
International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 4, April 2015

28

Shared Memory and Hardware Utilizations for the

Parallelization of Local Sequences Alignment using SW

Algorithm: A Review

Manhal Elfadil Eltayeeb
Faculty of Computing

Universiti Teknologi Malaysia
Johor Bahru, Skudai

Muhammad S. Abd Latiff
Faculty of Computing

Universiti Teknologi Malaysia
Johor Bahru, Skudai

Ismail Fuzi Isnin
Faculty of Computing

Universiti Teknologi Malaysia
Johor Bahru, Skudai

ABSTRACT

It is becoming increasingly difficult to ignore the importance

of aligning DNA and Protein sequences to infer properties of

new sequences from well-known reference sequences

established and sorted in genetics databanks. Many studies in

recent years have focused on different implementations of

Sequences Alignment Problems (SAP). However, researcher

confused with the ambiguous classification of the SAP. This

paper is set out mainly to review, investigate, and analysis

current trends in shared memory and hardware

implementation of local SAP using Smith-Waterman

algorithm. The literatures are addressing and evaluating in

order to highlight their advantages and disadvantages.

Keywords

DNA, Protein, Sequences Alignment, Shared Memory, Smith-

Waterman, Parallel Computing.

1. INTRODUCTION
Much research in recent years has focused on understanding

and identifying DNA and proteins problems including

prediction of functional linkages between proteins, which

range from identifying a single pair of interacting proteins to

analysis a large network of proteins. Furthermore, Protein–

Protein Interactions (PPIs) have a major current focus on

biological problems necessitated computer-based solutions.

PPIs is a Bioinformatics field identify and analyze

associations and interactions between various proteins.

Analysis of PPIs based on network parameters and measures

tools of perturbations [1]. On the other hand, structure

prediction and protein folding take a share of attention in

studies DNA and proteins problems and remain unclear to

date, see Figure 1. However, the major basic issue on DNA

and Protein problem is the sequences alignment.

Different techniques and algorithms are applied for analysis,

manipulation, and storing of DNA and proteins problems for

various applications. The purpose of this paper is to highlight,

describe, investigate and examine current focus on alignment

problems of DNA and Proteins sequences. Specifically, local

sequences alignment, which requires tangible efforts to

discover and predict relations and properties of nucleotides or

amino acid chains. Computing-based efforts for these

problems are discussed in details with concentration on

parallel computing.

Fig 1: 3D structure of DNA and protein sequences

Parallel computing is a profitable technology for scientist and

researchers; it plays a major part in providing fast and reliable

tools, see Figure 2. Parallel computing is used as striking

feature today in experimental methods for predicting

functional linkages in PPIs, protein 3D structure, and the

sequences alignment problems. Darriba, et al. [2], adopt a tool

for the selecting model for amino acid replacement known as

ProtTest. The project is aimed to reduce execution time for

model selection in large protein searching using a multicore

cluster of desktop PCs. However, ProtTest fails in

implementing Petabyte data of protein chains, which

represents a major drawback.

A crucial issue in implementing distributed applications over

parallel computing is the ability to invent powerful functions

and procedures work on a high level of the program

middleware. Recently, many organizations adopted Volunteer

Computing (VC), a popular term for distributed computing

where the work done on computers recruited from people on

the Internet. In such way, combination of computer resources

from different locations are utilized to reach common

objectives. Folding@home as an example of volunteer

computing dedicated in statistical calculation of molecular

dynamics trajectories for models of biological systems [3].

The project involves a combination of load balancing, result

feedback, and redundancy run on volunteer systems.

Unfortunately, lack of methodology to consider huge data,

offline archives, and off-site backups represent a major

challenge in the project.

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 4, April 2015

29

Fig 2: Simple parallel architecture

1.1 The Sequences Alignment Problem
The basic notion in the sequences alignment problem is to

find similar regions between two or more sequences by series

of mutational processes in order to detect relations between

(unknown) common ancestor and known sequences defined in

genetic databanks. Alignment of two sequences obtains by

stacking them on the top of each other, where matched

nucleotides or residues are arranged in successive columns.

Matching characters are optimized by inserting spaces at

various positions. The final alignment is an assembly of

distance events such as matches, mismatches, insertions, and

deletions [4]. Matches correspond to similar regions while

mismatches or substitutions due to alignments of different

characters. Insertion and deletions (known as indels) indicates

a lack of coincide matches in one sequence; it represents

different biological mutation events. A gap between two

sequences occurs if any character matches to the empty space.

A key technique in sequences comparisons is to assign a score

for each alignment; the optimal score is then the highest score

[5]. While, in pattern matching, the comparison consider on

words until complete match or mismatch occurred.

