
International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 5, April 2015

13

Improving Indian Language Dependency Parsing by

Combining Transition-based and Graph-based Parsers

B. Venkata Seshu Kumari

Associate professor
Dept of CSE

St. Peter’s Engineering College,
Hyderabad, India

R. Rajeswara Rao
Associate Professor

Dept of CSE
JNTU college of Engineering, Vijayanagaram

JNTUK, India

ABSTRACT
We report our dependency parsing experiments on two Indian

Languages, Telugu and Hindi. We first explore two most

popular dependency parsers namely, Malt parser and MST

parser. Considering pros of both these parsers, we develop a

hybrid approach combining the output of these two parsers in

an intuitive manner. For Hindi, we report our results on test

data provided in the for gold standard track of Hindi Shared

Task on Parsing at workshop on Machine Translation and

parsing in Indian Languages, Coling 2012. Our system

secured unlabeled attachment score of 95.2% and labelled

attachment score 90.7%. For Telugu, we report our results on

test data provided in the ICON 2010 Tools Contest on Indian

Languages Dependency Parsing. Our system secured

unlabeled attachment score of 92.0% and labelled attachment

score 69.5%.

Keywords
Dependency Parsing; Telugu; Hindi; Malt Parser; MST

Parser

1. INTRODUCTION
 Dependency parsing is the task of uncovering the dependency

tree of a sentence, which consists of labeled links representing

dependency relationships between words. Parsing is useful in

major NLP applications like Machine Translation, Dialogue

systems, text generation, word sense disambiguation etc. This

led to the development of grammar-driven, data-driven and

hybrid parsers. Due to the availability of annotated corpora in

recent years, data driven parsing has achieved considerable

success. The availability of phrase structure treebank for

English has seen the development of many efficient parsers.

Unlike English, many Indian (Hindi, Bangla, Telugu, etc.)

languages are free-word-order and are also morphologically

rich. It has been suggested that free-word-order languages can

be handled better using the dependency based framework than

the constituency based one (Bharati et al., 1995). Due to the

availability of dependency treebanks, there are several recent

attempts at building dependency parsers. Two CoNLL shared

tasks (Buchholz and Marsi, 2006; Nivre et al., 2007b) were

held aiming at building state-of-the-art dependency parsers for

different languages. Recently in We first explored Malt and

MST parsers for parsing Telugu and Hindi. Considering pros

of both these. two ICON Tools Contest (Husain, 2009; Husain

et al., 2010), rule-based, constraint based, statistical and

hybrid approaches were explored towards building

dependency parsers for three Indian languages namely,

Telugu, Hindi and Bangla. In all these efforts, state-of-the-art

accuracies are obtained by two data-driven parsers, namely,

Malt parser (Nivre et al., 2007a) and MST parser (McDonald

et al., 2006).

We first explored Malt and MST parsers for parsing Telugu

and Hindi. Considering pros of both these parsers, we

developed a hybrid approach combining the output of these

two parsers in an intuitive manner. For Hindi, we report our

results on test data provided in gold standard track of Hindi

Shared Task on Parsing at workshop on Machine Translation

and parsing in Indian Languages (MTPIL), Coling 2012. Our

system secured unlabeled attachment score of 95.2% and

labelled attachment score 90.7%. For Telugu, we report our

results on test data provided in the ICON 2010 Tools Contest

on Indian Languages Dependency Parsing. Our system

secured unlabeled attachment score of 92.0% and labelled

attachment score 69.5%.

In this paper, we give a brief introduction to the related work

in Section 2. We describe the parsers explored in Sections 3.

Details about data and parser settings are presented in Section

4. We present our results and analysis in Section 5. We

conclude the paper with future work in Section 6.

2. RELATED WORK
In two ICON Tools Contest (Husain, 2009; Husain et al.,

2010), different rule-based, constraint based, statistical and

hybrid approaches were explored towards building

dependency parsers for Indian languages. Ghosh et al. (2009)

used a CRF based hybrid method. Nivre (2009), Ambati et al.

