A Note on Computational Approach to Travelling Sales Man Problem

Shaik. Mohiddin Shaw
Narasaraopeta Engineering College, Narasaraopet

Dharmaiah Gurram
Narasarao PET Engineering College, Narasaraopet

Abstract

Many real life situations for which there are no optimization algorithms which can solve polynomial time problems in the worst case. So researchers are trying for new approximation algorithms for such kinds of situations. Approximation algorithms give the solution which is close to the optimal solution of a particular situation. Traveling Salesman Problem (TSP) is a typical NP complete problem which lacks polynomial time algorithm. In this paper it is proposed an edge removal algorithm, which will give the nearly optimal solution within a limited time.

General Terms

Optimization, Travelling Sales man Problem

Keywords

Edge Removal Algorithm, Compression Algorithm, Back Tracking.

1. INTRODUCTION

Traveling Salesman Problem (TSP) is a famous NP hard problem and also a typical combinatorial optimization problem in Operation Research. With the increasing of number of cities, its solving time complexity grows rapidly in exponential degree, so enumerating each possible route and searching for the one with the smallest cost to optimally solve this problem becomes impossible in polynomial time. In the classical traveling salesman problem, a set of cities has to be visited in a single tour with the objective of minimizing the total length of the tour. This is one of the most studied problems in combinatorial optimization, together with its dozens of variations. In the asymmetric version of the problem, the distance from one point to another in a given space can be different from the inverse distance. This variation, known as the Asymmetric Traveling Salesman Problem (ATSP) arises in many applications; for example, one can think of a delivery vehicle traveling through one-way streets in a city, or of gasoline costs when traveling through mountain roads.

2. THE TRAVELING SALESMAN PROBLEM

The idea of the traveling salesman problem (TSP) is to find a tour of a given number of cities, visiting each cityexactly once and returning to the starting city where the length of this tour is minimized. TSP is of great significance in practical applications, it can be used to resolve the problems in allocation, path problem and vehicle scheduling problem and so on. The standard symmetric traveling salesman problem can be stated mathematically as follows:
Given a weighted graph $G=(V, E)$, where V is the set of nodes, E is the set of edges, and the weight $c_{i j}$ on the edge between nodes i and j is a non-negative value, finding the tour of all nodes that has the minimum total cost.

3. EDGE REMOVAL ALGORITHM
 Algorithm:

Step 1: Read the Adjacency Matrix, (distances between different towns).

Step 2: Apply compression algorithm on the above adjacency matrix, to remove edges and find cost tables.

Step 3: Sort the edges related to each node in ascending order.
Step 4: calculate the minimum cost array to improve the efficiency of this algorithm.
Step 5: Apply backtracking on the sorted cost tables obtained in step 3 using step 4 as an optimization step.

3.1 Example:

Step 1: Input:

0	2	8	15	1	10	5	19	19	3
5	0	6	6	2	8	2	12	16	3
8	17	0	12	5	3	14	13	3	2
17	19	16	0	8	7	12	19	10	13
8	20	16	15	0	4	12	3	14	14
5	2	12	14	9	0	8	5	3	18
18	20	4	2	10	19	0	17	16	11
3	9	7	1	3	5	9	0	7	6
11	10	11	11	7	2	14	9	0	10
4	5	15	17	1	7	17	12	9	0

Step 2: Compression Step:
In this step remove these edges that are no need to visit to find the optimal solution.
By using single source shortest path algorithms it can be find the shortest paths from a node to all remaining nodes. For example, consider node number 1 , the paths from node 1 to all other nodes is like below.

Table1:

Source Node	Destination Node	Minimum Path	Node to be visited first	Cost
1	2	(12)	2	2
1	3	(13)	3	8
1	4	(1584)	5	5

1	5	(15)	5	1
1	6	(156)	5	5
1	7	(127)	2	4
1	8	(158)	5	4
1	9	(1569)	5	8
1	10	(110)	10	3

In the next case extract the fields' node to be visited first and cost where those values in the $2^{\text {nd }}$ and $4^{\text {th }}$ column of the above table are equal. That is, nodes extracted for the above table are $2,3,5,10$.

Now the cost tables are generated for above extracted nodes and their costs.

Table 2: Cost table for node 1.

Node Number	Cost
2	2
3	8
5	1
10	3

Cost tables for all the other nodes are given below:
Table 3: Cost Table for node 2.

