
International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 23, April 2015

37

Plagiarism Detection by using Karp-Rabin and String
Matching Algorithm Together

Sonawane Kiran Shivaji
Master of Engineering, Computer Engineering,

Ahmednagar, Maharashtra,

Prabhudeva S
Asst. Professor,

VACOE, Ahmednagar, Maharashtra

ABSTRACT

In today word copying something from other sources and

claiming it as an own contribution is a crime.

We have also seen it is major problem in academic where

students of UG, PG or even at PhD level copying some part of

original documents and publishing on own name without

taking proper permission from author or developer.

Many software tools in exist to find out and assist the

monotonous and time consuming task of tracing plagiarism,

because identifying the owner of that whole text is practically

difficult and impossible for markers. In our presentation we

have focused on practical assignments (projects) as well as

written document which is to be submitted by students in to

college or university.

Because of this crucial task and day by day increasing

research in different fields, industry, academy people

demanding such software to detect whether submitted articles,

books, national or international papers are genuine or not. In

this paper, our algorithm divides submitted articles in small

pieces and scans it to compare with connected databases to the

server on internet. Some existing work compares submitted

articles with previously submitted articles i.e. with existing

database.

Keywords

Document retrieval; Plagiarism, Algorithm Karp-Rabin;

plagiarism detection String mtching.)

1. INTRODUCTION
Since last few decades, it is a challenge to find out similarity

between two documents and coping somebody’s work in our

paper’s tendency is rocking. It is serious problem in all area.

This challenge encourages us to take a efforts to provide

practical approach for detecting plagiarism in two sequence.

A special issue is published by IEEE transaction on

plagiarism. It is confirmed in Guest Editorial Plagiarism that

[1], “Plagiarism is a deplorable and increasing threat to

educational organizations and it is a risk for function of

academic. This threat is especially true in a world where

Information Technology has made copying information easier.

Plagiarism is an act of fraud. It involves both stealing

someone else’s work and lying about it afterward”.

We have also observed that often unclear margin between

plagiarism and research.

Plagiarism Problem:

There are different kinds of plagiarism such as;

Replica: Copying exact another work as a own work.

Fusion: Copying text from multiple sources and creating new

fusion of it without citation.

Borrows find similar word and replace it.

Aggregator: Papers having citation but that is not original

work.

Paraphrasing: Borrows changed some word but not whole

statement.

Copying Idea: Concept is taken without any coping text.

There are many reasons for plagiarism among students like

laziness, fear of failure, high expectation, poor time

management etc... It found that there is very less awareness

about plagiarism and their respective action.

 From this we can divide plagiarism in mainly 4

categories i.e. Singular, Paired, Multidimensional and Carpal.

It is again spit into 2 parts, one is external and another is

external plagiarism. External detection use list of reference

document for detecting plagiarism in doubtful document.

In internal detection, it does not refer any reference document

for plagiarism detection.

Plagiarism in Software Assignment: Most of the students

copying content without prior permission or acknowledgment.

In academic courses different programming languages are

there and a student has performed many assignments on it in

their academic years. Oftenly Students never pay much

concentration and instead performing assignments they copy

and paste programs inadvertently. Since we have focused on

such tool to prevent student’s tendency of copying contents of

others and if they do such then teacher may be able to detect

and punish to students.

Many academic courses have programming languages as

subject or in many subject assignments have to written using

different programming languages. Same problem or similar

problem is assigned to the entire class. Students never pay

much attention in their practical assignments. They copy and

paste programs unintentionally. This tendency of student must

be changed. Any tool which can detect such copy would

support teacher to punish such cases.

To find out similarity between two sequences is a plagiarism

or whether similarity is resulting from an analogous working

method based on the hypothetical knowledge is difficult

because what is cause of similarity is difficult to understand.

And we are considering it precisely.

Since we are using Karp-Rabin algorithm along with String

matching algorithm. Karp-Rabin used in many existing tools

like Jplag, MOSS (Measure of software similarity), CPD

(Copy/Paste Detector) etc….

2. RELATED WORK
Many program plagiarism detection tools are developed which

are based on programming language keywords or logical

statements of program [e.g.3-6]. To hide original code

plagiarist adds unwanted program lines or change position of

statements.