(2009), and Kosaraju et al. (2010) used Malt Parser and

explored the effectiveness of local morphosyntactic features,

chunk features and automatic semantic information. Parser

settings in terms of different algorithms and features were also

explored. Zeman (2009) combined various well known

dependency parsers forming a super parser by using a voting

method. Yeleti and Deepak (2009) and Kesedi et al. (2010)

used a constraint based approach. The scoring function for

ranking the base parses is inspired by a graph based parsing

model and labeling. Attardi et al. (2010) used a transition

based dependency shift reduce parser (DeSR parser) that uses

a Multilayer Perceptron (MLP) classifier with a beam search

strategy.

3. APPROACH
We explored two data-driven parsers Malt parser (Nivre et al.,

2007a), and MST parser (McDonald et al., 2006) for our

experiments in this paper. In this section, we first describe

both these two parsers in detail. Then we explain our

approach of combing these two parser to produce better parser

output for Telugu and Hindi.

4. MALT PARSER
Malt parser is a freely available implementation of the parsing

models described in (Nivre et al., 2007a). Malt parser

implements the transition-based approach to dependency

parsing, which has two essential components:

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 5, April 2015

14

 A transition system for mapping sentences to dependency

trees

 A classifier for predicting the next transition for every

possible system configuration

Given these two components, dependency parsing can be

realized as deterministic search through the transition system,

guided by the classifier. With this technique, parsing can be

performed in linear time for projective dependency trees and

quadratic time for arbitrary (possibly non-projective) trees.

Malt parser comes with a number of built-in transition

systems. Some of the well-known algorithms which gave best

performance in previous parsing experiments are Nivre arc-

eager, Nivre arc-standard, Covington non-projective,

Covington projective. Malt parser also provides options for

LIBSVM and LIBLINEAR learner algorithms.

5. MST PARSER
MST parser is a freely available implementation of the

parsing models described in McDonald et al. (2006). It is a

graph-based parsing system in that core parsing algorithms

can be equated to finding directed maximum spanning trees

(either projective or non-projective) from a dense graph

representation of the sentence.

MST parser uses Chu-Liu-Edmonds Maximum Spanning Tree

algorithm for non-projective parsing and Eisner's algorithm

for projective parsing. It uses online large margin learning as

the learning algorithm (McDonald et al., 2005a).

6. OUR APPROACH
McDonald and Nivre (2007) compared the accuracy of MST

parser and Malt parser along a number of structural and

linguistic dimensions. They observed that, though the two

parsers exhibit indistinguishable accuracies overall, MST

parser tends to outperform Malt parser on longer

dependencies as well as those dependencies closer to the root

of the tree (e.g., verb, conjunction and preposition

dependencies), whereas Malt parser performs better on short

dependencies and those further from the root (e.g., pronouns

and noun dependencies). Since long dependencies and those

near to the root are typically the last constructed in transition-

based parsing systems, it was concluded that Malt parser does

suffer from some form of error propagation. Similar

observations were made by Ambati et al. (2009) for Hindi.

In our approach, we tried to combine both Malt and MST

parsers to extract the best out of the both parsers. For this, we

first tuned both Malt parser and MST parser. Details of the

settings can be found in Section 4. After we got the best

models of Malt and MST parsers, we extracted the output of

both the parsers on the development data. We also made a list

of long distance labels. We compared the output of Malt and

MST parsers. Whenever there is a mismatch between outputs

of both the parsers, we checked the dependency label given by

the parsers. If MST parser marked it as a long distance label,

then we considered MST parser’s output. Otherwise we

considered Malt parser’s output. In this way, we gave more

weightage to MST parser in case of long distance labels for

which it is best. Similarly, we gave more weightage to Malt

parser in case of short distance labels, as Malt parser is best at

short distance relations. Intuition behind this is that Malt

parser is good at short distance dependencies and MST parser

is good at long distance dependencies. For Telugu, the long

distance dependency labels list which we used for our

approach are “main”, “ccof”, “nmod__relc”, “adv”, and

“vmod”. The list for Hindi is “main”, “ccof”, “nmod__relc”,

“rs”, “rsym”, and “vmod”.

