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ABSTRACT 

This paper introduces a priority based fuzzy goal programming 

(FGP) method for modelling and solving multilevel 

programming problem (MLPP) through genetic algorithm (GA). 

In model formulation, the individual best solution of objectives 

of each of the decision makers (DMs) is determined by using 

the GA method for fuzzy description of the objectives. Then, 

tolerance membership functions of the defined fuzzy goals are 

constructed for measuring the degree of satisfaction of goal 

achievement and there by degree of optimality of the decision 

vectors controlled by the higher level DMs. In the executable 

FGP model, minimization of the under-deviational variables of 

the defined membership goals with highest membership value 

(unity) as the aspiration levels of them on the basis of pre-

emptive priority is taken into consideration in the decision 

making context. In the solution process, sensitivity analysis with 

variations of priority structure of model goals is performed and 

then Euclidean distance function is used to identify the 

appropriate priority structure under which the most satisfactory 

decision can be reached in the decision making horizon. 

In the proposed GA scheme, roulette-wheel selection scheme, 

single point crossover and uniform mutation are adopted in the 

decision search process with regard to reach a satisfactory 

solution in the proposed hierarchical decision system.  

The effective use of the proposed approach is illustrated through 

a numerical example. Performance comparisons are also made 

to highlight the superiority of the proposed approach over the 

approaches studied previously.   

Keywords 

Euclidean Distance, Fuzzy Programming, Fuzzy Goal 

Programming, Genetic Algorithm, Goal Programming, 

Multilevel Programming. 

1. INTRODUCTION 
In the field of mathematical programming (MP), multilevel 

programming (MLP) [1] was developed to solve decentralized 

planning problems with multiple DMs in a hierarchical decision 

making organization.  

In MLPP, the execution of the decision power is sequential from 

a higher level to lower level, and each DM tries to optimize his 

own benefit under a conflicting environment in the hierarchical 

levels.  

The concept of hierarchical decision problem as a special field 

of study in the area of MP was first suggested by Burton and 

Obel [2] in 1977. During 1980s, a considerable number of 

solution approaches for MLPPs as well as bilevel programming 

problems (BLPPs) [3] as a special case of MLPP have been 

deeply studied in [4,5,6] by pioneer researchers in this field.  

But, in the real-life decision situations, it may be mentioned that 

the previous approaches are computationally not very efficient, 

especially for large and complex hierarchical decision problems. 

In most of the classical approaches for solving hierarchical 

decision problems developed so far, it was found that the 

decision power of a higher level DM is often dominated by a 

lower level DM. 

However, in hierarchical decision structure of a decentralized 

decision system, it is generally assumed that the DMs 

cooperative each other to reach a minimum level of satisfaction 

for smooth running the activities of the organization. In such a 

situation, the fuzzy programming (FP) [7] approach based on the 

concept of fuzzy set theory (FST) [8] has been introduced to 

solve hierarchical decision problems [9]. 

But, due to conflicting in nature of objectives, there is a 

possibility of rejecting the solution again and again by followers 

and re-evaluation of the problem with elicited membership 

values of the membership functions is repeatedly involved in the 

solution search process. As a result, decision deadlock often 

arises in a decision making situation. Thereafter, the supervised 

search procedure with use of max-min operator   introduced by 

Bellman and Zadeh [10] was studied in [11] to solve such 

decision problems. The conventional FP approach have been 

further extended by Shih and Lee [12] in 2000 to solve 

hierarchical decision problems from the view point of making a 

balance of decision powers of DMs in the decision making 

context. In using such an approaches, the elicited membership 

functions for the fuzzy goals are also need be redefined again 

and again to reach a satisfactory decision in the solution search 

process.  

To avoid the computational difficulty with a  FP approach, FGP 

approach [13] as an extension of conventional goal 

programming (GP) [14] that is based on the ‘goal satisficing 

philosophy’ [15], has been studied in [16] for making decision 

with regard to achievement of multiple fuzzy goals in uncertain 

environment. The FGP based solution approach to BLPPs has 

been studied in [17] and further extended to solve MLPPs in 
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[18] in the past. However, the extensive study on fuzzy MLPPs 

is at an early stage. 

Now, GAs based on natural selection and population genetics, 

initially introduced by Holland [19] in 1973, have appeared as 

flexible and robust computational tools for searching solutions 

of different real-world multiobjective decision problems [20]. 