Node Number	Cost
1	5
3	6
5	2
7	2
10	3

Table 4: Cost Table for Node 3.

Node Number	Cost
6	3
9	3
10	2

Table 5: Cost table for Node 4.

Node Number	Cost
5	8
6	7
9	10

Table 6: Cost Table for Node 5.

Node Number	Cost
6	4
8	3

Table 7: Cost Table for Node 6.

Node Number	Cost
1	5
2	2
8	5
9	3

Table 8: Cost Table for Node 7

Node Number	Cost
3	4
4	2

Table 9: Cost Table for Node 8.

Node Number	Cost
1	3
3	7
4	1
5	3
6	5
9	7
10	6

Table 10: Cost table for Node 9.

Node Number	Cost
6	2

Table 11: Cost table for Node 10.

Node Number	Cost
1	4
2	5
5	1

Step 3: Sort the above tables based on their ascending order of their costs.

Table 12: Sorted Cost table for Node 1.

Node Number	Cost
5	1
2	2
10	3
3	8

Cost tables for all the other nodes are given below:
Table 13: Sorted Cost Table for node 2.

Node Number	Cost
5	2
7	2
10	3
1	5
3	6

Table 14: Sorted Cost Table for Node 3.

Node Number	Cost
10	2
6	3
9	3

Table 15: Sorted Cost table for Node 4.

Node Number	Cost
6	7
5	8
9	10

Table 16: Sorted Cost Table for Node 5.

Node Number	Cost
8	3
6	4

Table 17: Sorted Cost Table for Node 6.

Node Number	Cost
2	2
9	3
1	5
8	5

Table 18: Sorted Cost Table for Node 7

Node Number	Cost
4	2
3	4

Table 19: Sorted Cost Table for Node 8.

Node Number	Cost
4	1
1	3
5	3
6	5
10	6
3	7
9	7

Table 20: Sorted Cost table for Node 9.

Node Number	Cost
6	2

Table 21: Sorted Cost table for Node 10.

Node Number	Cost
5	1
1	4
2	5

Step 4: Now calculate the minimum cost array
The minimum_cost_array size is equal to the number of nodes. So,
minimum_cost_array[1]

$$
=\text { Sorted_Cost_Table[1][2] = } 1
$$

Minimum_Cost_Array[2]
$=$ minimum_Cost_Array[1] + Sorted_Cost_Table[2][2]
$=1+2=3$.
Minimum_Cost_Array[3]
$=$ minimum_Cost_Array[2] + Sorted_Cost_Table[3][2]
$=3+2=5$.
Minimum_Cost_Array[4]
$=$ minimum_Cost_Array[3] + Sorted_Cost_Table[4][2]
$=5+7=12$.
Minimum_Cost_Array[5]
$=$ minimum_Cost_Array[4] + Sorted_Cost_Table[5][2]
$=12+3=15$.
Minimum_Cost_Array[6]
= minimum_Cost_Array[5] + Sorted_Cost_Table[6][2]
$=15+2=17$.
Minimum_Cost_Array[7]
$=$ minimum_Cost_Array[6] + Sorted_Cost_Table[7][2]
$=17+2=19$.
Minimum_Cost_Array[8]
= minimum_Cost_Array[7] + Sorted_Cost_Table[8][2]
$=19+1=20$.

Minimum_Cost_Array[9]
$=$ minimum_Cost_Array[8] + Sorted_Cost_Table[9][2]
$=20+2=22$.
Minimum_Cost_Array[10]
$=$ minimum_Cost_Array[9] + Sorted_Cost_Table[10][2]
$=22+1=23$.
So, Minimum_Cost_Array[] =
$\{1,3,5,12,15,17,19,20,22,23\}$.
Step 5: Apply Backtracking step to the above cost Tables generated in Step 4:

The optimal tour is 158496273101

Use of Step 4:

If you got a tour already, (and tour length is (say OTL))
For example, if there are ' N ' cities, and the number of cities that to visited already is ' \boldsymbol{X} ', and the distance travelled already is ' \boldsymbol{D} ', Then it should travel atleast a distance of Minimum_Cost_Array[n-x+1] to get the next tour. So least possible distance for this tour is $\mathbf{D}+$ Minimum_Cost_Array[n-x+1].