Sequences alignments encompass pairwise alignment

(particular for two sequences) and multiple alignment

dedicated to aligning a number of sequences [6]. Pairwise

alignment is a special case from multiple sequences

alignments. Most two approaches for aligning pairwise

sequences are global and local. Global alignment is

convenient if sequences compared as a whole, and compared

sequences are homologous across their entire length [7]. Local

alignments appropriate for detecting specific conserved

regions, and obtain similarity between parts of sequences.

A traditionally challenging area in sequence alignment

algorithms for a number of years is to reduce time and space

complexities. Numerous algorithms and experiments were

established to tackle these issues. Unfortunately, with the

tremendous scene of daily increasing of biological data these

algorithms do not align precisely or with inaccurate results.

There is remains a need for efficient methods with cost

effective and accurate results.

1.2 The Smith-Waterman (SW) Algorithm
Smith and Waterman [8], extended Needleman and Wunsch

[9] algorithm in order to determine the optimal alignment for

local sequence alignment, instead of detecting similarity

between the entire sequences. From biologic scene, SW is

more relevant because the middle of sequences tend to be

highly conserved than the ends [10]. Thus, a weakness at the

ends of protein sequences lead to higher mutation, deletion,

and insertion rates. The two major differences between SW

and NW algorithms including: filling the matrix, in SW no

negative values allowed thus 0 value appear as one of the

cases in finding an optimal alignment [11], by exclusion

negative values SW the stop consider high dissimilarity

regions. Furthermore, in NW, the traceback start from the last

cell in the scoring matrix, while in the traceback in SW start

from the cell with the highest value in the scoring matrix.

Considering two sequences (A1,..,Ai) and (B1,..,Bj), local

sequence alignment can be resolved using the following

equation.

𝑠 𝑖, 𝑗 = 𝑚𝑎𝑥

𝑠 𝑖 − 1, 𝑗 − 1 + 𝑆 𝐴𝑖,𝐵𝑗 𝑡𝑒 𝑓𝑖𝑟𝑠𝑡 𝑐𝑎𝑠𝑒

𝑠 𝑖 − 1, 𝑗 − 𝑔 𝑡𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑐𝑎𝑠𝑒

𝑠 𝑖, 𝑗 − 1 − 𝑔 𝑡𝑒 𝑡𝑖𝑟𝑑 𝑐𝑎𝑠𝑒
0 𝑠𝑡𝑎𝑟𝑡 𝑎𝑛 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑡𝑒 𝑏𝑒𝑔𝑖𝑛𝑖𝑛𝑔

Where, s(i,j) is the optimal alignment of two compared

sequence Ai and Bj. In the first case, each residue in query

and reference sequences is compared in character-to-character

level using the substitution matrix 𝑆 𝐴𝑖, 𝐵𝑗 . Second and third

cases illustrate the insertion of a gap of length k into one of

the compared sequence. Finally, negative values are ignored

in a zero case in recursion way. All entries in the first row and

column set to zero before the calculations begin, which denote

the ability of local similarity to restart at any position in order

to perform the comparisons. In SW algorithm, the comparison

of sub-sequences recording using a scoring scheme by

calculating every possible track for a given cell. In every cell,

a score for matches, mismatches, substitutions, insertions, and

deletions are considered. The score in each cell represents the

maximum score for the alignment of any length ending at

specific cell. Optimal alignment is then the highest scoring of

the matrix. To allocate optimal alignment a traceback is

needed until reaching a zero cell, where the starting point is

the cell with the highest value.

The rest of this paper is organized as follows. Section 2

explains hardware implementations for local sequences

alignment problem. In section 3, the parallel implementation

for the sequences alignment discussed and reviewed in term

of shared memory with multicore architecture. Discussion and

conclusion are presented in section 4.

2. SHARED MEMORY BASED ON

MULTICORE ARCHITECTURES
Aligning similar DNA or protein sequences require powerful

tools to reduce complex computation and time consumptions

with accurate results. The exponential growth rate of

hardware manufacturing in computing component such as

CPU, RAMs, caches, etc. promises to alleviate pains of

sequences similarity detections. However, the tremendous

amounts of biological data reach a Terabyte overcome the

sequential computing processing capability. Furthermore, the

high costs of extra hardware is dedicated for so problems

make it prohibitive. Under this scenario, understanding

biological phenomena such as complex evolutionary relation

could remain opaque causing to lose vast quantities of

valuable information, because of the limitation of CPU-power

[12] and the long time required in implementing such

problems.

For a number of years, numerous investigations were

proposed to address the lack of computing power in sequence

alignment problems ranging from incorporating new

algorithms into the ROM of a specialized chip to adopting

parallel computing model. In parallel computing platforms,

two or more processors can be used simultaneously for

distributed workload, which represent a solution overwhelm a

single sequential processor dilemma. Sequence comparisons

are a challenging area in parallel computing; there remains a

need for an algorithm to harness additional processing power.

