
International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 7, April 2015

21

An Effective Mechanism for Improving Performance of

Load Balancing System in Cluster Computing

Deepti Sharma,
Asst. Professor (IT)

Department of Information Technology,
Jagan Institute of Management Studies

Affiliated to GGSIPU, Rohini, Delhi

Vijay B. Aggarwal, Ph.D.

Professor (IT)
Department of Information Technology,
Jagan Institute of Management Studies

Affiliated to GGSIPU, Rohini, Delhi

ABSTRACT
With the fast growth of the WWW, the traffic to the websites

is also increased. Due to which, clients many times experience

poor response time or sometimes denial of service. These

bottlenecks of the server can be solved using multiple web

servers that behave like a single host. With the rapid growth

of both information and users, the quality of network services

should be improved. Server‟s performance can be enhanced

using load balancing mechanism which is the process of

redistributing the work load among processors in the system.

To evenly distribute the load among the web servers, dynamic

load balancing (DLB) techniques are used. In this paper, a

DLB algorithm is given which will calculate, allocate and

balance the load among web servers on the basis of processing

capacity and memory requirement of jobs. Performance of the

proposed framework is also analyzed.

Keywords
Web Servers, Load Balancing, Response Time, Throughput

1. INTRODUCTION
In today‟s world, we have habit of living with gadgets around

us. They are needed for the mobile recharges or bill payment,

ordering a pizza, seeing a video on line, and many more.

There is so much dependency on the gadgets that all social

networking sites are used for making virtual friends or

sending messages through sites. For all these, Internet is

required. Now a day, Internet is the necessity as well as

requirement. An Internet enabled device has the capacity to

interact with world virtually and gets the task done easily and

quickly. On Internet, various heterogeneous devices are

required with different configuration, different operating

systems, and different bandwidth. With this, Internet is

becoming more and more complex, both in terms of, size as

well as traffic over the Internet. To access Internet, request is

generated through client‟s browser and it is served by web

server or a cluster of web servers. A Cluster of web servers

can refer to either the hardware (the computer) or the software

(the computer application) that helps to deliver web content

that can be accessed through the Internet [1].

Today, people who use Internet want the response from web

site as fast as possible. If the response time of a web site is too

slow or not able to process the request within the time span, it

is assumed that this web site is too slow, and surfing that web

site again is avoided. A client always prefers the sites which

has quick response time. Thus there is need for a distributed

processing system so that smaller and inexpensive

heterogeneous computer systems should be utilized to achieve

the required computation. Such systems are usually

independent with their own memory and storage resources,

but connected to a network so that the systems communicate

with each other for sharing the load. In such systems, the

major task of a centralized monitor is to distribute jobs among

web servers [2]. Due to heterogeneous machines, the central

monitor usually keeps track of the load on each such system

and assigns tasks to them. To manage the overloaded requests,

a facility is required that will ensure that the requests assigns

to the web server is properly handled. Further, if more number

of requests comes, they can be further distributed among

different web servers [1][4]. Over a period of time, the

performance of each system may be identified and the

information can be used for effective load balancing. To

distribute jobs to various nodes so as to derive maximum

efficiency and minimum wait time for jobs, various factors are

used to consider like network latency, I/O overhead, job

arrival rate and processing rate[5].

Also all these web servers should be load-balanced. The main

task of load balancing is to distribute the tasks to the web

server on evenly basis. Load Balancing can be defined as to

balance the data’s in and out from the server [2]. Load

balancing are of two types; when constant workload is

assigned for the computation to the processor, this is called

static load balancing. And, when there is a variable workload

for the computation and that can be changed during

computation that is said to be dynamic load balancing [2]. In

static load balancing work is distributed statically without

giving emphasis on runtime events. This will leads to a stage

where it is impossible to judge the work load at the initial

stages for the future usage. But, in dynamic load balancing,

every time the new workload arrives, the distribution of work

load by the master processor is done dynamically. In static

load balancing the performance is best. But in dynamic load

balancing, Load Balancing can be used in the best way to

process work load dynamically [6].

To evenly distribute the load among the servers under

clusters, dynamic load balancing (DLB) techniques are used.

DLB optimizes request distribution among servers based on

factors like server capacity, current load level and historical

performance [8]. It also improves mean response time and

overall throughput of Web Server Clusters (WSC). To further

improve the performance of the WSC, there are different

scheduling techniques e.g. round robin (RR), weighted round

robin (WRR), shortest queue (SQ) etc [2].

To improve the system performance and overall throughput,

we have developed a framework in which load will be

balanced based on memory and processing speed requirement.

The framework and formal description of the algorithm is

described in the following sections.