And it should satisy the condition " D + Minimum_Cost_Array[n-x+1]<0TL ", then only it can say the path (tour) that are travelling now can be a minimum tour than the earlier tour OTL. If above condition is failed to satisfy then skip the combinations to improve efficiency.
But, in some cases if the number of edges removed are very less, that mean the cost table size is high then this algorithm won't give the optimal result, in that situation it is better to go for nearly optimal solution.

3.2 Example:

Consider this 24 city problem:
The Adjacency Matrix for this problem is shown on separate sheet in the next page.
But to calculate the optimal path from normal backtracking method need 23! combinations, tht is, 25852016738884976640000 combinations have to be performed, so that it go for the nearly optimal solution. This approach is efficient to find the nearly optimal solution.
The Optimal solution for the problem is
16113762482151017221819152201413923412 1 Cost 1272

But to get the solution in a polynomial time is not possible, so by giving time bound of 15 seconds to Edge Removal Algorithm, will get the nearly optimal cost of 1316. This algorithm is checked against several samples of real world data and the results are promising to be nearly optimal. All the results shows this algorithm give the nearly optimal solution less than the 2 times of optimal solution in all possible cases.

The adjacency matrix [2.2] :

0	257	187	91	150	80	130	13	243	185	214	70	272	219	293	54	211	290	268	261	175	25	2	121
25	0	196	228	112	196	16	154	20	86	22	19	180	83	50	219	74	139	53	43	128	99	228	142
187	196	0	158	96	88	59	63	286	124	49	121	315	172	232	92	81	98	138	200	76	89	235	99
91	228	158	0	120	77	101	105	159	156	185	27	188	149	264	82	182	261	239	232	146	221	108	84
150	112	96	120	0	63	56	34	90	40	123	83	193	79	148	119	105	144	123	98	32	105	19	35
80	196	88	77	63	0	25	29	216	124	115	47	245	139	232	31	150	176	207	200	76	189	165	29
130	167	59	101	56	25	0	22	229	95	86	64	258	134	203	43	121	164	178	171	47	160	178	42
134	154	63	105	34	29	22	0	225	82	90	68	228	112	190	58	108	136	165	131	30	147	154	36
24	209	286	159	190	216	229	22	0	207	31	173	29	12	24	238	31	389	367	166	222	349	71	0
185	86	124	156	40	124	95	82	207	0	151	119	159	62	122	147	37	116	86	90	56	76	136	70
214	223	49	185	123	115	86	90	313	151	0	148	342	199	259	84	160	147	187	227	103	138	262	126
70	19	121	27	83	47	6	68	173	119	148	0	209	15	22	53	14	22	202	195	109	18	0	55
272	180	315	188	193	245	258	228	29	159	342	209	0	97	21	267	196	275	227	13	225	235	4	2
219	83	172	149	79	139	13	112	126	62	199	153	97	0	13	170	99	178	130	69	104	138	96	104
293	50	232	264	148	232	203	190	248	122	259	227	219	134	0	255	125	154	68	82	164	114	264	178
54	219	92	82	119	31	42	58	238	147	84	53	267	170	255	0	173	190	230	223	99	212	187	60
21	74	81	182	105	150	121	108	310	37	160	145	196	99	125	173	0	79	57	90	57	39	182	96
290	139	98	261	144	176	164	136	389	116	147	224	275	178	154	190	79	0	86	176	112	40	261	175
268	53	138	239	123	207	178	165	367	86	187	202	227	130	68	230	57	86	0	90	114	46	239	153
261	43	200	232	98	200	171	13	166	90	227	195	137	69	82	223	90	176	90	0	134	136	165	146
175	128	76	146	32	76	47	30	222	56	103	109	225	104	164	99	57	112	114	134	0	96	151	47
250	99	89	221	105	189	160	147	349	76	138	184	235	138	114	212	39	40	46	136	96	0	221	135
192	228	235	108	119	165	178	154	71	136	262	110	74	96	264	187	182	261	239	165	151	221	0	169
121	142	99	84	35	29	42	36	220	70	126	55	249	104	178	60	96	175	153	146	47	135	169	0

The nearly optimal solutions found based on this algorithm within 15 seconds is given below:

166782152412419132314101719220152218311	Cost 1509
166782152412419132314101722015192218311	Cost 1473
166782152412419132314101720215192218311	Cost 1457
166782152412419132314202151910172218311	Cost 1453
166782152412142391314101722192201518311	Cost 1443
166782152412142391314101719220152218311	Cost 1415
166782152412142391314101722015192218311	Cost 1379
166782152412142391314101720215192218311	Cost 1363
166782152412142391314202151910172218311	Cost 1359
166782152410173111822192152014139234121	Cost 1355
166782152410173111822191522014139234121	Cost 1331
166782124510173111822191522014139234121	Cost 1316

4. CONCLUSION

This paper proposed a novel algorithm to get nearly optimal solution to the Travelling Sales man problem by taking time bound as a limit. This algorithm uses single source shortest path algorithm to remove unnecessary edges and by using compression algorithm. This algorithm is tested against several real world data and results are promising.

5. ACKNOWLEDGEMENT

Authors thanks to the management of Narasaraopeta Engineering College, for their continuous encouragement. Finally also thanks to the referees for their comments to improve the quality of this research paper.

6. REFERENCES

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, "The Design and Analysis of Computer Algorithms", AddisonWesley, 1974.
[2] E. Horowitz and S. Sahni, "Fundamental of Computer Algorithms", Computer Science Press, 1982.
[3] E. L. Lawler, J. K. Lenstra, A. RinnooyKan, and D. B. Shmoys. The TravelingSalesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Chichester, England, 1985.
[4] Goldberg David E, Lingle R Jr. "Alleles, Loci, and the Traveling Salesman Problem." Proc. Of 1st Int. Conf. on Genetic Algorithms and Their Applications, Lawrence Erlbaum Associates, 1985,154-159
[5] E. L. Lawler, J. K. Lenstra, A. RinnooyKan, and D. B. Shmoys. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Chichester, England, 1985.
[6] A. Gibbons and W. Rytter, "Efficient Parallel Algorithms" Cambridge University Press, 1988.
[7] M. Weiss, "Data Structures and Algorithm Analysis", Benjamin-Cummings, 1992.
[8] U. Manber, "Introduction to Algorithms: A Creative approach", Addison-Wesley, 1989.
[9] G. Gonnet and R. Baeza-Yates, "Handbook of Algorithms and Data Structures", Addison- Wesley, 2 ed., 1991.
[10] B. Salzberg, "File Structures: An Analytic Approach", Prentice-Hall, 1988.
[11] C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one and two. Mathematics of Operations Research, 18(1):1-11, 1993.
[12] S. O. Krumke, W. E. de Paepe, D. Poensgen, and L. Stougie. News from the online traveling repairman. In J. Sgall, A. Pultr, and P. Kolman, editors, Proc. 26th Symp. on Mathematical Foundations of Computer Science, volume 2136 of Lecture Notes in Computer Science, pages 487-499. Springer-Verlag, 2001.
[13] Prof. Lenore Cowen, Scribe: Stephanie Tauber, Lecture notes on "The Travelling Salesman Problem (TSP)",

Comp260: Advanced Algorithms, Tufts University, Spring 2002.
[14] G. Gutin and A. P. Punnen, editors.The Traveling Salesman Problem and itsVariations. Kluwer, Dordrecht, TheNederlands, 2002.
[15] M. Lipmann. On-Line Routing.PhD thesis, Eindhoven University of Technology, 2003.
[16] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency tours. In Proceedings of the 44th Annual Symposium on Foundations of Computer Science, Cambridge, Massachusetts, 2003.
[17] C. Chekuri and A. Kumar. Maximum Coverage Problem with Group Budget Constraints and Applications. Proc. Of APPROX-RANDOM, LNCS, 72-83, 2004.
[18] C. Chekuri and M. Pal. A Recursive Greedy Algorithm for Walks in Directed Graphs. Proc. of IEEE FOCS, 245-253, 2005.
[19] C. Chekuri and M. Pal. An O(log n) Approximation for the Asymmetric Traveling Salesman Path Problem. Proc. of APPROX, 95-103, 2005.
[20] K. Chen and S. Har-Peled. The Orienteering Problem in the Plane Revisited. Proc. of ACM SoCG, 247-254, 2006.
[21] V. Nagarajan and R. Ravi. Poly- logarithmic approximation algorithms for Directed Vehicle Routing Problems. Proc.of APPROX, 257-270, 2007.