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 4, April 2015

30

Parallel platforms represent an efficient way to tackle

sequences comparison problems.

To develop parallel algorithms for sequences similarity

problems, many considerations for designing parallel

programs must be studied in essential and advanced stages to

produce an efficient parallel application and to maximizing

performance and usability within limits of technology and

cost. These considerations include the type of parallel

programming model, problem partitioning, load balancing,

communications, data dependencies, synchronization and race

conditions, and memory and I/O issues [13, 14]. However, an

important issue in the parallelization of algorithms is the

organization of the memory at the parallel models [15]. This

section covers in details different directions in parallel

platform for implementing sequence alignment problems as

general and especially pairwise local sequence alignments.

In a multi-core architecture, the single processor combine

more than one processing unit called cores, which are shared

one main memory, see Figure 3. The goal of placing multiple

cores in a single processor is to create a system that achieves

more tasks at the same time, thereby gaining better overall

system performance. Many researchers have addressed the

problem of implementing the SW algorithm on a multi-core

architecture in an attempt to accelerate the similarity detection

between two sequences. However, the limitation of memory

prohibitive in comparing long sequences, there is remains a

need for powerful methods with large spaces. In order to

design an efficient parallel version of the SW algorithm based

on multi-core platforms many performance parameters must

be considered such execution time, scalability, and efficiency.

Fig 3: Dual core and Quad core in multicores platforms

Most current discussions in local sequence alignment focus on

multicore architectures with shared memory such as divide

and conquer techniques [16-18], striped SW [19-22],

Instruction-set Processor (ASIP) architecture [23], data

compression [24, 25], genome assembly (re-sequence)

algorithms [26, 27], and Symmetric Multi-Processing (SMP)

architecture [28, 29]. This section discusses in detail these

algorithms along with their advantage and disadvantage.

2.1 Divide and Conquer
The divide-and-conquer algorithms solve the problem by

breaking it into sub-problems of the same type and recursively

solving these sub-problems. The result is a combination of

sub-results obtained by sub-problems. Sequences alignment

identifies region that is potentially alienable in two input

sequences. In a parallel platform, the sequences alignment can

be achieving by fragmenting the query sequence and

distributed to parallel nodes in master-worker model.

RPAlign algorithm is used to detect regions of similarity

between two DNA or protein sequences [16]. It uses BLAST

to consider regions that are potentially alienable, while SW

algorithm is used for distantly related sequences. The

workload is distributed by considering overlapping

subsequences w, as the displacement of fragments from the

longer sequences. Each fragment Fi is read by any processor

from the large sequence, and divided into substrings by

considering starting and end positions of the fragment. The

comparing sequences distribute for all shared processor to be

comparing with the overlapping subsequences. The

dynamicity of workload through the running of the program

burdens the system and decrease the speedup. Furthermore,

each processor generates substring pairs, compute frequency

of each element type from a substring pair, compute

composite score based on frequency, generate a binary matrix

based on composite scores, and transmit binary matrix to

master processor. Load balancing is performed through a

shared memory framework in order to reduce overhead.

However, shared memory is prohibitive for long sequences

comparisons.

Bi-Directional Filling (BDF), is the multiple directions

algorithm to parallelize SW algorithm proposed by Delgado

and Aporntewan [17]; it fill the scoring matrix in row and

column wise. The algorithm is designed to work ideally with

two cores; every core constraints a loop of (n-(m-1)) column,

where n and m are query and the reference sequence

respectively. The algorithm successes in reducing waiting

time for calculating dependence cells in short sequence.

However, for long sequences it increases the time

significantly due to constrain of two cores.

Sebastião, et al. [18], analyses the implementations of SW

algorithm using data structure of suffix array in order to

accelerate DNA sequences alignment. To reduce the time of

sequences comparisons a multi-core system is considered in

the implementation phase. Two compared sequences are

distributed in rows and columns to every core and the scoring

matrix is calculated using wave-front method. However,

limitation with this approach comes out from shared memory

structure, where for long sequences it is prohibitive method.

Furthermore, fluid of communication involve in this approach

that hinder accelerating of sequence comparisons.

2.2 Striped SW
Striped Smith-Waterman developed by Farrar [30], is a

parallel implementation for sequences similarity search using

the SW algorithm. It is based on Single-Instruction Multiple-

Data (SIMD) architecture, where the sequences are partitioned

into p segments equal to the number of register elements in

the SIMD.

Borovska, et al. [19], expand the weight of the segment to

depend on the processing byte and word integers. If the query

sequence is not filling all the segments then the weight is zero.

Nevertheless, the shared memory structure has its own

drawback, the proposed algorithm wastes much time in

measuring weights of sequences in order to decide whether or

not to dispatch segments.

