
International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 7, April 2015

16

A Novel Approach to Identify Sullied Terms in Service

Level Agreement

R. Parameshwari
PG scholar,

Dept. Of CSE,
SCSVMV University,

Enathur, Kanchipuram.

C.K. Gomathy
Assistant Professor,

Dept. Of CSE,
SCSVMV University,

Enathur, Kanchipuram.

ABSTRACT
A service-level agreement (SLA) is simply a file relating the

level of service expected by a customer from a dealer laying

out the metrics by which that examination is calculated, and

the remedies or penalty, if any, must agreed-upon levels not

be absolute. Typically, SLAs are between companies and

external suppliers, but they may also be among two

departments within a company. Service Level Agreements

(SLAs) are typically used to specify regulations about the

utilization of services that are agreed between the providers

of the Service-Based Applications (SBAs) and their

consumers. An SLA includes a list of conditions that contain

the guarantees that must be fulfilled during the provisioning

and use of the services. While the abuse of such guarantees

may lead to the application of possible penalties, it is

important to assure that the SBA behaves as predictable.

Index Terms
Service oriented Architecture, Service Based Applications,

Automated Software Testing, Service Level Agreements and

Coverage Criterion.

1. INTRODUCTION
The Service Level Agreements (SLAs) are used in the scope

of Service Oriented Architectures (SOA) as a typical

formalism to identify the conditions that control the trading

between the service providers and the consumers. These

contracts represent a set of guarantee terms that contain the

projected Quality of Service (QoS) that must be delivered

during the provision and consumption of the services.

Generally, the violation of a term of the SLA leads to

negative penalty for the stakeholders, for example, the

payment of penalty fees. Due to this, it is main that both

providers and consumers try their utmost to avoid or

minimize the SLA violations and their corresponding penalty

The discoveries of these SLA violations is typically

performed by observing the behavior of the Service Based

Application (SBA) at runtime, recollecting data from the

executions and make a choice about the valuation of the SLA.

To do this, different monitoring techniques have been

proposed and represent a good post mortem result in the

intelligence that the troubles are detected after they have

occurred in the operational surroundings Such troubles may

be therefore analysed and solved so they are fewer likely to

happen again. However, in particular scenarios where an

SLA violation may lead to significant penalty for the

stakeholders it is not recommendable to stay until the

problems emerge at runtime. In these cases, the application

of approaches allows the providers to cut or avoid the

number of SLA violations and, hence, reduce the penalties

related to such violations. Among the fit-for-purpose tasks

involved within the proactive detection of SLAs violations,

testing has been identified as a challenge in the context of

SOA-based research.

The objective of SLA-based testing is, on the one hand, to

guarantee that the SBA satisfies the conditions specified in

the SLA and, on the other hand, to declare that such SBA is

able to perform properly constant when some of its

constituent services violate the SLA. For example, a service

may not be able to fulfil the agreed response time (perhaps

because such service is down). As the response time is a

condition specified in the SLA, we plan at identifying tests

that exercise the situations where the service does not answer

or it responds too much time to give the response. With these

tests, we check that the application provides correct

mechanisms to handle the sudden behaviour of the

abovementioned service. At this stage, the SLA-based testing

aims at anticipating as much as possible the detection of

problems in the SBA and thereby avoid the penalty derived

when such problems arise at runtime in the operational

surroundings. In a previous work we addressed the

classification of test requirements by analysing the individual

guarantee terms of the SLA.In this article we offer a

additional step by means of consider the whole logical

structure of the SLA. As the number of test requirements

may become unmanageable if the SLA is quite difficult we

devise a coverage-based criterion with the plan at obtaining a

compact but efficient set of test requirements.

The primary offerings of this article are:

 1. Specification of a test criterion based on the MCDC

coverage criterion [8] that allows the detection of test

requirements by means of analysing the information

represented in both the guarantee terms and their logical

combinations. This condition makes use of a four-valued

logic to evaluate SLAs, which is also clear

2. Definition of definite set of laws that add to avoid the

identification of non-feasible situations, considering the

framework of the SBA as well as the hierarchical structure of

the SLA.