The GA based solution approaches to decision problems in the 

framework of GP have been studied [21] in the past. The uses of 

GAs to FP formulations of BLPPs as well as MLPPs have also 

been studied [22,23] by pioneer researchers in the field. 

However, the GA based solution method to the FGP 

formulations of BLPPs as well as MLPPs is yet to be widely 

circulated in the literature.  

In the present article, a FGP procedure for modelling and 

solving MLPPs by using a GA scheme is presented for solving 

large hierarchical decision problems in uncertain environment. 

2. MLPP PROBLEM FORMULATION 
In the hierarchical decision situation, let )X,.,...X,(XX n21

be 

the vector of decision variables that are associated with different 

levels of the decision problem. Then, let lZ  be the objective 

function and lX be the control vector of decision variables at the 

l-th level DM, n;1,2,...,  LLl where 

X}1,2,...,X{  Lll
l

 

Then, the general framework of a MLPP within a 

hierarchical nested decision structure can be presented as 

follows. 

Find   )X,.,...X,(XX L21 so as to: 





L

l
ll

1
11

X
Xc(X)ZMaximize

1

                                    (Top-level) 

 where, for given 
LX,...,X,X;X 321

solve 





L

l
ll

1
22

X
Xc(X)ZMaximize

2

                              (Second-level) 

where, for given 1X and 
LX,...,X,X;X 432

 solve 

…     …   … 

…     …   … 

where, for given  LL X;X,...,X,X 121   solves 





L

l
lLlL

L 1
X

Xc(X)ZMaximize                                  (L -th level)  

subject to }bXA{S)X,...,X,(X
1

21 



L

l
llL , 0X l ,  

                                                    l = 1,2,..., L                          (1) 

where, b are constant vectors, )  1,2,...,(A Lll  are constant 

matrices. It is also assumed that S ( Φ) is bounded. 

Now, it is to be observed that the problem (1) is multiobjective 

in nature and the execution of decision power of the DMs is 

sequential from top-level to bottom-level.  

In the classical approaches of MLPPs, it is to be noted that the 

decision 1 X l  is made by a lower-level DM subject to the 

decision lX  made by the respective higher level DM in the 

order of their hierarchy. But in such a hierarchical execution 

process for making decision, the lower level DMs are always 

found to be dominated by higher level DMs. As a consequence, 

decision deadlock arises frequently in most of the decision 

situations owing to rejection of solution by lower level DMs. 

To overcome the above situation, relaxations of individual 

decision as well as the objective value up to certain tolerance 

limits of each of the higher level DMs are needed essentially to 

execute the decision powers of DMs properly and thereby 

making overall benefit of the organization. 

Now, to develop the fuzzy goals of the problem and then to 

solve it under the framework of FGP, a GA scheme is 

introduced in section 3.  

3. GA FOR MLPP 
 The solution methods based on GAs for multiobjective decision 

analysis within the frameworks of conventional GP and FGP 

have been investigated by Zheng et al. [24] and Gen et al. [25] 

in the past. The efficient uses of GA approaches to different 

real-life multiobjective decision making (MODM) problems 

have also been studied by Sakawa and Kobuta (2000) [26], 

Taguchi et al. (1998) [27] and Wang (2002) [28] previously. 

However, in the proposed GA scheme, the initial population (the 

initial feasible solution individuals) is generated randomly with 

the condition of satisfying the system constraints in the solution 

search process. 

The feasible solution individuals are then evaluated for their 

fitness to evaluate the achievement function associated with the 

problem. 

Now, in the literature of GAs, there are large numbers of 

schemes [19] for generating new population with the use of 

different operators: selection, crossover and mutation.  

The steps of the GA procedure with the core functions adopted 

in the solution process are presented via the following 

algorithmic steps. 

The GA Algorithm: 
Step1. Representation and initialization  
Let E denote the double vector representation of chromosome in 

a population as E = {x1, x2,..., xn}. The population size is defined 

by pop_size, and pop_size chromosomes are randomly 

initialized in its search domain. 

Step2. Fitness function  

The fitness value of each chromosome is judged by the value of 

an objective function. The fitness function is defined as: 

eval(Ev) = (Zl)v  , l =1,2,…, L;   v = 1,2,...,pop_size    (2) 

where Zl represents the objective function of the l-th level DM 

given by (1) and the subscript v in (2) refers to the fitness value 

of the selected v-th chromosome, v = 1, 2, ..., pop_size. The best 

chromosome with largest fitness value at each generation is 

determined as:  

E* = max {eval (Ev) | v = 1, 2, ..., pop_size},  
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or,  

E* = min{eval (Ev) | v = 1, 2, ..., pop_size},  

depending on searching of the best or worst value of an 

objective. 