7. TELUGU: DATA AND SETTINGS

7.1 Data
For our experiments, we used Telugu data from ICON 2010

Tools contest. Data released has both fine-grained and coarse-

grained versions of dependency labels. We used fine-grained

version here. This data was annotated using the

Computational Paninian Grammar (Bharati et al., 1995). The

annotation scheme based on this grammar has been described

in Begum et al. (2008) and Bharati et al. (2009). Subject and

direct object equivalent dependency in this framework are

kartha karaka (k1) and karma karaka (k2). Table 1 shows the

training, development and the testing data sizes the Telugu

treebank. Statistics on sentence count, word count and average

sentence length are provided in this table.

7.2 Parser Settings
As the training data size is small, we merged training and

development data and did 10-fold cross validation for tuning

the parameters of the parsers and for feature selection. Best

settings obtained using cross-validated data are applied on test

set. In case of Malt parser, liblinear learner and arc-eager

parsing algorithm consistently gave better performance. For

feature model we tried best feature settings of the same parser

on different languages in CoNLL and ICON shared tasks

(Hall et al., 2007; Husain 2009; Husain et al., 2010) and

applied the best feature model.

In case of MST, order=2, training-k=1 and non-projective

algorithm gave the best results. It was difficult to do feature

tuning with MST parser as it do not provide nice options

similar to Malt parser. We explored different features in

labelling module of the MST parser and selected the settings

which gave best results on 10-fold cross-validation.

Table 1 – Telugu treebank statistics

Type Sent

Count

Word

Count

Avg.

sent_length

Train 1,400 7602 5.43

Devel 150 839 5.59

Test 150 836 5.57

8. HINDI: DATA AND SETTINGS

8.1 Data
We used gold standard track of Hindi Shared Task on Parsing

at Coling 2012 MTPIL workshop. Similar to Telugu, this data

was annotated using the Computational Paninian Grammar

(Bharati et al., 1995). The annotation scheme based on this

grammar has been described in Begum et al. (2008) and

Bharati et al. (2009). Subject and direct object equivalent

dependency in this framework are kartha karaka (k1) and

karma karaka (k2). We explored different features provided in

the FEATS column and found that only root, category,

vibhatki, TAM and chunk information are useful. Gender,

number, person and other information didn’t give any

improvements. This observation is similar to previous work

by Ambati et al. (2010) and Kosaraju et al. (2010). Table 2

shows the training, development and the testing data sizes the

Telugu treebank. Statistics on sentence count, word count and

average sentence length are provided in this table.

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 5, April 2015

15

8.2 Parser Settings
For Malt, we explored different parser algorithms for Hindi

and found that nivre arc-standard gave better performance

over others. In case of learning algorithms, LIBLINEAR gave

better performance compared to LIBSVM. Also, LIBLINEAR

was very faster than LIBSVM learner.

In case MST, we different options provided by the parser and

found that non-projective algorithm and training-k=5, gave

best results.

Table 2 – Hindi treebank statistics

Type Sent

Count

Word

Count

Avg. sent_length

Train 12,041 268,093 22.27

Devel 1,233 26,416 21.42

Test 1,828 39,775 21.76

9. EXPERIMENTS AND RESULTS
Performance of Malt parser and MST parser on test data are

provided in Table 3. We used standard Labelled Attachment

Score (LAS), Un-labeled Attachment Score (USA) and

Labeled Score (LS) metrices for our evaluation.

Table 3 – Performance of different systems on test data.