Another similar work to Farrar’s Striped is set out by Rognes

[20], which define SWIPE, a parallel strategy to manipulate

SW algorithm using SIMD. A temporary sequences profile

score is considered to reduce searching for similar sequences.

While, the comparisons between sequences are carried out in

column by column. Furthermore, block of eight cells

computed in the each iteration of the inner loop. Many series

of blocks in long sequences is an error borne on shared

memory architecture.

Ivan, et al. [21], present a web-server technique (SwissAlign)

used SW algorithm to find the best alignments for the query

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 4, April 2015

31

sequence from those stored in Swiss-Prot database. The

technique is based on a striped SW algorithm to improve

processing speed on multiple data in parallel using the SSE2

instruction set. The comparisons with database sequences

consider only sequences above a defined value. However the

main weakness of the study is the failure to consider other

sequences below the e-value.

Mendonca and Melo [22], propose a biological sequences

comparisons mechanism for adjusting workload in a master-

slave model. The strategy is design mainly for SW algorithm

and operated on Multicores architecture and accelerators.

Workload is distribute by master to shared Processing

Elements (PEs) in two stages; for the first time each PEs

assigns to one work, while in the second stage tasks are

distributed according to periodic processing progress

notifications sent by PEs in order to calculate the weight for

each of them. A mechanism adopted to assign the tasks for

another slave in case of a slow node receives one of the last

tasks. A serious weakness in this study is that the periodical

report sends dynamically at the execution time in order to

judge the workload distribution, which is wasting too much

time. Another problem with this approach is that the data

dependency arises in sequence alignment required prior

statically allocated for slaves to accelerate sequence

comparisons.

2.3 Instruction-set Processor Architecture

(IPA)
IAP instruction set is mainly designed to implement the

assembly instruction set with minimum hardware cost and to

accelerate heavy and most used functions. Neves, et al. [23],

extend an algorithm to work on Application Specific

Instruction Processor (ASIP) architecture dedicated for

sequences alignment problems. Fine grain is obtained by

adopting pipeline architecture for SIMD instructions, while

coarse grain is obtained by using multicore of multiple ASIPs

with a shared memory architecture. Query sequence is divided

into (m+p-1)/p parts, where m is the length of the query

sequence and p is the number of elements equal to the number

of register in a SIMD. Data dependency in SIMD architecture

involves complex computation in restricted shared memory,

which is an error born and prohibitive for long sequences.

2.4 Data Compression
New technique for comparing sequences after remove

repeated nucleotide from sequences is known as Data

Compression (DC). DC algorithms [24, 25] remove redundant

data in order to understand biologic relevance between

sequences.

A compression algorithm to align sequences is proposed by

Satyanvesh, et al. [24], it includes two stages. Query sequence

is divided into four characters chunks. In the first stage, each

character is represented using two bits, while the chunks are

represented using either one or two bytes in the next stage.

Chunked characters are distributed with reference sequences

among multicore architectures in order to find the repeated

regions. In a similar study with some changes, Satyanvesh, et

al. [25] present a new approach for aligning sequences after

compressing them using multi-cores architecture. The

alignment is obtained in two phases, which consists gapped

and un-gapped alignment. In the gapped alignment, each core

synchronizes with others in a loop to calculate the similarity

matrix. However, these techniques offer no guarantee to

preserve the biologic relevance of comparing sequences. No

techniques discuss for balancing workload or even a data-flow

algorithm for sending and receive results. Furthermore, due to

the rearranging of the query sequence inaccurate results would

be a normal corollary.

2.5 Genome Assembly Algorithms (re-

sequence)
The re-sequences is a process of constructing an original long

DNA sequence by aligning and combining fragments from the

source sequence. HPG-aligner [27] implements a parallel

pipeline technique for fast and accurate RNA sequences

alignment. Query sequence is divided into short regions

(seeds); then SW algorithm is applied to detect the region of

similarity between these seeds and the reference genome. In

the pipeline technique, more than one core are divided into

stages where each core holds a seed; these stages connected

via queues that act as data buffers and synchronize the

consecutive stages. Queue in computing always is a dilemma

of time consuming. Thus, the main weakness and drawback of

the study is the lack of balancing technique to distribute

evenly seeds between cores in order to avoid waiting queues.

Furthermore, complex communication is required between

stages and inside every stage between cores.

Libgapmis [26] is a library package based on SW algorithm to

extend pairwise short-read alignments between substrings of

the query sequence to reference genomes sorted and stored in

genetic databanks. The Streaming SIMD Extensions (SSE)

implementation is used to accelerate SW algorithm under

vector scheme. Query sequence is divided to multiple

matrixes each with 4 bit vectors and compared with references

sequences concurrently on SSE instructions. The fine

granularity of the four bits substring increases the

communication overhead. Furthermore, a data-flow technique

is not offered by algorithm to control the data dependency

between shared elements.