Step3. Selection 

The simple roulette-wheel scheme [29] is used for selecting two 

parents for mating purpose in the genetic search process. 

Step4. Crossover 

The parameter pc is defined as the probability of crossover. The 

single point crossover operation [29] of a genetic system is 

applied here in the sense that the resulting offspring always 

satisfy the linear constraints set S ( Here, a chromosome is 

selected as a parent, if for a defined random number 

cpr[0,1],r  is satisfied. 

For example, for two parents SE,E 21   , arithmetic crossover  

is defined as:  

          ,EEE,EEE 2112

1

22211

1

1  for producing two 

offspring  1

1E and 1

2E , where 0, 21  with ,121 

.SE,E 1

2

1

1   

Step5. Mutation  

As in the conventional GA scheme, a parameter pm of the 

genetic system is defined as the probability of mutation. The 

mutation operation is performed on a uniform basis, where for a 

random number [0,1]r , a chromosome is selected for mutation 

provided that .pr m  

Step6. Termination  

The execution of the whole process terminates when the fittest 

chromosome is reported at a certain generation number in the 

solution search process. 

The pseudo code of the standard genetic algorithm is presented 

as follows: 

Initialize population of chromosomes E (x)  

Evaluate the initialized population by computing its 

fitness measure 

While not termination criteria do 

x : = x + 1 

Select E (x +1) from E (x)  

Crossover E (x+1) 

Mutate E (x + 1) 

Evaluate E ( x +1 ) 

End While 

Now, the FGP formulation of the problem (1) by defining the 

fuzzy goals is presented in section 4. 

4. FORMULATION OF FGP MODEL 
To formulate the FGP model of the given problem, the 

imprecise aspiration levels of the objectives of DMs located at 

all the levels and the decision vectors of upper level DMs as 

well as the tolerance limits for achieving the respective aspired 

levels are determined first. Then, they are characterized by their 

membership functions for measuring the degree of achievement 

of the aspired goal levels in the decision situation. 

In the present decision situation, the individual best decisions of 

the DMs are taken into consideration and they are evaluated by 

using the proposed GA scheme.  

Let )Z;X,...,X,X( *

I21 l

lll
 be the best decision of the l-th level DM,  

where (X)ZmaxZ
SX

*

ll


 . 

Then the fuzzy goal objectives can be presented as:  

lZ ~
*Zl
,     .1,2,..., Ll    

Similarly, the fuzzy goals for the control vectors of the upper-

level DMs appear as:  

               lX ~
l

lX ,    .11,2,...,  Ll  

Now, from the view point of considering the relaxation made by 

an upper-level DM for the benefit of a lower-level DM, the 

lower-tolerance limit for the l-th fuzzy goal lZ  can be 

determined as: 

*

i

11

2

1

1

1 Z)]X,...,X,(XZ[Z   l

L

ll

l

l

l ,   1.1,2,...,  Ll  

Again, since the L-th level DM is at the bottom level, the lower-

tolerance limit of the objective LZ can be determined as:               

*

21

m Z1)](1,2,...,);X,...,X,(Xmin(Z[Z L

l

L

ll

lL Ll   

Now, since the DMs are motivated to co-operate each other and 

a certain relaxation on the decision of each of the upper-level 

DMs is made for the benefit of a lower level DM, the lower 

tolerance limit of the decision lX  can be determined as: 

1).(1,2,...,l),XX(XX n1n  Ll

ll

l

ll  

The construction of the membership functions of the defined 

fuzzy goals is presented in section 4.1. 

4.1 Construction of Membership Function 
For the defined lower-tolerance limits of the fuzzy goals, the 

membership functions can be constructed as follows.  

 
































1).(1,2,...,    ,Z(X) Zif;                    0      

,Z(X)Z  Zif;       
ZZ

Z(X)Z

  ,Z(X)  Zif;                  1       

(X)Zμ

1

*1

1*

1

*

Z

Lll

ll

ll

l

ll

ll

l

ll

ll

ll
(3)  

  ,

     ,Z(X) Zif;                     0      

Z(X)Z  Zif;         
ZZ

Z(X)Z

  ,Z(X)  Zif;                   1       

(X)Zμ

m

LL

*m

m

m

*

Z






















 LLL

L

*

L

LL

LL

LL

              (4)                  
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






















1. , . . . 2, 1,        ,XX if;                            0      

,XXX  if;                     
XX

XX

,XX  if;                          1       

][Xμ

n

n

n

n

lX

Llll

l

lll

l

l

l

ll

l

ll

l

   (5)                                                                                                                                                      

The graphical representation of linear membership function 

associated with the problem in (3) is displayed in Fig. 1.                        