 3. Computerization of the process that identifies the test

requirements using the abovementioned condition

2. EXISTING TECHNIQUES
The existing SLAs in the engineering area seem to be quite

easy today, they could become more complex by means of

establish relations between the conditions or as well as

information about the functional and non-functional features

of the services as well as the penalties derived from the

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 7, April 2015

17

violations of the agreed guarantees. In a previous work we

deal with the detection of test requirements by means of

analyzing the information contain in the individual guarantee

terms. The joint drafting of SLAs, mechanism of

measurement procedures and negotiation of SLAs are costly

to both consumers and providers

Fig.1. Example of application of MCDC

2.1 Service Level Agreements
Service Level Agreements (SLAs) are contracts that specify

the regulations for the trading between the consumers and the

Service Based Applications (SBAs) providers. Usually, these

regulations specify which the essential services of the SBA

that will be regulated by the agreement are, and how these

services should be offered. Currently, important companies

such as Google, Microsoft, AT&T, Amazon or HP, use SLAs

as a guarantee for their clients to guarantee that their SBAs

send the estimated Quality of Service (QoS).

2.2 WS-Agreement
WS-Agreement is an XML based language proposed by the

Open Grid Forum (OGF) that specifies a set of rules for the

concern of agreements between two parties. This set allows

defining a hierarchical structure for the requirement of an

SLA. The arrangement of an SLA using the WS-Agreement

standard language is composed of three major parts. These

are:

 • Name, i.e., the part specifying an possible name that can

be given to the contract

 • Context, i.e., the part defining the parties involved in the

contract and their job

 • Terms, i.e., the part expressing the negotiated and

granted obligations of each party.

These obligations are specified using Service Description

Terms (SDT), Service Properties (SP) and Guarantee Terms

(GT). The most important information of the SLA is

represented by means of the Guarantee Terms, which

describe the obligations that must be satisfied by a specific

obligated party. A Guarantee Term (GT) contains the

following internal elements: (1) the possibility specifies the

list of services the term applies to, (2) the Qualifying

Condition (QC) represents a requirement or statement that

determines whether the term is applicable and must be

considered during the evaluation process, (3) the Service

Level Objective (SLO) specifies the guarantee that must be

met. In WS-Agreement, the terms of the SLA can be

logically and hierarchically grouped by means of Compositor

elements. Specifically, there are three different types of

compositor elements, namely: All, One or more and exactly

One. These element types are correspondent to the logical

AND, OR and XOR operators, correspondingly

2.3 Software Testing
In the context of service computing, the trying of SLA-aware

SBAs has been posed as a demanding job. Generally, testing

is an movement in which the Software Under Test (SUT) is

executed under specified conditions, the outcome are

practical or recorded, and an estimation is made of some

aspect of the system. The execution of the SUT is usually

performed through the plan and execution of test cases. A

test case is a set of input, execution circumstances and

predictable results developed for a particular intention. The

discovery of faults is addressed by means of executing the

SUT and comparing the observed results with the expected

results, determining whether the behaviour of the software is

correct or not. It is therefore imperative that a good design of

test cases should allow detecting the highest possible number

of faults.

3. PROPOSED TECHNIQUE
The aim is to provide a more step by means of allowing for

the whole logical structure of the SLA. As the number of test

requirements may become impossible If the SLA is quite

difficult we devise a coverage-based criterion with the aim at

obtaining a reduced but effective set of test requirements.

The testing of the SLAs requires using such documents as the

test basis so we need to somehow formalize the specification

of the SLA in order to automate as much as possible the

obtaining of tests. Thus, in this work, we center on the syntax

and semantics of WS Agreement

Methods:

3.1 Estimation of SLAS
The estimation of an SLA require analysing the information

collected from the monitor and/or testers, checking the

requirement of the guarantee terms and, lastly, making a

choice about the fulfilment of such terms. It have outlined in

Section 2 that an SLA specifies a set of terms that manage

the execution of the component services of the SBA. Such

guarantee terms can be hierarchically structured by means of

using specific compositor elements (All, One or More,

Exactly One). In this context, we identify two different levels

concerning the evaluation of the SLAs.

 Level I: Individual Guarantee Terms.

 Level II: Composite Guarantee Terms

The first level involves making a decision about the

fulfilment of each individual guarantee term represented in

the SLA. The second level involves considering sets of

Guarantee conditions understandably grouped by the

compositor elements and determining whether the composite

terms are fulfilled or not. In this section we propose a logic

that allows evaluating both individual guarantee terms and

composite terms, from a testing point of view, including all

the potential situations derived from the task of assuring

whether the SLA is being fulfilled or not.