2.6 Symmetric Multi-Processing (SMP)

Architecture
SMP is the cluster architecture of multiple processors, which

shared a common memory, operating system, and the I/O data

path, see Figure 4. Clusters of SMP’s nodes support

differently parallel programming models. However, it

significantly increases programming complexity when using

the low-level interfaces such as MPI and OpenMP in order to

deal with both DM and SM architecture [31]. OpenMP

provides an interface for programming SMP between cores,

while MPI defines parallelism across processors by calling

library function to send and receive messages. Striking

features of the hybrid programming using OpenMP and MPI

is to combine process level coarse-grain parallelism and fine

grain parallelism on a loop level [32].

Numerous experiments have established test-bed for

comparing three models to parallelize the SW algorithm

including pure MPI, pure OpenMP, and a hybrid model using

MPI/OpenMP [28, 29]. Furthermore, evaluations and

measurements for the performance of a hybrid model are

tested. However, SMP architecture shows circular drawbacks

such as limitation of shared processors, hardware complexity,

existence of at least one single point of failure, and needing

for regular maintenance or update for the whole system.

Fig 4: Simple SMP’s architecture

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 4, April 2015

32

For evaluation, Luecke [33] lists difficulties of using shared

memory architectures in points, which included lack of

parallel programming model, lack of standards, and

immaturity of multicore specific development and debug

software tools. These obstacles compel researchers to focus

on implementing SW in distributed memory where each

processor has it is own resources. A central problem of

implementing the SW algorithm in multicore and SMP

architectures is the shared memory architecture. In the short

sequence length, this architecture obtains possible results.

However, deficiency arises in comparing long sequences

length.

3. HARDWARE UTILIZATIONS FOR

SEQUENCES ALIGNMENT PROBLEM
Many hardware manufacturers move toward inventing and

developing a dedicated hardware accelerating the computing

performance and establishing a scalable architecture consider

challenging in identifying and discovering new DNA or

proteins sequences from a well-known sequences, which

classified and stored in genetic databanks [34]. These new

hardware include new chip multiprocessors, which are the

cornerstone in hardware accelerator. However, using

dedicated hardware in sequences alignments problems involve

an algorithm(s) to utilize the feasibility of increasing

performance [35].

Using the hardware in sequence alignment problems is

restricted by the amount of the hardware memory, which may

not support long sequences. Furthermore, the high cost of

these devices represent additionally burdening costs [36]. On

this section, a review of various hardware accelerator used in

sequence alignment problems are discussed in details. While

the next section, discusses the parallel implementations of

sequences alignment problem with concentration on SW

algorithm. The revision includes a Field Programmable Gate

Array (FPGA), Graphics Processing Units (GPU), and

Network-on-Chip (NoC) and Cell Broadband Engine.

3.1 Field Programmable Gate Array

(FPGA)
A Field Programmable Gate Array (FPGA) is an integrated

circuit formatted by demands of designers and/or clients after

manufacturing [37]. FPGA has a lower clock speed than

traditional CPUs, it is mainly used in a high throughput

algorithms, which is designed for parallel processing such as

prominent algorithms [38].

 Meng and Chaudhary [39], propose parallel data prefetching

scheme for sequences similarity to accelerate data transfer and

improve communication efficiency between host computer

and the FPGA coprocessor. Because FPGA consumes much

time for communication to host machine a double buffering

parallel implementation is designed for the scheme using

DMA on the FPGA board and Pthreads on the host machine.

In more identical work with some changes Allred, et al. [40]

implement SW algorithm in Xeon Front Side Bus module

(FSB) using the Intel Accelerator Abstraction Layer (IAAL),

a released middleware layer. The proposed algorithm is based

on a modification of SSEARCH35, standard industrial

software tiles of the SW algorithm, to introduce hardware

accelerated option to users. While YILMAZ and GÖK [41],

present two systems perform pairwise and multiple sequences

comparision. The proposed system is simulated on the FPGA

chip (Mezzanine card), while the results are obtained from

sychronization with a PC.

3.2 Graphics Processing Units (GPU)
Graphics Processing Units (GPU) is an electronic circuit

innovated to accelerate the processing time of images and

enhance the computing performance. The notion behind using

GPU is to optimized memory access with efficient framework

to maximize occupancy. Many experiments were conducted to

implement sequences alignments on GPU such as Pairwise

Statistical Significance Estimation (PSSE) algorithm [42],

which aimed to accelerated estimation of large biological

sequences.