 

Fig 1: Graphical representation of the membership function 

of fuzzy goal in (3) 

Now, the FGP model formulation is presented in the following 

section 4.2. 

4.2 FGP Model Formulation of MLPP 
In the FGP model formulation, the membership functions are 

transformed into goals by assigning the aspiration level unity 

and introducing under- and over-deviational variables to each of 

them. Then, achievement of the aspired goal levels to the extent 

possible by minimizing the sum of the weighted under-

deviational variables in the goal achievement function on the 

basis of weights of importance of achieving the goals is taken 

into account.   

Now, since a considerable number of fuzzy goals are involved 

with the problem and they usually conflict among themselves, it 

seems that the FGP formulation of the problem on the basis of 

priority of DMs’ needs and desires is effective in the present 

decision situation. 

In priority based FGP, the goals are rank ordered on the basis of 

the priorities of achieving the target levels of them. The goals 

which seem to be equally important from the view point of 

assigning a priority are included at the same priority level and 

numerical weights are given to them on the basis of their 

weights of importance of achieving their aspired levels at the 

same priority level. 

Then, a priority based FGP [30] model of the problem is 

presented as follows.  

Find )X,...,X,(X 21 L so as to:  

Minimize )](dP),...,(dP),(dP),(d[PZ Rr21

  

and satisfy,     

:μZl
1.1,2,...,1,dd

ZZ

Z(X)Z
1*

1




 





Lllll

ll

l

ll  

:μZL
1dd

ZZ

Z(X)Z
m

L

*

L

m

L 


 

LL

L  

:μXl
,Idd

XX

XX
n

n

iii

l

l

l

ll 


 
,lLi  where

.1,...,2,1  Ll                    

.1,2,...,l 0,d,d    0,d,d Liill                        (6)                   

subject to the given system constraints in (2.1), Z represents the 

vectors of the K priority achievement functions and 

)1,2,...,(d,d Llll   represent the over- and under-deviational 

variables, respectively, and ,0d,d  

ii
 are the vectors of over- 

and under-deviational variables associated with the respective 

goals, iI  are  column vectors with all elements equal to 1.

)(dPr

 is a linear function of the weighted under-deviational 

variables at the r-th priority level and where )(dPr

  is of the 

form: 

 






 
L

l

R

l
iill

1

12

1R
rrrrr

dwdw)d(P ,                                                   (7) 

where 

lrd  and 

ird  are renamed for 

ld  and 

id  to represent them 

at the r-th priority level. )0(w r 

l
 and 0)(w r 

i
 are the 

numerical weights and the vector of numerical weights, 

respectively, and they are determined as [31]:  

1L,...,21,,
)Z(Z

1
w

k

1*r 





 l
l

ll

l , 

r

m*r
)Z(Z

1
w

LL

L


 , 

, 
)X(X

1
w

r

nr

l

l

l

i



lL i ,   where 11,2,...,  Ll ,  

where the suffix ‘r’ is used to represent the values of the weights 

of achieving the aspired goal values at the r-th priority level.  

It is worthy to mention here that the notion of pre-emptive 

priorities of the goals actually holds on the concept that the 

goals which are included at the r-th priority level rP  are 

preferred most for achievement of their aspired levels before 

considering the achievement problem of the goals of the next 

priority Pr+1, regardless of any multiplier associated with Pr+ 1.    

Also, the relationship among the priorities is 

P1 >>> P2 >>> . . . >>> Pr >>> . . . >>> PR, 

where >>> means ‘much greater than’ and implies that the goals 

at the first priority level (P1) are achieved to the extent possible 

before considering the achievement of goals at the second 

priority level (P2), and so forth.     

Now, in a decision making situation, achievement of the highest 

membership value of each of the fuzzy goals is a trivial one. 

0        (Zl
* - Zl 

l+1)        Zl
* Zi (X)

µZ

1
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Again, a DM is frequently confused with that of assigning the 

proper priorities to the goals, because they often conflict each 

other for achieving their individual aspired levels in the decision 

making environment. 

