
International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 6, April 2015

13

Optimizing the Algorithm for Secure and Dynamic Cloud

Storage using MHT

Amit Kumar
Student,

Department of Computer Engineering,
GHRCEM, Savitribai Phule Pune University, India

S S Sambare
 Associate Professor,

Department of Computer Engineering, PCCOE,
Savitribai Phule Pune University, India

ABSTRACT

With the consistently increasing demand of storing data

backup online by millions of users, cloud computing - which

provides resources both hardware and software as a service

through a network (usually internet) has gained much

momentum and attention. Storing data on cloud services

relieves the user from the task of storing data locally. As

beneficial as it sounds, cloud storage comes along with the

quintessential need to protect the stored data from threats

such as loss of confidential data and denial of service. The

purpose of this research paper is provide a mechanism which

uses tokens and distributed forward error correction coded

data. The mechanism not only provides the assurance of a

secure storage but also provides with the identification of

error or the wrongful server simultaneously. Considering the

user to store data dynamically, we have also felicitated the

dynamic operations such as insertion, deletion and appending

blocks. In comparison to previous works, our algorithm can

be more flexible with the use of Merkle Hash Tree (MHT)

rather than contiguous block data structure.

Keywords

Cloud storage, security of data, dynamic data, data integrity.

1. INTRODUCTION
Although cloud infrastructures are much more powerful and

safe, the shift of computing platform has not been very well

accepted. The main reason being that the user has no

assurance of the integrity and availability of his data stored

on the cloud since the copy is not retained on the local

machines. This also emerges with the problem of the cloud

service provider’s misbehaviour. For instance to reduce the

cost a service provider may remove rarely accessed data from

the cloud without the permission of the client. Also, unlike a

data warehouse, the client would not only like to access his

data but also update them frequently. Hence, the need to

incorporate operations like insert, update, delete and append

becomes inevitable. In this paper, a scheme to ensure data

integrity and dynamic support on cloud servers has been

introduced. With ongoing research in the field of secure data

storage on cloud our scheme stands out from the previous

ones. Earlier schemes have only provided a binary status for

error detection and mechanism for identifying the corrupted

server. But our contribution to provide dynamic support to a

similar secure algorithm is unique to the former mechanisms.

2. RELATED WORK
In previous works ,Juels et al. [1] defines the model known

as the “proof of retrievability” (POR) model for ensuring the

remote data integrity using spot-checking and error

correcting code. The algorithm employs two important

schemes: Error Correcting Code (ECC) and Message

Authentication Code (MAC). Another algorithm was

introduced by Shacham and Waters [3]. The validation is

done on using authenticators which are stored on server. The

client requests for these authenticators for several indexes

and expects them to be valid. Similarly, Bowers-Juels-Oprea

[1] and Dodis-vadhan-Wichs [4] proposed schemes based on

the POR model to check integrity of data on remote servers.

However, these schemes operated only on static data. It is

natural for a client to modify his data stored on the cloud.

3. ARCHITECTURE
Typical network architecture for cloud storage service can

have the following three network entities: User, Cloud Server

(CS) and a Third Party Auditor (TPA), which has access to

CS and can expose the risk involved in the cloud storage

services. After reviewing some basic techniques, the token

will be computed by a function which belongs to a hierarchy

of universal hash function [6], which can preserve the

homomorphic properties, which may be integrated along with

the verification module of erasure-coded data [6]-[10]. As

needed, a challenge-response mechanism for verifying the

storage correctness and hence identifying any of the present

misbehaving servers.

Fig 1 Cloud Storage Service Architecture [4], [5]

As plotted in the Fig 1, our aim is to ensure data integrity on

cloud servers with the goals such as, Storage correctness-

ensuring the users of the integrity of their data, fast error

detection-effective identification of the compromised or

misbehaving server, Using MHT, error detection can be

eased for large sets of data. In case of ensuring data stored on

cloud the first challenge is to detect any modification or

deletion in the file. Second challenge is to exactly identify

which server has been compromised or corrupted. MHT,

originally

4. IMPLEMENTATION
The proposed algorithm can be summarized as:

1. Divide F into tokens.

2. Derive Encoded File and corresponding hash.

Generate Merkle Hash Tree.