 Level I: Evaluating Individual Guarantee Terms

It focuses on each individual guarantee term in order to

address the evaluation of the SLA. The evaluation of a

guarantee term is usually performed in a dichotomy way, for

example, depicting a two-way traffic light indicator

(green/red) that indicates whether the term has been fulfilled

or violated respectively. The use of these two classical values

is really useful when the behaviour of the SBA is monitored

at runtime in order to decide whether a problem has been

detected, disregarding the situation that has caused such

problem. However and from a testing point of view, we need

to early identify the different potential situations that may

derive in problems in the SBA. Aligning this perspective

with the syntax of WS- Agreement, a Guarantee Term is

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 7, April 2015

18

specified by means of the internal elements Scope,

Qualifying Condition (QC) and Service Level Objective

(SLO).

After taking this syntax into account, a Guarantee Term can

be evaluated as:

 Fulfilled (F) - if and only if the methods of the services

specified in the Scope have been executed, the QC has been

met and the SLO has been satisfied.

 Violated (V) - if and only if the methods of the

services specified in the Scope have been executed, the QC

has been met and the SLO has not been satisfied.

 Not Determined (N) - if and only if their methods of

the services specified in the Scope of the guarantee term,

which have not been executed.

 Inapplicable (I) - if and only if the methods of the

services specified in the Scope have been executed but the

Qualifying Condition has not been satisfied.

 Level II: Evaluating Composite Guarantee Terms

After having provided a systematic way to evaluate the

individual guarantee terms, now we focus on the logical

combinations of the SLA Guarantee Terms. it have

previously outlined that an SLA specified in WS-Agreement

represents a hierarchical structure of guarantee terms,

logically combined using the specific Compositor Elements

All, One Or More and Exactly One. Thus, we need to

complete the logic basis that allows evaluating the individual

Guarantee Terms in order to unequivocally determine the

evaluation value of these compositors.

3.2 Evaluation of One or More Compositor
Likewise, a one or more compositor element with multiple

Guarantee Terms is evaluated as follows.

3.3 Evaluation of Exactly One Compositor
Finally, an Exactly One compositor element with multiple

Guarantee Terms is evaluated as follows:

4. COVERAGE-BASED TEST

CRITERION
The process of testing SLA-aware SBAs can be improved by

identifying test requirements from the specification of the

SLAs using a criterion based on the principle of the

Modified Condition / Decision Coverage (MCDC) that

allows obtaining a cost-effective set of test requirements,

representing situations that are interesting to exercise

regarding the SLA and the SBA. This set contains a reduced

number of test requirements to be exercised in order to

uncover problems in the SBA. Typically, MCDC is applied

to a specification of the SUT. In our case, the specification

that says how the SUT must behave is the SLA. In such SLA

there are guarantee terms that represent conditions that can

be satisfied or not. Hence, it is necessary to design tests that

exercise situations in which the guarantee terms are fulfilled

and situations in which not. Within this approach, these

situations are obtained by means of the application of our

MCDC-based criterion.

4.1 Four-valued MCDC Test Criterion
Once the logic to evaluate the compositor elements of an

SLA has been defined, we obtain the test requirements by

combining the potential evaluation values of the terms

included in the compositors. Considering that each term can

be evaluated with four different values, the amount of test

requirements would grow exponentially with the number of

terms if we applied all the possible combinations. Hence, our

objective is to avoid the exponential growth of test

requirements in order to obtain a reduced but cost-effective

set of test requirements and we achieve it by using MCDC.

Modified Condition Decision Coverage (MCDC), de-fine

studied structural coverage criterion it has also been used for

test suite reduction and prioritization because it provides a

linear increase in the number of test requirements. MCDC is

a criterion that falls between condition/decision and multiple

condition coverage. This criterion has been shown to

represent a good balance of test-set size and fault detecting

ability simultaneously. MCDC is defined as a conjunction of

the following requirements:

• Every point of entry and exit in the program has been

invoked at least once.

• Every condition in a decision in the program has taken all

possible outcomes at least once.

• Every conclusion in the program has taken all possible

effects at least once.

5. RESULTS
The below fig shows the design for user can view the test

results of updated service level agreements.

Fig.2: updated service level agreements.