To overcome the above situation, the notion of Euclidean 

distance function [32] for group decision analysis, introduced in 

the preceding chapter is used here to achieve an ideal point 

dependent solution and thereby selecting the appropriate priority 

structure under which the most satisfactory decision can be 

reached.  

The selection of appropriate priority structure for goal 

achievement is presented in the following section 4.3. 

4.3 Priority Structure Selection 
In the present decision situation, since the highest membership 

value of each fuzzy goal is unity, the ideal point would be a 

vector with each element equal to 1.   

  The Euclidean distance function can be presented as: 

)1(...,,2,1,R...,,2,1r

,](.))I((.))1((.))1[(D 2

1

2r

X2

2r

Z

2r

Z

r





Ll

lLl

                      (8) 

Where (.))(.),(.),( r

X

r

Z

r

Z lLl
 are the actual utilities resulting 

from the decision X under the r-th priority structure of the goals, 

and I2 is the row vector with all elements equal to 1 and the 

dimension of it depends on X, 
rD indicates the distance 

associated between the achieved membership values of the goals 

and the ideal point when the problem is solved under the r-th 

priority structure.   

In the priority selection process, it can easily be realized that the 

solution which is closest to the ideal solution point would be the 

most satisfactory one. As such, priority structure that 

corresponds to the minimum of the distances obtained for 

arrangement of different priority structures might be considered 

as the appropriate priority structure for achievement of goals in 

the decision making environment.  

Here, it can easily be realized that the solution which is closest 

to the ideal point must correspond to: 

             
    

kr

Rr
D}D{min 


 (say) , Rk1  . 

Then, the k-th priority structure would be considered as an 

appropriate one to reach the most satisfactory decision in the 

decision making situation. 

Now, it is worthy to note that computational complexity often 

arises to solve problems with nonlinear objectives/goals by 

using traditional approximation approaches, and use of such an 

approach in most of the times leads to a local optimal solution 

rather than global one. Further, computational load owing to 

linearization and decision trouble due to approximation error are 

frequently involved in using conventional methods. 

To overcome the above situation, an GA method as a volume-

oriented (global one) search method and a promising tool as goal 

satisficer rather than objective optimizer [33] can be effectively 

employed to the proposed FGP model to  arrive at a reasonable 

solution for proper distribution of decision powers to the leader 

and follower in the decision making environment. 

Now, in the genetic search process, the fitness function for 

executing the problem in (7) is defined in section 5. 

5. REPRESENTATION OF EVALUATION 

FUNCTION 
The goal achievement functions Z defined in (6) appears as the 

fitness function in the evaluation process of using the GA. The 

evaluation function for identification of the fitness of a 

chromosome can be represented as:        

 vv )(Z)(Eeval rr v

L

l

L

i
iill
)dwd w(

1

12

1L
rrrr 







 

size_pop,1,2,...v                              (9) 

where
 vr )Z(

 
is used to represent the achievement function Z in 

(6) for measuring the fitness value of v-th chromosome, when 

the problem of achieving the goals at the r-th priority level rP  

are taken into account. 

In the decision search process, the chromosome *E with the best 

fitness value at each generation is determined as: 

  pop_size}1,2,...,  )(Emin{evalE r

*  vv
, r = 1,2, …, R. in the 

genetic search process. 

In the solution process, step by step execution of the problem by 

employing the GA scheme for achievement of model goals on 

the basis of priorities is briefly discussed as follows.  

At the first step, the execution is only performed for searching 

the minimum of 1Z  in order to achieve the aspired levels of 

goals at the first priority level (P1) in the domain of solution 

search space. When minimum of 1Z
 
is reached, i.e., the value 

*

1Z
 
is achieved for a chromosome at a certain generation, the 

functional expression of the achievement function 1Z is crisply 

introduced into the system by incorporating 
*

1Z
 
as its upper-

bound, which acts as insurance against deterioration of the 

achieved values of goals at the priority level P1 for any further 

execution to be made for evaluation of the problem.  Then, 

execution counter is shifted to the next step to evaluate 2Z  for 

achievement of aspired levels of goals included at the second 

priority level (P2). The continuation of execution for searching 

solution with sequential selection of priorities (step by step) is 

made until the evaluation of RZ is completed and thereby the 

fittest chromosome as a candidate solution for final decision is 

reached in the decision making environment.   

Now, the potential use of the approach is illustrated by 

numerical examples. The model solutions are also compared 

with solutions obtained by using other approaches studied 

previously.  