CUDA is a parallel programming architecture increases the

computing performance by harnessing GPU power. It mainly

used as parallel implementations for sequences comparisons

using different hardware such as nVidia [43, 44] and GeForce

[45]. Many algorithms are developed and implemented based

on CUDA platforms, for instance SpecAlign algorithm [46]

propose to fast SW alignments using GPU memory. The

algorithm is designed to reduce memory accesses and to

minimize bandwidth synchronization.

3.3 Network-on-Chip (NoC)
Network-on-Chip (NoC) is a packet switched (integrated

circuit) designed using a layered architecture to improve the

communication between cores in a networking system. A

preliminary attempt to solve sequences alignment problems

using NoC is adopted by Sarkar, et al. [47]. A simple pass

transistor-based switch boxes are designed to forward the data

from one to the other instead of designing network routers for

data communication [48]. The NoC architecture achieves

speedup, reduced latency, and energy dissipation in

communication.

Tile64 is another NoCs platforms produced by Tilera

Corporation; it is used in implementing sequences alignment

problem. The Tile64 is composed of 64 cores (tiles) integrated

into a single Tile64 processor. Each card includes multicore

processor, RAM memory, and communication ports. The

parallel version of the algorithms FstaLSA and MC64-

NW/SW is implemented on Tile64 card in order to detect

similarity regions in two compared sequences [7]. The

algorithm is based on NW and SW algorithms to optimize the

performance of pairwise sequence alignments.

4. DISCUSSION AND CONCLUSION
DNA and Protein problems attract much attention in recent

years due to the assumption of it is relations with most

diseases. This paper studies and reviews one of the most

important problem in Bioinformatics. Sequences alignment

problem for two sequences sustains in detecting properties of

new query sequence from a well-known reference sequence.

This problem is the first step to study some related problems

such as functional linkage, protein-protein interaction,

structure prediction, and protein folding. Computing methods

used in DNA and proteins problems are reviewed in advance

as well as storage capacities and space problems. Hardware

utilizations are detail and lists such as Field Programmable

Gate Array (FPGA), Graphics Processing Units (GPU), and

Network-on-Chip (NoC).

This paper is set out with the aim of assessing the shared

memory implementation for sequences alignment problem.

Specifically, local sequences alignment using the SW

algorithm. Current problems of great concern in SW

algorithm are computations and spaces complexity, which

required powerful algorithm(s) to utilize the power of parallel

machines. Implementing SW algorithm in parallel platforms

plays a key role in sequences comparisons problems in order

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 4, April 2015

33

to achieve accurate results for long sequence’s length within a

reasonable time.

The first serious discussions and analyses of long sequences

emerge during spaces complexity for comparing sequences.

Memory constraint in long DNA comparisons is a prohibitive

and compel biologist to lose valuable information from new

detecting sequences. Most recent studies in sequence

alignment problem have only been carried out in shared

memory architecture [16-19, 22-27]. However, a serious

weakness with this architecture is the limitation and constraint

of fixed sizes of memory available for all shared processors.

This major drawback makes any algorithms and/or techniques

for long sequences comparisons based on shared memory is

unreasonable and impractical. Multicore platforms are

designed to work on shared memory architecture; a constraint

for memory size would be the normal corollary in these

platforms.

5. ACKNOWLEDGMENTS
The authors gratefully acknowledge use of the facilities of the

Faculty of Computing at the University Technology Malaysia,

funded and support from the grant R.J130000.7828.4F676.

6. REFERENCES
[1] K. Raman, "Construction and analysis of protein-protein

interaction networks," Autom Exp, vol. 2, p. 2, 2010.

[2] D. Darriba, G. L. Taboada, R. Doallo, and D. Posada,

"ProtTest 3: fast selection of best-fit models of protein

evolution," Bioinformatics, vol. 27, p. 1164, 2011.

[3] A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq,

and V. S. Pande, "Folding@home: Lessons From Eight

Years of Volunteer Distributed Computing," 2009 Ieee

International Symposium on Parallel & Distributed

Processing, Vols 1-5, pp. 1624-1631, 2009.

[4] M. Axelson-Fisk, "Sequence Alignment," in

Comparative Gene Finding, ed: Springer London, 2010,

pp. 89-155.

[5] M. Imelfort, "Sequence comparison tools,"

Bioinformatics., pp. 13-37, 2009.

[6] S. Brenner, "Optimal Pairwise Alignment," in

Introduction to computational biology: an evolutionary

approach, B. Haubold and T. Wiehe, Eds., ed: Springer,

2006, pp. 11-42.

[7] D. Díaz, F. J. Esteban, P. Hernández, J. A. Caballero, G.

Dorado, and S. Gálvez, "Parallelizing and optimizing a

bioinformatics pairwise sequence alignment algorithm

for many-core architecture," Parallel Computing, vol. 37,

pp. 244-259, 2011.