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 23, April 2015

38

These changes can be detected by structure metric systems but

exact plagiarism percentage cannot be measured. PK2 is a

structure metric tool developed by Technical University,

Madrid, Spain. The only situation that pk2 cannot detect is an

assignment compounded by several very small fragments of

source code. These tools may give falls result in case of

shuffling of statements or addition of unnecessary statements.

Comparison of tools based on these two concepts is done in

detailed in paper [10].

Data dependency matrix method [8, 9] developed by us is a

new concept which based on data assignment statements of

program. Both this methods are elaborated and compared in

following chapters.

The PK2 tool has been developed in the Computer

Architecture Department of the Technical University of

Madrid, Spain [1]. Students are asked to developed small

project using system programming in C, assembly language

programming, input/ output system and microprogramming.

Students copied or plagiarized program by same method. Each

programming language has its own keywords (reserved

words). These keywords can be used to catch the cheater.

Plagiarists are people who do not know enough to do the

assignment on their own. They usually do aesthetic changes

without significantly altering the underlying program

structure, randomly changing identifier names, comments,

punctuation, and indentation [1].

The PK2 tool is based on structure metric system. While

comparing a programming language such as Java, only its

reserved words and the most used library function names are

considered. The PK2 processes each given program file,

transforming it into an internal representation.

This process translated the occurrence of each key word by a

corresponding internal symbol. This process generates

signature string. The tool compares only the underlying

program structure. As this tool is based on structure metric

system it uses four similarity criteria. These are as follows:

 1. Length of longest common substring.

 2. Cumulative value of the length of common sequences

 of reserved words.

 3. Normalized value of cumulative value

 4. Percentage of reserve words common to both files.

The PK2 tool gives teachers hints about which pairs to inspect

for plagiarism, but the final decision in a case of plagiarism is

very difficult to make. This tool has proved to be flexible. It

has been successfully used to detect partial and total copies in

very different environments.

James A McCart and Jay Jarman, both were working on

project of Microsoft Access and they proposed and developed

tool as a Cheater Cheater Pumkin Eater (CCPE) in 2008.

CCPE was written using Visual Basic for Applications within

a Microsoft Access database. To determine if Microsoft

Access projects were duplicates, properties such as the read-

only creation date of the database and its objects of tables,

queries, forms, reports, etc.. were compared. When a database

or an object within a database is created, a document object

(DO) is created which stores properties of the newly created

database or object.

Each DO contains standard properties such as creation date,

last updated date, and name. It also provides built-in summary

properties of the database, such as the database title, are stored

in a separate DO. The last updated properties date is

associated with changes to the built-in summary properties. If

database is copied then it is an exact duplicate of the original

and all of the creation date, last updated date, and name

properties for all of the objects within the copied database are

the same as in the original.

The CCPE is very effective technological tool which is

implemented to detect plagiarism in Database Access projects.

This tool has given positive result by reducing percentage of

plagiarized projects [3].

Tommy W. S. Chow and M. K. M. Rahman has developed a

approach of “Multilayer SOM With Tree-Structured Data for

Efficient Document Retrieval and Plagiarism Detection” in

2009 [2].

They have proposed data retrieval (DR) and plagiarism

detection (PD) using tree-structured document demonstration

and multilayer self-organizing map (MLSOM).

It evaluates a full input document or program as a query for

executing retrieval of data and PD. Tree-structured

representation of documents increases accuracy of DR and PD

by including local with traditional global characteristics.

Hierarchical presentation of documents of global and local

variables enables the MLSOM to be used for PD. Tommy W.

S. Chow and M. K. M. Rahman has proposed two methods of

PD. First is an additional room to DR method along with

additional local sorting. The second method is document

association on the bottom layer SOM. Computational cost of

DR and PD is very high due to capacity of huge document

scanning at a once since it is useful for large database [2].

The SID tool is developed by Chen, Brent Francia, Ming Li,

Brian Mckinnon, Amit Seker in the University of

California[2]. They have defined the Information Distance

between two sequences to be roughly the minimum amount of

energy to convert one sequence to another sequence, and vice

versa.

The SID is based on compression algorithm. Authors has

created improved Lempel Ziv algorithm to obtain proper

compression technique. It has included different steps of SID

are as follows:

1. It breaks program string into small segments that is token.

2. Lempel Ziv algorithm Compresses tokens.

3. It finds out percentage of plagiarism by using Kolmogorov

complexity formulas.