6. ILLUSTRATIVE EXAMPLES 
Two numerical examples are solved to highlight the effective 

use of the proposed approach. 

Example 1: 
A trilevel programming problem (TLPP) is presented as follows. 

Find  )x,x,(x 321
  so as to: 
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3211
x

x2x4xZMinimize
1

                     (Top-level problem) 

where, for given 21 x,x  and 
3x solve 

3212
x

x4x3x2ZMinimize
2

   (Middle-level problem) 

where, for given 1x  and 
32 x,x  solves  

3213
x

2xxx3ZMinimize
3

  (Bottom-level problem) 

0x,x,x

10x,x,x

3,x3xx

5,xxx2

1,xx   xsubject to

321

321

321

321

321











   (10)                                                                                                                       

Now, to establish the FGP model of the problem as well as to 

solve it by employing the proposed GA scheme, the following 

genetic parameter values are incorporated in the decision search 

process. 

 population size = 100 

 probability of crossover = 0.8 

 probability of mutation = 0.08 

 Generation number=100 

The GA is implemented using Optimization Toolbox in 

MATLAB (Version 7.10.0.499 (R2010a)). The execution is 

made in an Intel Pentium IV processor with 2.66 GHz. clock-

pulses and 4 GB RAM.  

Note 1 In the context of setting the GA parameter values to 

solve the problem, it may be mentioned that they are actually 

adopted from the test results. Here, the parameter setting is 

particularly adopted to avoid any early convergence with 

suboptimal decision and substantial increase in generation 

numbers in the decision making horizon.  

Considering the genetic viability of the members in a gene pool 

of the search domain, it may be noted that the ranges 0.6 ≤ pc 

≤0.9 and 0.06 ≤ pm ≤ 0.09 are also valid for making appropriate 

decision; otherwise inferior decisions are achieved there under 

each of the three given priority structures of the test model in the 

decision making situation. Again, inferior result occurs for 

selection of pop_ size below 50, and number of generations is 

considerably increased for any value higher than the adopted 

one to reach the decision.  

However, it is worthy to mention here that the selection of GA 

parameter values highly depends on the characteristics as well as 

size of a problem in the decision making environment.  

Now, following the procedure, the individual optimal solutions 

of the three successive levels are obtained as: 

(i)    8);23,(0,)Z;x,x,(x 1

1

3

1

2

1

1 
                             

(Top-level) 

(ii)   5);00,(2.5,)Z;x,x,(x 2

2

3

2

2

2

1                        (Middle-level) 

(iii)  )5;05,(0,)Z;x,x,(x 3

3

3

3

2

3

1                         (Bottom-level) 

Then, the fuzzy goals are defined as: 

    1Z ~ 8, 2Z ~ 5, 
3Z ~ 5    

Following the procedure, the upper-tolerance limits of the 

objective goals are determined as:  

    33.55Z80.66,Z67.66,Z m

3

3

2

2

1  . 

Then, the top-level and middle-level DMs feel that their control 

variables 1x  and 2x  should be relaxed up to 0.5 and 1, 

respectively, for the benefit of the respective upper-level DMs, 

and not beyond them. So, )x5.0(x 0.5x 1

1

2

1

n

1  and 

)x1(x 1x 2

2

3

2

n

2  act as lower tolerance limits of the decisions 

1x and 2x , respectively. 

 Now, following the procedure and using the above numerical 

values, the membership functions of the defined fuzzy goals can 

be constructed by (3), (4) and (5). Following the procedure, the 

membership goals are then obtained as: 

1dd
59.66

)xx2x4(66.67
:μ

11

321

Z1


 
 

1dd
75.66

)4xx3(2x-80.66
:μ

22

321

Z2


 
 

1dd
50.33

)x2xx3(33.55
:μ

33

321

Z3


 
 

1dd
2

x-2.5
:μ

44

1

x1
 

 

1dd
4

x-5
:μ

55

2

x2
 

 

1,2,...,5.q0,d,d
qq



                                                (11)
  

The executable FGP model of the problem can be obtained by 

using (6).   

Following the proposed approach, three priority factors P1, P2 

and P3 are assigned to the model goals in (11) for achievement 

of the associated fuzzy goals, and three  priority structures are 

considered to perform sensitivity analysis in the process of 

solving the problem in the environment of the given system 

constraints in (10).  