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 7, April 2015

19

The below fig shows the design for downloading results after

qualifying conditions

Fig: 3 Download test results.

6. CONCLUSION
In this research paper focused to have addressed the

estimation and testing of the logical composition of guarantee

terms in a Service Level Agreement (SLA). it have defined a

four-valued logic that allows evaluate both individual

guarantee terms and compositor elements. This logic is the

basis for the SLACDC (SLA Condition / Decision Cover-

age) criterion we have devised in order to identify a set of

test requirements that combine different evaluation values of

the terms involved in a compositor. This criterion is based on

MCDC criterion and it provides a linear increase of test

requirements regarding the number of guarantee terms

included in the compositor.

In addition to this identification of test requirements, we have

to deal with non-feasible situation due to the semantics of the

SLA terms. To address this matter we have define a set of

system, which are mechanically applied, that allow remove

the non-feasible test requirements or, if possible, the change

of such requirements in order to obtain feasible situations.

The automation of the approach allows falling the tester’s

effort required to design and specify aligned with the SLA

specification. Moreover, the analysis and exercitation of the

test requirements also allow detecting wrong SLA

specifications regarding the relationships between the

guarantee terms.

7. REFERENCES
[1] K. Mahbub and G. Spanoudakis, “Monitoring WS-

Agreements: an Event Calculus Based Approach,” Test

and Analysis of Service Oriented Systems, Springer V.,

2007, pp. 265-306.

[2] C. Muller, M. Oriol, M. Rodriguez, X. Franch, J. Marco,

M. Resinas, and A. Ruiz-Cortés, “SALMonADA: A

Platform for Monitoring and Explaining Violations of

WS-agreement-Compliant Documents“ ICSE Workshop

on Principles of Engineer-ing Service Oriented Systems

(PESOS), pp. 43-49, 2012.

[3] F. Raimondi, J. Skene, and W. Emmerich, “Efficient

Online Monitoring of Web-Service SLAs,” Proc. 16th

ACM SIGSOFT Int. Symp. on Foundations of Software

Engineering (FSE-16), 2008.

[4] L. Baresi, N. Georgantas, K. Hamann, V. Issarny, W.

Lamersdorf, A. Metzger, and B. Pernici, "Emerging

Research Themes in Services-Oriented Systems," SRII

Global Conference (SRII), 2012 Annual , vol., no.,

pp.333-342, 24-27 July 2012.

[5] M. Palacios, J. García-Fanjul, and J. Tuya, “Testing

Service Oriented Architectures with Dynamic Binding:

a Mapping Study,” Information and Software

Technology, vol. 53 (3), pp. 171-189, 2011.

[6] G. Canfora and M. Di Penta, “Testing Services and

Service-Centric Systems: Challenges and

Opportunities,” IT Professional 8 (2), pp. 9–17, 2006.

[7] M. Palacios, J. García-Fanjul, and J. Tuya, “Identifying

Test Requirements by Analyzing SLA Guarantee

Terms,” Proc. 19th Int. Conf. on Web Services, pp. 351-

358, 2012.

[8] RCTA Inc. DO-178-B: Software Considerations in

Airborne Systems and Equipment Certification. Radio

Technical Com-mission for Aeronautics (RTCA), 1992.

[9] PLASTIC European Project. http://www.ist-plastic.org

[10] C.K.Gomathy,Dr.S.Rajalakshmi "A Software ability

network in Service Oriented Architecture", International

Journal of science and Technology Education

Research(IJSTER) , Volume 5,Issue II, June

2014,P.No:7-14, ,ISSN : 2141-6559.

[11] M. Autili, P.D. Benedetto, and P. Inverardi, “Context-

Aware Adaptive Services: The Plastic Approach,” Proc.

12th Int. Conf. In Fundamental Approaches to Software

Engineering (FASE), York, UK, March 22-29, 2009.

Proc. LNCS, vol. 5503, pp. 124–139.

[12] A. Bertolino, G. De Angelis, L. Frantzen, and A. Polini,

“Model-Based Generation of Testbeds for Web

Services,” Proc. Testing of TESTCOM/FATES, LNCS,

vol. 5047, 2008, pp. 266-282.

[13] Google Apps SLA:

http://www.google.com/apps/intl/en/terms/sla.html

[14] Amazon EC2 SLA: http://aws.amazon.com/ec2-sla/

[15] E. Di Nitto, M. Di Penta, A. Gambi, G. Ripa, and M.L.