Approach Telugu Hindi

UAS LAS LS UAS LAS LS

Malt 91.8% 70.0% 72.3% 93.9% 89.4% 90.9%

MST 90.0% 67.1% 68.6% 95.8% 89.2% 90.8%

Our

Approach
92.0% 69.5% 71.8% 95.2% 90.7% 92.3%

Table 4 – Performance of Malt parser, MST parser and

our approach on top five dependencies in the test data.

Approa

ch

Telugu Hindi

Malt

Pars

er

MST

Pars

er

Our

Approa

ch

Malt

Pars

er

MST

Pars

er

Our

Approa

ch

Main 97.0 95.3 97.0 78.2 97.2 89.9

k1 63.0 59.4 60.3 85.6 83.4 85.7

k2 58.8 62.7 62.8 73.5 75.0 74.0

ccof 83.1 74.4 83.8 89.0 91.1 90.8

r6 81.5 53.9 81.5 90.0 87.9 90.0

9.1 Analysis: Telugu
On the test data, Malt parser and MST parser gave UAS of

91.8% and 90.0% respectively. Using our approach, we could

achieve UAS of 92.0%, which is better than both the baseline

systems. Similarly, Malt parser and MST parser gave LAS of

70.0% and 67.1% respectively. Our approach gave an LAS of

69.5%. Though it is slightly lower than Malt parser's

performance, it is much higher than the MST parser's

performance. As performance of MST parser is much lower

compared to Malt, there is only slight improvement in case of

UAS and slight decrement in case of LAS. We hope that if we

can improve MST parser's performance then we could achieve

much better improvements with our approach. As the training

data is very low, and also as Telugu is agglutinative language,

LAS for the all the systems is very low. With more training

data and specialized techniques for handling agglutinative

languages like Telugu, we can achieve better results in LAS.

Table 4, gives an overview of the performance of Malt parser,

MST parser and our approach on the top five dependencies.

Results show that our approach outperforms both Malt parser

and MST parser on major dependencies. We couldn't get

much improvement in case of k2. We believe this could be

because of low performance of MST parser. By obtaining

similar performance on short distance dependencies and huge

improvements on long distance dependencies (by taking MST

output) over Malt, we could achieve better accuracies over

both the parsers. Taking the fact that Malt parser is good at

short distance dependencies and MST parser is good at long

distance dependencies, into consideration, we developed our

system, which outperformed both Malt and MST parsers.

9.2 Analysis: Hindi
On the test data, Malt parser and MST parser gave UAS of

93.9% and 95.8% respectively. Using our approach, we could

achieve UAS of 95.2%, which is better than Malt but slightly

lower than Malt. Malt parser and MST parser gave LAS of

89.4% and 89.2% respectively. Our approach gave an LAS of

90.7% which is better than both the baselines. As performance

of Malt parser is much lower compared to MST, there is only

slight decrement in case of UAS. We hope that if we can

improve Malt parser's performance then we could achieve

much better improvements with our approach.

Table 4, gives an overview of the performance of Malt parser,

MST parser and our approach on the top five dependencies.

Results show that our approach outperforms Malt parser in all

the cases and MST parser on few dependencies. We couldn't

get much improvement in case of main and k1 as MST is far

better at these labels compared to Malt. By obtaining similar

performance on short distance dependencies and huge

improvements on long distance dependencies (by taking MST

output) over Malt, we could achieve better accuracies over

both the parsers. Taking the fact that Malt parser is good at

short distance dependencies and MST parser is good at long

distance dependencies, into consideration, we developed our

system, which outperformed both Malt and MST parsers.