[8] T. Smith and M. Waterman, "Identification of common

molecular subsequences," J. Mol. Bwl, vol. 147, pp. 195-

197, 1981.

[9] S. B. Needleman and C. D. Wunsch, "A general method

applicable to the search for similarities in the amino acid

sequence of two proteins," Journal of molecular biology,

vol. 48, pp. 443-453, 1970.

[10] S. Henikoff and J. G. Henikoff, "Amino acid substitution

matrices from protein blocks," Proc Natl Acad Sci U S A,

vol. 89, pp. 10915-9, Nov 15 1992.

[11] R. B. Batista, A. Boukerche, and A. C. M. A. de Melo,

"A parallel strategy for biological sequence alignment in

restricted memory space," Journal of Parallel and

Distributed Computing, vol. 68, pp. 548-561, 2008.

[12] G. M. Amdahl, "Validity of the single processor

approach to achieving large scale computing

capabilities," in Proceedings of the April 18-20, 1967,

spring joint computer conference, 1967, pp. 483-485.

[13] J. T. Dudley and A. J. Butte, "A quick guide for

developing effective bioinformatics programming skills,"

PLoS Comput Biol, vol. 5, p. e1000589, Dec 2009.

[14] S. Hosangadi and S. Kak, "An Alignment Algorithm for

Sequences," arXiv preprint arXiv:1210.8398, 2012.

[15] T. Rauber and G. Rünger, Parallel programming: For

multicore and cluster systems: Springer Science &

Business, 2013.

[16] S. Bandyopadhyay and R. Mitra, "A parallel pairwise

local sequence alignment algorithm," NanoBioscience,

IEEE Transactions on, vol. 8, pp. 139-146, 2009.

[17] G. Delgado and C. Aporntewan, "Data dependency

reduction in Dynamic Programming matrix," in

Computer Science and Software Engineering (JCSSE),

2011 Eighth International Joint Conference on, 2011, pp.

234-236.

[18] N. Sebastião, G. Encarnação, and N. Roma,

"Implementation and performance analysis of efficient

index structures for DNA search algorithms in

parallel platforms," Concurrency and Computation:

Practice and Experience, pp. n/a-n/a, 2012.

[19] P. Borovska, V. Gancheva, G. Dimitrov, and K. Chintov,

"Parallel performance evaluation of multithreaded local

sequence alignment," in Proceedings of the 12th

International Conference on Computer Systems and

Technologies, 2011, pp. 247-252.

[20] T. Rognes, "Faster Smith-Waterman database searches

with inter-sequence SIMD parallelisation," BMC

bioinformatics, vol. 12, p. 221, 2011.

[21] G. Ivan, D. Banky, and V. Grolmusz, "Fast and Exact

Sequence Alignment with the Smith-Waterman

Algorithm: The SwissAlign Webserver," arXiv preprint

arXiv:1309.1895, 2013.

[22] F. M. Mendonca and A. C. M. A. d. Melo, "Biological

Sequence Comparison on Hybrid Platforms with

Dynamic Workload Adjustment," in Parallel and

Distributed Processing Symposium Workshops & PhD

Forum (IPDPSW), 2013 IEEE 27th International, 2013,

pp. 501-509.

[23] N. Neves, N. Sebastiao, A. Patricio, D. Matos, P. Tomás,

P. Flores, et al., "BioBlaze: Multi-core SIMD ASIP for

DNA sequence alignment," in Application-Specific

Systems, Architectures and Processors (ASAP), 2013

IEEE 24th International Conference on, 2013, pp. 241-

244.

[24] D. Satyanvesh, K. Balleda, A. Padyana, and P. Baruah,

"GenCodex-A Novel Algorithm for Compressing DNA

sequences on Multi-cores and GPUs," in 19th IEEE

International conference on High Performance

Computing., December 2012., 2012.

[25] D. Satyanvesh, K. Balleda, and P. Baruah, "Genalign—A

high performance implementation for aligning the

compressed DNA sequences," in Advanced Computing

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 4, April 2015

34

Technologies (ICACT), 2013 15th International

Conference on, 2013, pp. 1-6.

[26] N. Alachiotis, S. Berger, T. Flouri, S. P. Pissis, and A.

Stamatakis, "libgapmis: extending short-read

alignments," BMC Bioinformatics, vol. 14, p. S4, 2013.

[27] H. Martínez, J. Tárraga, I. Medina, S. Barrachina, M.

Castillo, J. Dopazo, et al., "Concurrent and Accurate

RNA Sequencing on Multicore Platforms," arXiv

preprint arXiv:1304.0681, 2013.

[28] M. Noorian, H. Pooshfam, Z. Noorian, and R. Abdullah,

"Performance enhancement of smith-waterman algorithm

using hybrid model: comparing the MPI and hybrid

programming paradigm on SMP clusters," in Systems,

Man and Cybernetics, 2009. SMC 2009. IEEE

International Conference on, 2009, pp. 492-497.