SID has been widely examined and then used. Users have

used SID positively to catch plagiarism cases. It has checked

UCSB programming assignments, JAVA assignments and

many projects SID system uses a special compression

program to heuristically approximate Kolmogorov

complexity. It also shows similar part in two programs which

reduces teachers work to search copied part. it also detects

subtler similarities.

3. SYSTEM ALOGORITHM
Karp-Robin Algorithm:
We are taking a help of Karp-Rabin Algorithm. It uses

fingerprints to find occurrences of one string into another

string. Karp-Rabin Algorithm reduces time of comparison of

two sequences by assigning hash value to each string and

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 23, April 2015

39

word. Without hash value, it takes too much time for

comparison like if there is a word W and input string is S then

word is compared with every string and sub string in program

and hence it consumes more time. Karp-Rabin has introduced

concept of Hash value to avoid time complexity O(m2). It

assigns hash value by calculating to both word and

string/substring. So hash of substring (S) matches with hash

value of W then only we can say exact comparison is done.

At the comparison process there are four categories [4]:

1. Right to left

2. Left to right-

3. In specific order

4. In any order

Karp-Rabin algorithm preferred category from left to right

comparison. Function of hash must able to find has value

efficiently. When first time name would be hashing with the

same hash it save the data causing yields a value which will

be compared to at data is index with the value.

It can deal with multiple pattern matching that’s why people

preferred this Karp-Rabin algorithm. Otherwise behavior of

other algorithm is to perform basic pattern matching.

Its having O(nm) complexity. Where n is length of text and m

is length of pattern. It is little bit slow also due to we have to

check every single character from the text.

But we can overcome this by having hash function which is

efficient as well as easy to implement.

Suppose a k-grams c1…ck is consider as K- digit number by

considering base b, then hash value H(c1….ck) will be;

We are using dependency matrix for comparison of same size

matrices [9]. It is assumed that plagiarist will change text,

position or name of variables but total variables in a function

would remain same. Such a plagiarized code can be detected

using the algorithm. The expression list algorithm compares

all lists of functions with another function this is

advantageous in various ways. In this case matrix method

gives false detection as it compares only same size matrices.

This is drawback of matrix system.

String matching Algorithm:

It is used to compute similar strings. It performs character by

character matching.

4. SYSTEM ARCHITECTURE
Block Diagram shown in Fig 1 which gives outline of

Plagiarism detection by using Hash function and string

matching algorithms. It gives overall idea about processing of

string matching as well as creating similarity matrix for

finding out percentage of plagirism.

Block Diagram of Plagiarism detection by using these

algorithms:

Fig 1: System Architecture

Fig 2: System Architecture of Plagiarism Detection.

Here system architecture shows in Figure 2. We have given

input document for parsing process.

 It is also known as Syntactic Analysis which performs

analysis of given i/p, it can be a natural language or machine

understandable language. It checks heuristics rules which are

predefined in system. It also confirms grammar rules while

matching string. It breaks sentence into tokens known as

segmentation.

In keyword extraction, it find and extract keyword from whole

i/p document, removes stop Word and stored as a stemmed

words in Keyword list.

Then Keyword is given as input to the Search Engine in

System. In Web Search engine, it contains internal dataset

which are provided by internal user/candidates from

college/university etc…

We can also map external dataset with existing system

dataset.

Comparison of two Extracted

String

Internal DB Web Search

Keyword

Doc

Recognitio

n

Keyword

Extraction

(Parsing)

I/P Doc

I/P Internal DB

Karp-Rabin

Algo

String

Matching Algo
Discovery of Similarity

Plagiarized Text

Input

file

Input

file

Input

file

Parser

Token Seq1

Token Seq2

Token Seq n

Comp

ressor

n*n

simila

rity

matri

x

c1*bk-1 + c2*bk-2+….+ck-1*b+ck

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 23, April 2015

40

Search Engine forward two set of string for matching towards

Comparison Engine module in which input dataset and

internal dataset query present.

Here we are using Karp-Rabin algorithm along with String

matching algorithm for detecting suspicious material in given

documents. Karp-Rabin is string searching and comparison

algorithm by using hash function. Karp-Rabin also speeds up

the processing of string comparison by matching given pattern

with different i/p document’s string/substring by using hash

values. It uses hash function for assigning hash value to every

string/substring in text.

If hash value of given pattern and substring matches, it means

two string are similar.