10. CONCLUSION AND FUTURE

WORK
In this paper, we first explored Malt and MST parsers and

developed best models, which we considered as the baseline

models for our approach. Considering pros of both these

parsers, we developed a hybrid approach combining the

output of these two parsers in an intuitive manner. As Malt

parser is good at short distance dependencies and MST parser

is good at long distance dependencies, we gave more

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 5, April 2015

16

weightage to Malt parser in case of short distance

dependencies and gave more weightage to MST parser in case

of long distance dependencies. We showed that a simple

system like combining both MST and Malt parsers in an

intuitive way, can perform better than both the parsers. For

Hindi, we reported our results on test data provided in the for

gold standard track of Colling 2012 MTPIL workshop. Our

system secured unlabeled attachment score of 95.2% and

labelled attachment score 90.7%. For Telugu, we report our

results on test data provided in the ICON 2010 Tools Contest

on Indian Languages Dependency Parsing. Our system

secured unlabeled attachment score of 92.0% and labelled

attachment score 69.5%.

In our current approach, we combined the output of both Malt

and MST parsers to get a better system over both the parsers.

In future, we would like to combine both the models in a way

similar to McDonald and Nivre (2007). We also would like to

explore the approach of voting similar to Zeman (2009) by

taking advantages of different available parsers. We also plan

to explore the usefulness of large un-annotated data using

self-training and co-training techniques to improve the

performance of the Indian Language dependency parsers.

10.1 Acknowledgment
We would like to thank Language Technologies Research

Institute (LTRC), International Institute of Information

Technology, Hyderabad (IIIT-H) for providing the data and

previous best settings for the parser.

11. REFERENCES
[1] Bharat Ram Ambati, Phani Gadde, and Karan Jindal.

2009. Experiments in Indian Language Dependency

Parsing. In Proceedings of the ICON09 NLP Tools

Contest: Indian Language Dependency Parsing, pp 32-

37.

[2] G. Attardi, S. D. Rossi, and M. Simi. 2010. Dependency

Parsing of Indian Languages with DeSR. In ICON-2010

tools contest on Indian language dependency parsing.

Kharagpur, India.

[3] Rafiya Begum, Samar Husain, Arun Dhwaj, Dipti Misra

Sharma, Lakshmi Bai and Rajeev Sangal. 2008.

Dependency annotation scheme for Indian languages. In

Proceedings of IJCNLP-2008.

[4] Akshar Bharati, Vineet Chaitanya, and Rajeev Sangal.

1995. Natural Language Processing: A Paninian

Perspective, Prentice-Hall of India, New Delhi, pp. 65-

106.

[5] Akshar Bharati, Samar Husain, and Rajeev Sangal. 2008.

A Two-Stage Constraint Based Dependency Parser for

Free Word Order Languages. In Proceedings of the

COLIPS International Conference on Asian Language

Processing 2008 (IALP), Chiang Mai, Thailand.

[6] Akshar Bharati, Dipti Misra Sharma, Samar Husain,

Lakshmi Bai, Rafiya Begum, and Rajeev Sangal. 2009.

AnnCorra: TreeBanks for Indian Languages, Guidelines

for Annotating Hindi TreeBank (version 2.0).

http://ltrc.iiit.ac.in/MachineTrans/research/tb/DS-

guidelines/DS-guidelines-ver2-28-05-09.pdf.

[7] Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X

shared task on multilingual dependency parsing. In Tenth

Conf. on Computational Natural Language Learning

(CoNLL).

[8] A. Ghosh, P. Bhaskar, A. Das, and S. Bandyopadhyay.

2009. Dependency Parser for Bengali: the JU System at

ICON 2009. In ICON09 NLP Tools Contest: Indian

Language Dependency Parsing. Hyderabad, India.

[9] E. Hajicova. 1998. Prague Dependency Treebank: From

Analytic to Tectogrammatical Annotation. In Proc.

TSD’98.

[10] Richard Hudson. 1984. Word Grammar, Basil Blackwell,

108 Cowley Rd, Oxford, OX4 1JF, England.

[11] Samar Husain. 2009. Dependency Parsers for Indian

Languages. In ICON09 NLP Tools Contest: Indian

Language Dependency Parsing. Hyderabad, India.