2. APPROACH
In this article, we will discuss about our approach for load

balancing mechanism. In this, we are taking consideration that

there are „n‟ numbers of servers. The value for „n‟ is variable.

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 7, April 2015

22

Server is having basic parameters as server‟s memory,

processing speed and memory left over. Initially, server‟s

memory and memory left over are same. Server‟s memory

leftover will fluctuate if there is any job allocation to server or

completion of job is done. Total numbers of jobs are

designated by „m‟. Jobs generated for an individual interval

can be defined as:

J[i]= k, where J = { J1, J2…Jn}, „i‟ is the interval generated

and k is the job generated for the respective interval and k={0,

1….x} where „x‟ can be defined as maximum number of jobs

that can be generated for an individual interval. Job

parameters are job memory, job processing speed and total

expected execution time. Here, job‟s memory and processing

speed means how much memory and processing of the server

required by job for execution. Job‟s expected execution time

is the maximum time required by the job for execution.

In our approach, total time is divided into intervals and there

is a fixed time slice of 5 milliseconds. At the time of

initialization of intervals, jobs are generated, initialized and

allocated to the servers. These jobs are recorded in “new job

queue”. In addition, there are three types of queues.

They are defined as follows:

a) Running Queue: contains all the running jobs.

b) New Job Queue: contains all the jobs that are

generated, when the interval begins.

c) Waiting Queue: the jobs that are initialized, but

waiting for allocation to server and execution.

There are various processes also running in the system. They

are as follows:

i) Allocation Process: Jobs are allocated when the

job‟s memory and processing requirements are

satisfied by server‟s memory left over and

processing speed. All servers would be checked for

condition, if conditions are satisfied, the job is

allocated to the respective server. If all the servers

are checked and job is still unallocated, it will be in

waiting queue.

ii) Load Balancing (LB): In our approach, LB is taken

care at the time of job allocation. While allocating

job, server‟s memory left over and processing speed

is checked. If it is greater than the job‟s memory

and job‟s processing requirement, then only it is

being allocated to respective server. This makes the

respective server even, or load balanced.

iii) Job Completion Process: Remaining expected

execution time (initially same as maximum

expected execution) is decremented with the

reduction value of the respected server (to which job

is allocated) after every cycle. If it becomes zero or

less than zero, job is completed and done. At the

same time, the memory left of that server is

incremented with the value of job that is currently

completed.

iv) Reduction Process: Reduction process is a process

used to calculate reduction value, associate with the

respective server. The reduction value is the value

with which job‟s expected execution time was

decremented. It was differ from server to server, on

the basis of the processing speed of respected

server.

At last, when numbers of intervals are over, but still there are

jobs left for execution. In this case, execution will be

continued until there is no job left for the execution.

3. DESIGN

3.1 Diagram
Heterogeneity implies heterogeneous types of devices,

operating systems etc. There may be heterogeneous devices

requesting from client‟s machine to access web server. But,

basic functionality to connect with the requested web site is

same through Internet. Server Controller receives the request

for the web site and forwards it to the web server. It

distributes the requests in such a manner that all the web

servers would be load balanced.

As shown in Figure 1, request is coming from various client

machines and is balanced among various web servers through

Server Controller. “DNS resolve process” is shown in Figure

2 below. There may be „x‟ number of clients. At any point of

time, they may be connected to any website. Once a request

is generated from the client, it is broken into Domain Name

and thereafter an IP is generated which is forwarded to the

respective web site‟s server. The domain name system (DNS)

is the way that Internet domain names are located and

translated into Internet Protocol addresses. A domain name is

a meaningful and easy-to-remember "handle" for an Internet

address.

Figure 1: The model of web server system with N nodes

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 7, April 2015

23

Figure 2: DNS Resolve Process

3.2 Flow Chart
Flow chart is a graphical representation of a computer

program in relation to its sequence of functions (as distinct

from the data it processes).

The flow graph given below depicts the overall steps of the

proposed approach in pictorial form.

Figure 3: Flowchart shows overall representation of proposed approach

4. FORMAL DESCRIPTION OF THE

ALGORITHM
Terms to be used in the algorithm are as follows:

1. Time Interval: The amount of time between two specified

instants, events or states. Our algorithm uses the concept of

time interval which would be generated randomly for every 5

milliseconds.

2. Job: A task performed by computer system. Jobs can be

performed by a single program or by a collection of programs.

In our algorithm, jobs are generated randomly in each time

interval. Jobs that are generated have various parameters like

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 7, April 2015

24

processing time, memory requirement and total expected

execution time.

3. Server: A computer program which manages access to a

centralized resource or service in a network. Servers have

various parameters like processing speed, memory, memory

left and jobs assigned.