[29] M. J. Chorley and D. W. Walker, "Performance analysis

of a hybrid MPI/OpenMP application on multi-core

clusters," Journal of Computational Science, vol. 1, pp.

168-174, Aug 2010.

[30] M. Farrar, "Striped Smith–Waterman speeds database

searches six times over other SIMD implementations,"

Bioinformatics, vol. 23, pp. 156-161, 2007.

[31] H. Q. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L.

Huang, and B. Chapman, "High performance computing

using MPI and OpenMP on multi-core parallel systems,"

Parallel Computing, vol. 37, pp. 562-575, Sep 2011.

[32] G. Hager, G. Jost, and R. Rabenseifner, "Communication

characteristics and hybrid MPI/OpenMP parallel

programming on clusters of multi-core SMP nodes," in

Proceedings of Cray User Group Conference, 2009, p.

5455.

[33] K. R. Luecke, "Software Development for Parallel and

Multi-Core Processing," in Embedded Systems - High

Performance Systems, Applications and Projects, ed:

InTech., 2012, pp. 35-58.

[34] S. Aluru and N. Jammula, "A Review of Hardware

Acceleration for Computational Genomics," 2013.

[35] P. K. Lala, "A Digital Hardware-based Approach for

Molecular Sequence Comparison," in Information

Engineering, 2013.

[36] T. Majumder, P. P. Pande, and A. Kalyanaraman,

"Hardware Accelerators in Computational Biology:

Application, Potential and Challenges," 2013.

[37] B. Vibishna, K. S. Beenamole, and A. K. Singh,

"Understanding single-event effects in FPGA for Avionic

system design," Iete Technical Review, vol. 30, pp. 497-

505, Nov-Dec 2013.

[38] A. Surendar, M. Arun, and C. Bagavathi, "EVOLUTION

OF RECONFIGURABLE BASED ALGORITHMS FOR

BIOINFORMATICS APPLICATIONS: AN

INVESTIGATION," International journal of life

sciences, Biotechnology and Pharma Research, vol. 2,

2013.

[39] X. Meng and V. Chaudhary, "Boosting data throughput

for sequence database similarity searches on FPGAs

using an adaptive buffering scheme," Parallel

Computing, vol. 35, pp. 1-11, Jan 2009.

[40] J. Allred, J. Coyne, W. Lynch, V. Natoli, J. Grecco, and

J. Morrissette, "Smith-Waterman implementation on a

FSB-FPGA module using the Intel Accelerator

Abstraction Layer," in Parallel & Distributed

Processing, 2009. IPDPS 2009. IEEE International

Symposium on, 2009, pp. 1-4.

[41] C. YILMAZ and M. GÖK, "System designs to perform

bioinformatics sequence alignment," Turkish Journal of

Electrical Engineering & Computer Sciences, vol. 21,

pp. 246-262, 2013.

[42] Y. Zhang, S. Misra, D. Honbo, A. Agrawal, W. Liao, and

A. Choudhary, "Efficient pairwise statistical significance

estimation for local sequence alignment using GPU," in

Computational Advances in Bio and Medical Sciences

(ICCABS), 2011 IEEE 1st International Conference on,

2011, pp. 226-231.

[43] P. Borovska and M. Lazarova, "Parallel models for

sequence alignment on CPU and GPU," in Proceedings

of the 12th International Conference on Computer

Systems and Technologies, 2011, pp. 210-215.

[44] A. Papadopoulos, I. Kirmitzoglou, V. J. Promponas, and

T. Theocharides, "GPU technology as a platform for

accelerating local complexity analysis of protein

sequences," in Engineering in Medicine and Biology

Society (EMBC), 2013 35th Annual International

Conference of the IEEE, 2013, pp. 2684-2687.

[45] S. Manavski and G. Valle, "CUDA compatible GPU

cards as efficient hardware accelerators for Smith-

Waterman sequence alignment," BMC bioinformatics,

vol. 9, p. S10, 2008.

[46] X. Feng, H. Jin, R. Zheng, L. Zhu, and W. Dai,

"Accelerating Smith-Waterman Alignment of Species-

Based Protein Sequences on GPU," International

Journal of Parallel Programming, pp. 1-22, 2013.

[47] S. Sarkar, G. R. Kulkarni, P. P. Pande, and A.

Kalyanaraman, "Network-on-chip hardware accelerators

for biological sequence alignment," Computers, IEEE

Transactions on, vol. 59, pp. 29-41, 2010.

[48] S. Kaur, "On-chip Networks!," Iete Technical Review,

vol. 30, pp. 168-172, May-Jun 2013.

IJCATM : www.ijcaonline.org