Key Generator File Encoder

TPA

P1-2 P2-3

Challenge (hash)

Response (hash)

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 6, April 2015

14

3. Pass MHT Hash Values and Nodes for challenge.

4. Derive and Compute the tokens from server using

hashes.

In the current approach, during the file preparation stage,

instead of storing the tokens directly, the same is stored in

the signature of merkle hash tree. The tree will calculate the

hashes as needed and store the tokens at the nodes. It will

thus provide a virtual signature of actual data stored over the

cloud. This will give the advantage of better data operations

rather than working on the entire data as a whole. The

structure of the merkle hash tree will appear as shown in Fig

2.

Fig 2 Client side signature token formed using merkle

hash tree

At server, the file is stored w.r.t the corresponding index. In

addition the hash value can be integrated where each node

has a data field, a hash value for to the next node along and a

sequence number. For an insert operation, the server appends

the file with the required node sequence and the hashes are

reconstructed.

The Hash values will be calculated for every data block till

root. So, rather than token itself, MHT will be now stored by

user. Then the algorithm will disperse all the byte streams
)(j

iw
 across k servers. For our purpose we rely on using the

Tiger Tree Hash (TTH), a common variation of the merkle

hash tree. Although TTH is complex in terms of hashing

algorithm, it proves to be efficient with respect to speed and

security. It uses a Time Memory Trade-Off with the help of 4

small lookup-tables or S-Boxes, similar to DES or other

block ciphers. The data is first padded to 512-bits. First by

appending a single 1 bit, followed by 0s. Then the data is

padded out to 448 (mod 512) bits. This is followed by a little-

endian 64-bit representation of the length. The data is then

divided into 512-bit (64-byte) blocks, each of which is

processed individually. Hence in the algorithm, all the three

used carry words will be affected by the corresponding value

of the key after every round. In the next step, using key

scheduling the input bits are rotated in accordance with the

three passes. The final stage of this algorithm helps in

propagating the hashed bits between the 512-bit blocks of the

message.

Our scheme relies on generating homomorphic tokens, where

every hash covers a random subset of data blocks. For the

user to check whether his data is maintained correctly on the

cloud, he challenges the cloud by providing randomly chosen

hash for which the cloud computes small signatures and

returns them to the user. These signatures should then match

the values of the hash which have been pre-computed and

stored on the machine locally with the user. Following is an

overview to show the process of generating hash challenges:

Fig 3 Challenge with a set of randomly generated block

hashes

Earlier schemes have only provided us with binary status of

whether an error was found or not. However, our scheme

realizes the importance of error localization or identifying the

misbehaving server using MHT for dynamic data operations.

Then the user performs an equality check to determine if the

received values remain valid to the secret hash value (R):

(R(1) i , . . . ,R(m) i) x H ?= (R`(1) i , . . . ,R`(m) i).

If the above equation holds true then the data stored is correct

otherwise the user knows that among these r rows an error

has occurred. To identify which server has been

compromised we rely on our pre-computed tokens. Since the

response generated by server has been computed in the same

manner as we computed our tokens we can use the following

n equations to find the server.

Rhash
(j)

i ?= vhash
(j)

i , j  {1, . . . , n}.

 If the above equation is not true then server j is known to be

corrupted or compromised. In such condition the server

cannot be capable of providing data to the user. Hence the

server is identified and the problem has to be rectified

accordingly. To recover from the error user can ask for the r

rows stored on server j subsequently remove the server and

then resend the recovered blocks to other servers. In-order to

get support for dynamic data operations, an address field is

induced with the data blocks to store the reference of

corresponding hash.

The tree signature will be updated accordingly as per the

transactions. This approach gives the flexibility of reporting

any modifications made over the cloud server to the users.

Data insertion is possible as only the values of corresponding

hashes has to me modified. The changes occurred due to the

insertion operation has also to be updated along the signature

token tree stored by the client. So the new MHT is sent to the

client. The same approach can be applied for deletion of data

at block level. In that case the difference will be in the

arithmetic operation where subtraction will be performed

instead of addition.