Following are the tables generated for Intervals, Jobs, Servers

and allocations of jobs.

Table 1: Intervals Generated Table 2: Jobs Generated per Interval

Table 3: Server’s Detail Table 4: Allocation & Load Balancing

4.1 Informal Description of the Algorithm
1. Initializing the servers (with all parameters defined above)

2. Initializing Intervals (maximum number of intervals will

be defined)

3. At the starting of interval: if start == pointer_first

a) Generating total number of jobs in each interval

b) Generating job requirement (with all parameters

defined above) in each interval

c) Jobs would be arranged in SJF manner on the

basis of total expected execution time.

d) Introduction of jobs in the waiting queue, if any,

for allocation

e) Start allocating jobs on the basis of below

condition:

f) if ((job.memory<=server.memory_left)AND(

job.processing_requirement < =

server.processing))

i. Allocate job to respective server

ii. Increment the Job Counter of the respective

server

iii. Add job_id to the job array of the respective

server.

else

i) add element to waiting_queue

ii) increment the value of wait_counter

iii) remove the element of array, my_job_new

iv) decrement the value of total jobs of an interval

4. Different job queues are maintained for:

a) Already running jobs

b) Newly created jobs

c) Waiting jobs

5. Performing Load Balancing (LB). LB would be working

concurrently while allocating the jobs to the servers. The

condition for LB is if (server.memory_left < 0). That is, if for

any server the memory left over is less than zero, it will not be

allocated to any server and thus servers are balanced and even.

6. When the jobs is completed and done, on the basis of their

remaining expected execution time. Remaining expected

execution time is calculated at every millisecond. Once it

becomes zero, it will be completed from the server. Also, the

job‟s memory would be added to server‟s memory_left and it

may be allocated to other jobs waiting in queue.

7. At the end of interval,

 If start= =pointer_last

a) interval_current value will be incremented by 1

b) displaying of:

i. the WAIT_QUEUE array

ii. Status of WAIT_QUEUE job/jobs.

iii. The JOB_ARRAY (currently running

Job/Jobs).

iv. Status of JOB_ARRAY job/jobs.

v. Status of all servers (0 - Idle, 1 - Busy)

vi. Status of UNEVEN server/servers (if any).

8. Finally, display

a) The job status of currently running jobs

b) Status of all servers

Intervals Jobs Generated*

0 5

1 15

2 18

3 7

4 8

Job_id Job_memory Job_processing J_E_E_T*

1 870 41 4

2 1032 68 13

3 79 45 6

4 42 56 7

5 512 80 4

Server_Id Server_Memory Server_Processing Jobs_Allocated

1 500 50 10,5,27,4,9,…..

2 1000 100 0,11,7, 18, 1,….

3 1500 150 3, 3, 30, 28, 22, ….

4 2000 200 6,2,22,14,6,5,….

5 2500 250 9,1,8,25,….

Job_id Server_Id

1 5

2 4

3 3

4 1

5 1

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 7, April 2015

25

c) Status of uneven servers (if any)

9. Repeat steps 5 to 10 until all jobs that are generated would

be completed and done.

5. SIMULATION AND

EXPERIMENTAL RESULTS
For simulating the design, a Java based processing system is

implemented with multiple processors, jobs, time intervals

and web servers. As part of this experiment, four cases are

defined with maximum 20 intervals, 80 jobs/interval and 10

servers. In this, total number of jobs and intervals are

generated randomly and the number of web servers is fixed.

We have calculated Execution time w.r.t jobs and intervals

generated. In the experiment, they are defined as:

T.I.G.: Total Interval Generated, T.J.G.: Total Job

Generated, T.S.: Total Server, E.E.T.: Expected Execution

Time and F.E.T: Final Execution time

5.1 Results with Different Intervals, Jobs

and Servers

Experiments are performed on the algorithm in four cases, and

they are defined in the table below:

Table 5: Resulted Table

Finally, the values derived were plotted as a graph shown in

Figure 4.

Figure 4: Graphical Representation of Resulted

Table

5.2 Results with Jobs in Waiting Queue
Table 6 shows the jobs in waiting queue in each interval(0-24) and Figure 5 shows its graphical representation.

Table 6: Jobs in Waiting Queue

Figure 5: Graphical Representation of Table 6

5.3 Results with Server’s Status per

Interval
Following table shows the Server‟s Status in each interval.

Case -1: Server: 10 (S0-S9), Total Job Generated: 0-50 per

interval, Interval: 20 (0-19), EET: 0 - 20

The data collected is listed in Table 7 (0 - Idle, 1 – Busy) and

shown in Figure 6.
 Table 7: Case 1 Figure 6: Graphical Representation of Case 1

Cases T.I.G. T.J.G.(Per Interval) T.J.G(All Intervals) T.S. E.E.T F.E.T.