The priority achievement functions under the three Runs and the 

results obtained by employing the GA scheme with the 

consideration of the evaluation function defined in (9) are 

displayed in Table 1. 
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Table 1. Priority structure and solution achievement     

 

Ru

n 

 

Priority structure for 

goal achievement 

 

Decision 

321 x,x,x

 

Membership 

value

11321 xxZZZ ,,,, 

 

 

 

 

1 






























































543

32

211

d
4

1
d

2

1
P

,d
33.50

1
P

,d
66.75

1
d

66.59

1
P

 

 

(2.50, 

0.00, 

0.00) 

 

(0.96,1,0.95,0,1) 

 

 

 

2 






























































543

322

11

d
4

1
d

2

1
P

,d
33.50

1
d

66.75

1
P

,d
66.59

1
P

 

 

(0.50, 

2.12, 

1.87) 

 

(0.99,0.87,0.95,1

,0.72) 

 

 

 

3 






























































543

22

311

d
4

1
d

2

1
P

,d
66.75

1
P

,d
33.50

1
d

66.59

1
P

 

 

(0.00, 

5.00, 

0.00) 

 

(0.96,0.86,1,1,0) 

 

Now, the Euclidean distances for the achieved membership 

values under the three successive Runs are obtained as: 

0092.1D,3137.0D,0018.1D 321   

The results reflect that the minimum distance corresponds to 

3137.0D2 
 

Thus, the priority structure under the Run 2 is an appropriate one 

to reach the appropriate decision for satisfaction of both the 

leader and follower in the decision making environment. The 

resultant decision is 

)86.12.12,(0.5,)x,x,(x 321  with 

)37.7,57.14(8.12,)Z,Z,(Z 321      

The achieved membership values of the objective goals are: 

.0.95μ0.87,μ,99.0μ
321 ZZZ 

 

The solution achieved here is a satisfactory one from the view 

point of distributing the proper decision powers to the DMs in 

the decision making environment. 

 

Example 2: 
To expound more the potential use of the method, the TLPP 

studied by Anandalingam [4] is considered. 

Find  )x,x,(x 321   so as to: 

3211
x

4x3x7xZMaximize
1

  (Top-level problem) 

where, for given 21 x,x  and 3x solve 

22
x

xZMaximize
2

              (Middle-level problem) 

where, for given 
1x  and 32 x,x  solves  

  33
x

xZMaximize
3

                             (Bottom-level problem)                                                                                                                               

0x,x,x

0.5,x

1,xxx

1,xxx

1,xxx

3,xx   xsubject to

321

3

321

321

321

321













                                                                                

(12) 

To solve the problem in (12),  .the same GA scheme is applied 

in the same computational environment  

Now, following the procedure, the individual optimal solutions 

of the three successive levels are obtained as: 

(i)    8.4992);0.49980,(1.4997,)Z;x,x,(x 1

1

3

1

2

1

1        (Top-level) 

(ii)   1.000);0.35671.000,(0.3567,)Z;x,x,(x 2

2

3

2

2

2

1   

(Middle-level) 

(iii)  0.50);0.500.1914,(0.5522,)Z;x,x,(x 3

3

3

3

2

3

1 
 

(Bottom-level) 

Then, the fuzzy goals are defined as: 

1Z ~ 8.4992, 2Z ~ 1, 3Z ~ 0.5   and  1x
~ 1.4997, 2x ~ 1. 

Following the procedure, the lower-tolerance limits of the 

objective goals are determined as:  

    0.3567Z0.1914,Z4.0701,Z m

3

3

2

2

1  . 

In the decision making situation, )x1.35(x 1.35x 1

1

2

1

n

1  and 

)x0.8(x 0.8x 2

2

3

2

n

2   are considered the lower tolerance 

limits of the decisions 1x and 2x , respectively. 

Now, following the procedure, the membership goals are then 

obtained as: 

1dd
4.4291

4.07014x3x7x
:μ

11

321

Z1


   
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1dd
0.8086

0.1914x
:μ

22

2

Z2


   

1dd
0.1433

0.3567x
:μ

33

3

Z3


   

1dd
0.1497

1.35x
:μ

44

1

x1


   

1dd
0.2

0.8x
:μ

55

2

x2


   

5.1,2,.....,q0,d,d qq 

 
 

subject to the given system constraints in (12).   (13) 

In an analogous to the previous example, sensitivity analysis for 

selection of appropriate priority structure is also made here with 

the consideration of four priority levels. The priority structure 

for optimal decision is found as: 









