[12] Samar Husain, Prashanth Mannem, Bharat Ambati and

Phani Gadde. 2010. The ICON-2010 Tools Contest on

Indian Language Dependency Parsing. In ICON-2010

Tools Contest on Indian Language Dependency Parsing.

Kharagpur, India.

[13] S. R. Kesidi, P. Kosaraju, M. Vijay, and S. Husain. 2010.

A Two Stage Constraint Based Hybrid Dependency

Parser for Telugu. In ICON-2010 tools contest on Indian

language dependency parsing. Kharagpur, India.

[14] Prudhvi Kosaraju, Sruthilaya Reddy Kesidi, Vinay

Bhargav Reddy Ainavolu and Puneeth Kukkadapu. 2010.

Experiments on Indian Language Dependency Parsing.

In ICON-2010 tools contest on Indian language

dependency parsing. Kharagpur, India.

[15] M. Marcus, B. Santorini, and M.A. Marcinkiewicz. 1993.

Building a large annotated corpus of English: The Penn

Treebank, Computational Linguistics

[16] Ryan McDonald, Kevin Lerman, and Fernando Pereira.

2006. Multilingual dependency analysis with a two-stage

discriminative parser. In Tenth Conference on

Computational Natural Language Learning (CoNLL-X),

pp. 216–220.

[17] Ryan McDonald and Joakim Nivre. 2007. Characterizing

the errors of data-driven dependency parsing models. In

Proceedings of the Conference on Empirical Methods in

Natural Language Processing and Natural Language

Learning.

[18] Joakim Nivre. 2003. An efficient algorithm for projective

dependency parsing. In Proceedings of the 8th

International Workshop on Parsing Technologies

(IWPT), pages 149–160.

[19] Joakim Nivre. 2008. Algorithms for deterministic

incremental dependency parsing. Computational

Linguistics, 34(4):513–553.

[20] Joakim Nivre. 2009. Parsing Indian Languages with

MaltParser. In ICON09 NLP Tools Contest: Indian

Language Dependency Parsing. Hyderabad, India.

[21] Joakim Nivre and Jens Nilsson. 2005. Pseudo-projective

dependency parsing. In ACL ’05: Proceedings of the

43rd Annual Meeting on Association for Computational

Linguistics, pages 99–106, Ann Arbor, Michigan.

[22] Joakim Nivre, Johan Hall, Sandra Kubler, Ryan

McDonald, Jens Nilsson, Sebastian Riedel, and Deniz

Yuret. 2007a. The CoNLL 2007 Shared Task on

Dependency Parsing. In Proceedings of the CoNLL

Shared Task Session of EMNLP-CoNLL 2007. Prague,

Czech Republic, 915–932.

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 5, April 2015

17

[23] Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,

Gulsen Eryigit, Sandra Kubler, Svetoslav Marinov, and

Erwin Marsi. 2007b. Malt parser: A language-

independent system for data-driven dependency parsing.

Natural Language Engineering 13, 2 (2007), 95–135.

[24] Sebastian Riedel , Ruket Cakici and Ivan Meza-Ruiz.

2006. Multi-lingual Dependency Parsing with

Incremental Integer Linear Programming. In Proceedings

of the Tenth Conference on Computational Natural

Language Learning (CoNLL-X).

[25] Stuart M. Shieber. 1985. Evidence against the context-

freeness of natural language. In Linguistics and

Philosophy, p. 8, 334–343.

[26] M. V. Yeleti, and K. Deepak. 2009. Constraint based

Hindi dependency parsing. In ICON09 NLP Tools

Contest: Indian Language Dependency Parsing.

Hyderabad, India.

[27] D. Zeman. 2009. Maximum Spanning Malt: Hiring

World's Leading Dependency Parsers to Plant Indian

Trees. In ICON09 NLP Tools Contest: Indian Language

Dependency Parsing. Hyderabad, India.

IJCATM : www.ijcaonline.org

