array[6] + Sorted_Cost_Table[7][2]

= 17 + 2 = 19.

Minimum_Cost_Array[8]

= minimum_Cost_Array[7] + Sorted_Cost_Table[8][2]

= 19 + 1 = 20.

Minimum_Cost_Array[9]

= minimum_Cost_Array[8] + Sorted_Cost_Table[9][2]

= 20 + 2 = 22.

Minimum_Cost_Array[10]

= minimum_Cost_Array[9] + Sorted_Cost_Table[10][2]

= 22 + 1 = 23.

 So, Minimum_Cost_Array[] =

 { 1, 3, 5, 12, 15, 17, 19, 20, 22, 23 }.

Step 5: Apply Backtracking step to the above cost Tables

generated in Step 4:

The optimal tour is 1 5 8 4 9 6 2 7 3 10 1

Use of Step 4:

If you got a tour already, (and tour length is (say OTL))

For example, if there are 'N' cities , and the number of cities

that to visited already is 'X' , and the distance travelled

already is 'D', Then it should travel atleast a distance of

Minimum_Cost_Array[n-x+1] to get the next tour. So least

possible distance for this tour is D +

Minimum_Cost_Array[n-x+1] .

And it should satisy the condition " D +

Minimum_Cost_Array[n-x+1] < OTL " , then only it can

say the path (tour) that are travelling now can be a minimum

tour than the earlier tour OTL. If above condition is failed to

satisfy then skip the combinations to improve efficiency.

But, in some cases if the number of edges removed are very

less, that mean the cost table size is high then this algorithm

won’t give the optimal result, in that situation it is better to

go for nearly optimal solution.

3.2 Example:
Consider this 24 city problem:

The Adjacency Matrix for this problem is shown on separate

sheet in the next page.

But to calculate the optimal path from normal backtracking

method need 23! combinations, tht is,

25852016738884976640000 combinations have to be

performed, so that it go for the nearly optimal solution. This

approach is efficient to find the nearly optimal solution.

The Optimal solution for the problem is

16 11 3 7 6 24 8 21 5 10 17 22 18 19 15 2 20 14 13 9 23 4 12

1 Cost 1272

But to get the solution in a polynomial time is not possible, so

by giving time bound of 15 seconds to Edge Removal

Algorithm, will get the nearly optimal cost of 1316. This

algorithm is checked against several samples of real world

data and the results are promising to be nearly optimal. All

the results shows this algorithm give the nearly optimal

solution less than the 2 times of optimal solution in all

possible cases.

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 8, April 2015

32

The adjacency matrix [2.2] :

0 257 187 91 150 80 130 134 243 185 214 70 272 219 293 54 211 290 268 261 175 25 192 121

257 0 196 228 112 196 167 154 209 86 223 191 180 83 50 219 74 139 53 43 128 99 228 142

187 196 0 158 96 88 59 63 286 124 49 121 315 172 232 92 81 98 138 200 76 89 235 99

91 228 158 0 120 77 101 105 159 156 185 27 188 149 264 82 182 261 239 232 146 221 108 84

150 112 96 120 0 63 56 34 190 40 123 83 193 79 148 119 105 144 123 98 32 105 119 35

80 196 88 77 63 0 25 29 216 124 115 47 245 139 232 31 150 176 207 200 76 189 165 29

130 167 59 101 56 25 0 22 229 95 86 64 258 134 203 43 121 164 178 171 47 160 178 42

134 154 63 105 34 29 22 0 225 82 90 68 228 112 190 58 108 136 165 131 30 147 154 36

243 209 286 159 190 216 229 225 0 207 313 173 29 126 248 238 310 389 367 166 222 349 71 220

185 86 124 156 40 124 95 82 207 0 151 119 159 62 122 147 37 116 86 90 56 76 136 70

214 223 49 185 123 115 86 90 313 151 0 148 342 199 259 84 160 147 187 227 103 138 262 126

70 191 121 27 83 47 64 68 173 119 148 0 209 153 227 53 145 224 202 195 109 184 110 55

272 180 315 188 193 245 258 228 29 159 342 209 0 97 219 267 196 275 227 137 225 235 74 249

219 83 172 149 79 139 134 112 126 62 199 153 97 0 134 170 99 178 130 69 104 138 96 104

293 50 232 264 148 232 203 190 248 122 259 227 219 134 0 255 125 154 68 82 164 114 264 178

54 219 92 82 119 31 42 58 238 147 84 53 267 170 255 0 173 190 230 223 99 212 187 60

211 74 81 182 105 150 121 108 310 37 160 145 196 99 125 173 0 79 57 90 57 39 182 96

290 139 98 261 144 176 164 136 389 116 147 224 275 178 154 190 79 0 86 176 112 40 261 175

268 53 138 239 123 207 178 165 367 86 187 202 227 130 68 230 57 86 0 90 114 46 239 153

261 43 200 232 98 200 171 131 166 90 227 195 137 69 82 223 90 176 90 0 134 136 165 146

175 128 76 146 32 76 47 30 222 56 103 109 225 104 164 99 57 112 114 134 0 96 151 47

250 99 89 221 105 189 160 147 349 76 138 184 235 138 114 212 39 40 46 136 96 0 221 135

192 228 235 108 119 165 178 154 71 136 262 110 74 96 264 187 182 261 239 165 151 221 0 169

121 142 99 84 35 29 42 36 220 70 126 55 249 104 178 60 96 175 153 146 47 135 169 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The nearly optimal solutions found based on this algorithm within 15 seconds is given below:

16 6 7 8 21 5 24 12 4 1 9 13 23 14 10 17 19 2 20 15 22 18 3 11 Cost 1509

16 6 7 8 21 5 24 12 4 1 9 13 23 14 10 17 2 20 15 19 22 18 3 11 Cost 1473

16 6 7 8 21 5 24 12 4 1 9 13 23 14 10 17 20 2 15 19 22 18 3 11 Cost 1457

16 6 7 8 21 5 24 12 4 1 9 13 23 14 20 2 15 19 10 17 22 18 3 11 Cost 1453

16 6 7 8 21 5 24 12 1 4 23 9 13 14 10 17 22 19 2 20 15 18 3 11 Cost 1443

16 6 7 8 21 5 24 12 1 4 23 9 13 14 10 17 19 2 20 15 22 18 3 11 Cost 1415

16 6 7 8 21 5 24 12 1 4 23 9 13 14 10 17 2 20 15 19 22 18 3 11 Cost 1379

16 6 7 8 21 5 24 12 1 4 23 9 13 14 10 17 20 2 15 19 22 18 3 11 Cost 1363

16 6 7 8 21 5 24 12 1 4 23 9 13 14 20 2 15 19 10 17 22 18 3 11 Cost 1359

16 6 7 8 21 5 24 10 17 3 11 18 22 19 2 15 20 14 13 9 23 4 12 1 Cost 1355

16 6 7 8 21 5 24 10 17 3 11 18 22 19 15 2 20 14 13 9 23 4 12 1 Cost 1331

16 6 7 8 21 24 5 10 17 3 11 18 22 19 15 2 20 14 13 9 23 4 12 1 Cost 1316

4. CONCLUSION
This paper proposed a novel algorithm to get nearly optimal

solution to the Travelling Sales man problem by taking time

bound as a limit. This algorithm uses single source shortest

path algorithm to remove unnecessary edges and by using

compression algorithm. This algorithm is tested against

several real world data and results are promising.

5. ACKNOWLEDGEMENT
Authors thanks to the management of Narasaraopeta

Engineering College, for their continuous encouragement.

Finally also thanks to the referees for their comments to

improve the quality of this research paper.

6. REFERENCES
[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, “The Design

and Analysis of Computer Algorithms”, Addison-

Wesley, 1974.

[2] E. Horowitz and S. Sahni, “Fundamental of Computer

Algorithms” , Computer Science Press, 1982.

[3] E. L. Lawler, J. K. Lenstra, A. RinnooyKan, and D. B.

Shmoys. The TravelingSalesman Problem: A Guided

Tour of Combinatorial Optimization. Wiley,Chichester,

England, 1985.

[4] Goldberg David E, Lingle R Jr. “Alleles, Loci, and the

Traveling Salesman Problem.” Proc. Of 1st Int. Conf. on

Genetic Algorithms and Their Applications, Lawrence

Erlbaum Associates, 1985,154-159

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 8, April 2015

33

[5] E. L. Lawler, J. K. Lenstra, A. RinnooyKan, and D. B.

Shmoys. The Traveling Salesman Problem: A Guided

Tour of Combinatorial Optimization. Wiley, Chichester,

England, 1985.

[6] A. Gibbons and W. Rytter, “Efficient Parallel

Algorithms” Cambridge University Press, 1988.

[7] M. Weiss, “Data Structures and Algorithm Analysis”,

Benjamin-Cummings, 1992.

[8] U. Manber, “Introduction to Algorithms: A Creative

approach”, Addison-Wesley, 1989.

[9] G. Gonnet and R. Baeza-Yates, “Handbook of

Algorithms and Data Structures” , Addison- Wesley, 2

ed., 1991.

[10] B. Salzberg, “File Structures: An Analytic Approach”,

Prentice-Hall, 1988.

[11] C. H. Papadimitriou and M. Yannakakis. The traveling

salesman problem with distances one and two.

Mathematics of Operations Research, 18(1):1–11, 1993.

[12] S. O. Krumke, W. E. de Paepe, D. Poensgen, and L.

Stougie. News from the online traveling repairman. In J.

Sgall, A. Pultr, and P. Kolman, editors, Proc. 26th Symp.

on Mathematical Foundations of Computer Science,

volume 2136 of Lecture Notes in Computer Science,

pages 487–499. Springer-Verlag, 2001.

[13] Prof. Lenore Cowen, Scribe: Stephanie Tauber, Lecture

notes on “The Travelling Salesman Problem (TSP)”,

Comp260: Advanced Algorithms, Tufts University,

Spring 2002.

[14] G. Gutin and A. P. Punnen, editors.The Traveling

Salesman Problem and itsVariations. Kluwer, Dordrecht,

TheNederlands, 2002.

[15] M. Lipmann. On-Line Routing.PhD thesis, Eindhoven

University of Technology, 2003.

[16] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths,

trees, and minimum latency tours. In Proceedings of the

44th Annual Symposium on Foundations of Computer

Science, Cambridge, Massachusetts, 2003.

[17] C. Chekuri and A. Kumar. Maximum Coverage Problem

with Group Budget Constraints and Applications. Proc.

Of APPROX-RANDOM, LNCS, 72–83, 2004.

[18] C. Chekuri and M. Pal. A Recursive Greedy Algorithm

for Walks in Directed Graphs. Proc. of IEEE FOCS,

245–253, 2005.

[19] C. Chekuri and M. Pal. An O(log n) Approximation for

the Asymmetric Traveling Salesman Path Problem. Proc.

of APPROX, 95–103, 2005.

[20] K. Chen and S. Har-Peled. The Orienteering Problem in

the Plane Revisited. Proc. of ACM SoCG, 247–254,

2006.

[21] V. Nagarajan and R. Ravi. Poly- logarithmic

approximation algorithms for Directed Vehicle Routing

Problems. Proc.of APPROX, 257–270, 2007.

IJCATM : www.ijcaonline.org