 

544332211
d

0.2

1
d

0.1497

1
P,d

0.1433

1
P,d

0.8086

1
P,d

4.4291

1
P   

The resultant decision for the prescribed priority structure is 

obtained as: 

)0.50000.2288,(1.2711,)x,x,(x 321 
 
with 

0.5000)0.2288,(7.5841,)Z,Z,(Z 321      

The achieved membership values of the objective goals are: 

.1μ0,μ,80.μ
321 ZZZ 

 

Here, it is to be followed that the solution of the problem 

achieved by using the traditional approach in crisp environment 

is:  

( )0.5,1,(0.5)x,x,x
321
 with )50. ,1,(4.5)Z,Z,(Z

321
  

The result indicates that the solution obtained by using the 

proposed approach is more satisfactory from the view point of 

distributing the proper decision powers to the DMs in the 

decision making environment.
 
 

7. PERFORMANCE COMPARISON 
To expound the effectiveness of the proposed method, the model 

solutions of both the examples are compared with the solutions 

of the problems obtained previously by using other conventional 

approaches.  

 The Case for Example 1: 
a)  If the conventional minsum FGP approach [14] is used, 

where only a weight structure without any priority factor is 

considered for achievement of fuzzy goals, then the 

solution is found as: 

)78.11.92,(0.7,)x,x,(x 321  with     

)58.7,28.14(8.42,)Z,Z,(Z 321      

b) If the minmax FGP approach [34] is used, where maximum 

importance is given to the goal most displaced from the 

target level relative to others, then the solution is found as: 

)80.11.80,(0.80,)x,x,(x 321  with
 

)8.7,20.14(8.60,)Z,Z,(Z 321 
 

c) If the additive-FGP approach studied in [35] is taken into 

account, where no priority structure is considered and 

where maximization of 



K

1k
k

 subject to 1k   and the 

defined system constraints are taken into account, then the 

solution of the problem is obtained as: 

)x,x,(x 321
 = (0.65, 1.98, 1.82) with                           

)Z,Z,Z( 321
= (8.38, 14.52, 7.57)  

It is to be noted that the decision of the bottom-level DM is 

improved under the proposed GA approach with a least sacrifice 

of the decision of the top-level and middle-level DMs in 

comparison to that obtained by the conventional FGP approach.    

The graphical representations of the goal values of objectives 

obtained under different approaches are displayed in Fig 2. 

 

Fig 2: Graphical representation of objective goal achievements under different approaches 
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It is apparent that the solution obtained by using the proposed 

GA to the priority-based FGP formulations of the problem is the 

most satisfactory one from the viewpoint of arriving at an 

appropriate decision in the decision environment.  

 The Case for Example 2: 
In case of example 2, if the approaches minmax FGP, 

conventional minsum FGP and additive-FGP are 

successively used, then the solutions are found to be   

)5000,00.4282,(1.0717,)x,x,(x
321
 with

 
),5000.0,4282.0(6.7869,)Z,Z,(Z

321


 

with)5000.00.0003,(1.4997,)x,x,(x
321
    

and)5000.0,0003.0(8.4988,)Z,Z,(Z
321
  

)x,x,(x
321

 = (0.7032, 0.1914, 0.3567) with                           

)Z,Z,Z( 321
= (4.0701, 0.1914, 0.3567), respectively. 

The graphical representations of the goal values achieved 

under different approaches are displayed in Fig 3. 

 

Fig 3: Graphical representation of objective goal achievements under different approaches 

The above discussions and solution comparisons reflect that the 

proposed approach is a superior one over the previous 

approaches for making appropriate decision with regard to 

optimizing the objectives in a hierarchical decision environment. 

Further, the incorporation of Euclidean distances for proper 

priority selection with the use of GA makes the decision more 

effective to make a reasonable balance of execution of decision 

powers of DMs in the decision environment.  

8. CONCLUSIONS AND SCOPE FOR 

FUTURE RESEARCH 
The main advantage of the proposed approach is that a proper 

decision can be made here on the basis of relative priority of 

importance of achieving objectives in a hierarchical order in the 

decision making situation.  

The proposed approach can be extended to solve problems with 

multiplicity of objectives at each decision level in a hierarchical 

decision system, which may be a problem in future study. 

Finally, it is expected that the FGP approach presented here can 

contribute to future research to solve real-life multiobjective 

hierarchical decentralized decision problems in uncertain 

environment.  
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