1 20 0-50 546 10 0-20 109

2 20 0-80 954 10 0-20 136

3 20 0-50 463 8 0-20 123

4 20 0-50 473 10 0-40 125

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Case 1 0 0 0 3 19 3 9 15 22 28 17 2 0 0 7 7 18 33 23 7 0 0 0 0 0

Case 2 35 54 51 55 52 91 70 91 130 55 83 117 142 160 195 117 171 207 230 197 177 97 84 44 5

Case 3 0 0 0 23 37 41 33 42 37 35 56 40 42 6 30 40 59 53 72 73 38 15 0 0 0

Case 4 0 0 8 11 0 0 11 9 3 0 0 0 16 29 23 35 35 19 40 46 6 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

S0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1

S2 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1

S3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1

S4 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 0 1

S5 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0

S6 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

S7 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

S8 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1

S9 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 7, April 2015

26

Case 2: Server: 10, Total Job Generated: 0-80 per Interval, Interval: 20, EET: 0-20

The data collected is listed in Table 8 (0 - Idle, 1 - Busy) and shown in Figure 7.

 Table 8: Case 2 Figure - 7: Graphical Representation of Case 2

Case 3: Server: 8, Total Job Generated: 0-50 per Interval, Interval: 20, EET: 0-20

The data collected is listed in Table 9 (0 - Idle, 1 - Busy) and shown in Figure 8.

 Table 9: Case 3 Figure - 8: Graphical Representation of Case 3

Case 4: Server: 10, Total Job Generated: 0-50 per Interval, Interval: 20, EET: 0-40

The data collected is listed in Table 10. (0 - Idle, 1 - Busy) and shown in Figure 9.

 Table 10: Case 4 Figure 9: Graphical Representation of Case 4

6. CONCLUSIONS
We proposed a framework for load balancing in

heterogeneous web server clusters. Load is distributed on the

basis of memory and processing requirements. Preliminary

evaluation reveals that use of this algorithm is necessary to

improve the performance of web servers by proper resource

utilization and reducing the mean response time by

distributing the workload evenly among the web servers.

7. REFERENCES
[1] Kanungo Priyesh (2013), Scheduling Algorithms in Web

Server Clusters, International Journal of Computer

Science and Mobile Computing ISSN 2320–088X,

IJCSMC, Vol. 2, Issue. 10, October 2013, pg.78 – 85

[2] Kanungo Priyesh (2013), Study of Server Load

Balancing Techniques, International Journal of Computer

Science & Engineering Technology (IJCSET), ISSN :

2229-3345 Vol. 4 No. 11 Nov 2013

[3] Yousofi Ahmad, Banitaba mostafa and Yazdanpanah

Saeed (2011), A Novel Method for Achieving Load

Balancing in Web Clusters Based on Congestion Control

and Cost Reduction, IEEE Symopsium on Computers &

Informatics, IEEE 2011

[4] Mahmood Amjad and Rashid Irfan (2011), Comparison

of Load Balancing Algorithms for Clustered Web

Servers, Proceedings of the 5th International Conference

on IT & Multimedia at UNITEN (ICIMU 2011)

Malaysia, 14-16 November 2011

Interval 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

S0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0

S2 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1

S3 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1

S4 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1

S5 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

S6 1

S7 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1

S8 0 1 1 1 0 0 0 1 0 1 1 1 1 0 1 0 1 1 1 0

S9 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

Interval 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

S0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

S1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

S2 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1

S3 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1

S4 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

S5 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S7 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1

Interval 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

S0 1

S1 1

S2 1

S3 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1

S4 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0

S5 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1

S6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S7 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

S8 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1

S9 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 7, April 2015

27

[5] Ho Lai Kuen et al (2004), Improving web server

Performance by a clustering-based Dynamic Load

Balancing Algorithm, Proceedings of the 18th

International Conference on Advanced Information

Networking and Application (AINA‟04), IEEE 2004

[6] Ling Yibei, Chen Shigang, Lin Xiaola (2003), Towards

Better Peformance Measurement of Web Servers, ICICS-

PCM, December 2003

[7] Choi Min et al (2003), Improving Performance of Load

Balancing System by Using Number of Effective Tasks,

Proceedings of the IEEE International Conference on

Cluster Computing (CLUSTER‟03)

[8] Krawczyk Henryk, Urbaniak Arkadiusz (2002),

Allocation Strategies of User Requests in Web Server

Clusters, Proceedings of the International Conference on

Parallel Computing in Electrical Engineering

(PARELEC‟02)

IJCATM : www.ijcaonline.org