5. RESULTS
The proposed approach takes into account the need of data

integrity and data availability along with the support for

dynamic data operations. The merkle hash tree introduced on

the user side is an added advantage which provides block to

block data interpretation in the server. Our proposed

algorithm has considerably less overhead when there is a

need for data recovery in misbehaving servers as only the

affected files can be extracted specifically using the signature

hash stored on the client side. Since the need of array type

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 6, April 2015

15

data structure is minimized hence the file recovery time from

the misbehaving servers will gradually decrease.

Fig 4 Insertion Operation

We implemented our proposed algorithm on multimedia files

for testing insertion operation (Fig 4). Direct insertion is not

feasible as this operation requires shifting of all subsequent

blocks by relative position and hence massive computation to

renumber.

6. CONCLUSION
The objective of our ongoing research is to provide a model

in which several parameters will be assured to the client

while storing data on a cloud server. Our scheme is based on

calculating signature hashes before a file is distributed on

multiple servers on a cloud. These tokens are used to

challenge the server whenever the user wants to make sure

that his data is available and maintained correctly. In addition

this mechanism also gives error localization or the identity of

the compromised server and thus subsequent recovery for the

corrupted data. We also realize the need for dynamically

updating of data by user and thus encourage the need to

incorporate dynamic data operation support such as insert,

delete and append. However, the size of secret key can be

reduced in future implementations which will lead to less

overhead and better throughput.

7. REFERENCES
[1] Kevin D. Bowers, Ari Juels, and Alina Oprea, Proofs of

retrievability: theory and implementation, In

Proceedings of the 2009 ACM workshop on Cloud

computing security, CCSW 2009, pages 43-54, New

York, NY, USA, 2009. ACM.

[2] Muntes-Mulero V, Nin J. Privacy and anonymization

for very large datasets. In: Chen P, ed. Proc of the ACM

18th Int’l Conf. on Information and Knowledge

Management, CIKM 2009. New York: Association for

Computing Machinery, 2009.

[3] Hovav Shacham and Brent Waters, Compact proofs of

retrievability, In Proceedings of the 14th International

Conference on the Theory and Application of

Cryptology and Information Security: Advances in

Cryptology, ASIACRYPT 2008, pages 90-107, Berlin,

Heidelberg, 2008.Springer-Verlag.

[4] Yevgeniy Dodis, Salil Vadhan, and Daniel

Wichs,Proofs of retrievability via hardness

amplification, In Proceedings of the 6th Theory of

Cryptography Conference on Theory of Cryptography,

TCC 2009, pages 109-127, Berlin, Heidelberg, 2009.

Springer-Verlag.

[5] Cong Wang, Qian Wang, Kui Ren, Ning Cao and

Wenjing Lou, Towards secure and dependable storage

services on Cloud Computing, IEEE Transactions on

Services Computing, Vol. 5, No. 2, pp. 220-232, April-

June 2012, 2012/07/12.

[6] L. Carter and M. Wegman, Universal hash

functions,Journal of Computer and System Sciences,

vol. 18,no. 2, pp. 143-154, 1979.

[7] T. Schwarz and E. L. Miller, Store, forget, and check:

Using algebraic signatures to check remotely

administered storage, in Proc. of ICDCS 2006, 2006,

pp.12-12.

[8] M. Lillibridge, S. Elnikety, A. Birrell, M.

Burrows,andM. Isard, A cooperative internet backup

scheme, in Proc. of the 2003 USENIX Annual Technical

Conference (General Track), 2003, pp. 29-41.

[9] M. Castro and B. Liskov, Practical byzantine fault

tolerance and proactive recovery, ACM Transaction on

Computer Systems, vol. 20, no. 4, pp. 398-461, 2002.

[10] J. Hendricks, G. Ganger, and M. Reiter, Verifying

distributed erasure-coded data, in Proc. of 26th ACM

Symposium on Principles of Distributed Computing,

2007, pp. 139-146.

[11] Chris Erway, Alptekin, Charalampos Papamanthou,and

Roberto Tamassia, Dynamic provable data possession,

In Proceedings of the 16th ACM conference on

Computer and communications security, CCS 2009,

pages 213-222, New York, USA, 2009 ACM.

IJCATM : www.ijcaonline.org