Villani, “Negotiation of Service Level Agreements: an

Architecture and a Search-Based Approach,” Proc. 5th

Int. Conf. Service-Oriented Computing (ICSOC),

September 17-20, pp. 295–306, 2007.

[16] F.H. Zulkernine and P. Martin, "An Adaptive and

Intelligent SLA Negotiation System for Web Services,"

IEEE Trans. Services Computing, vol. 4, no. 1, pp. 31-

43, Jan.-March 2011.

[17] C.K.Gomathy,Dr.S.Rajalakshmi, "Software

Architecture design using Service oriented on Quality

Metrics", Australian Journal of Computer Science

(AUJCS), Volume I,Issue I March 2014,P.No:09-

16,ISSN:2251-3221

[18] M. Palacios, L. Moreno, M.J. Escalona, and M. Ruiz,

“Evaluat-ing the Service Level Agreements of NDT

under WS-Agreement. An Empirical Analysis,” Proc.

8th Int. Conf. on Web Information Systems and

Technologies, Porto, Portugal, April 2012.

[19] D.M. Quan and L.T. Yang, "Parallel Mapping with

Time Opti-mization for SLA-Aware Compositional

Services in the Busi-ness Grid," IEEE Trans. Services

Computing, vol. 4, no. 3, pp. 196-206, July-Sept. 2011.

doi: 10.1109/TSC.2011.27

http://ijrcm.org.in/download.php?name=ijrcm-2-Cvol-1_issue-6_art-10.pdf&path=uploaddata/ijrcm-2-Cvol-1_issue-6_art-10.pdf
http://ijrcm.org.in/download.php?name=ijrcm-2-Cvol-1_issue-6_art-10.pdf&path=uploaddata/ijrcm-2-Cvol-1_issue-6_art-10.pdf
http://ijrcm.org.in/download.php?name=ijrcm-2-Cvol-1_issue-6_art-10.pdf&path=uploaddata/ijrcm-2-Cvol-1_issue-6_art-10.pdf
http://ijrcm.org.in/download.php?name=ijrcm-2-Cvol-1_issue-6_art-10.pdf&path=uploaddata/ijrcm-2-Cvol-1_issue-6_art-10.pdf

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 7, April 2015

20

[20] H. Wada, J. Suzuki, Y. Yamano, and K. Oba, "E3: A

Multiobjective Optimization Framework for SLA-

Aware Ser-vice Composition," IEEE Trans. Services

Computing, vol. 5, no. 3, pp. 358-372, Third Quarter

2012. doi: 10.1109/TSC.2011.6

[21] M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and M.

Bruno, “Search-Based Testing of Service Level

Agreements,” Proc. An-nual Conference on Genetic and

Evolutionary Computation (GECCO 07), London,

ACM, New York, 2007, pp. 1090-1097.

[22] M. Palacios, “Defining an SLA-aware Method to Test

Service-Oriented Systems,” Proc. 9th Int. Conf. on

Service Oriented Com-puting (ICSOC), PhD

Symposium, G. Pallis et al. (Eds.): ICSOC 2011, LNCS

7221, pp. 164--170. Springer, Heidelberg 2012.

[23] C.K.Gomathy,Dr.S.Rajalakshmi, "A Software design

Pattern for Bank Service Oriented Architecture",

International Journal of Advanced Research in

Computer Engineering and Technology(IJARCET),

Volume 3,Issue IV, April 2014,P.No:1302-1306, ,ISSN :

2278-1323

[24] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H.

Ludwig, T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke,

and M. Xu, “Web ser-vices agreement specification

(WS-Agreement),” 2010.

[25] ISO/IEC 24765, Software and Systems Eng.

Vocabulary, 2006.

[26] IEEE STD 610.12-1990, IEEE standard glossary of

software engineering terminology.

IJCATM : www.ijcaonline.org

http://ijrcm.org.in/download.php?name=ijrcm-2-Cvol-1_issue-6_art-10.pdf&path=uploaddata/ijrcm-2-Cvol-1_issue-6_art-10.pdf
http://ijrcm.org.in/download.php?name=ijrcm-2-Cvol-1_issue-6_art-10.pdf&path=uploaddata/ijrcm-2-Cvol-1_issue-6_art-10.pdf