Eg. WordString [Plagiarism]=6[hash value],

If search engine got similar hash value in internal dataset then

both strings are matching strings.

There is problem with Karp-Rabin algorithm is that, for

keeping minimum value of hashed word, it assign similar hash

values for different string in documents. Since it creates

confusion even hash value are same but string are non similar.

Sometimes it cannot detect similarity.

For removing this drawback and improving efficiency of

system, we are using String Matching algorithm along with

Karp-Rabin Algorithm when it detects similar hash value in

system. It keeps string in arrays and checks it character by

character in array. It checks for similarity, if it is match then

and then it is similar. Since it improves accuracy of

plagiarism detection which are not getting in existing tools.

Then result of similarity is generated and highlights that

plagiarized text. It also shows the source of plagiarized text in

document.

In analysis part we have seen different tools performance and

our proposed system performance which we are claiming

here.

We have computer Plagiarism detection (PD) accuracy by

using Precision value and Recall value as a follows; [13]

 Number of Correct Doc recovers for PD

Precision Value (P) =

 Number of total doc recovers for PD

 Number of Correct Doc recovers for PD

Recall Value (R) =

 Number of Total relevant Doc for PD

Table 1: Performance Analysis

Sr.

No

Approach Precision

Val %

Recall Val %

1 MLSOM 64% 60%

2 LSI 63% 66%

3 Proposed System 80%

and

Above

80% and

Above

5. CONCLUSION
This paper proposes new plagiarism detection techniques by

using Karp-Robin algorithm and String Matching algorithm.

Here data dependency expression list, extracted keyword and

using dual algorithm approach which overcomes all problems

of matrix, similar hash value as well as string matching, which

detects plagiarized programs or documents by using hash

function.

Experiments have well verified its efficiency over existing

tools and its applicability in practice. Our proposed system

will give result of precision value up to 85% and above as

well as recall value. It is also able to minimize failed detection

percentage around 10%.

6. ACKNOWLEDGMENT
I am very thankful to the people those who have provided me

continuous encouragement and support to all the stages and

ideas visualize. I am very much grateful to the entire BVDU

group for giving me all facilities and work environment which

enable me to complete my task. I express my sincere thanks to

M.K.Shirsagar Sir, Prabhudeva Sir, Head of the Computer

Department, VB College of Engineering, Ahmednagar who

gave me their valuable and rich guidance and help in

presentation of this research paper.

7. REFERENCES
[1] Manuel Cebrián, Manuel Alfonseca, and Alfonso Ortega

“Towards the Validation of Plagiarism Detection Tools

by Means of Grammar Evolution” IEEE

TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, VOL. 13, NO. 3, JUNE 2009.

[2] Tommy W. S. Chow and M. K. M. Rahman has

developed a approach of “Multilayer SOM With Tree-

Structured Data for Efficient Document Retrieval and

Plagiarism Detection” IEEE TRANSACTIONS ON

NEURAL NETWORKS, VOL. 20, NO. 9,

SEPTEMBER 2009

[3] Francisco Rosales, Antonio García, Santiago Rodríguez,

José L. Pedraza, Rafael Méndez, and Manuel M.

Nieto,” Detection of Plagiarism in Programming

Assignments” , IEEE Transactions on Education, vol.51,

no.2, May 2008, pp.174-183.

[4] Arliadinda D, Yuliuskhris Bintoro, R Denny Prasetyadi

Utomo, Pencocokan String dengan Menggunakan

Algoritma Karp-Rabin dan Algoritma Shift Or. Jurnal

STT Telkom.

[5] Manuel Cebrián, Manuel Alfonseca, and Alfonso Ortega

“Towards the Validation of Plagiarism Detection Tools

by Means of Grammar Evolution” IEEE

TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, VOL. 13, NO. 3, JUNE 2009.

[6] X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker,

“Shared information and program plagiarism detection,”

IEEE Trans. Inf. Theory, vol. 50, no. 7, pp. 1545–1551,

Jul. 2004.

[7] A. Parker and J. O. Hamblen, “Computer algorithm for

plagiarism detection,” IEEE Trans. Educ., vol. 32, no. 2,

pp. 94–99, May 1989.

[8] S. Schleimer, D. Wilkerson, and A. Aiken, “Winnowing:

Local algorithms for document fingerprinting,” in Proc.

22nd Association for Computing Machinery Special

International Journal of Computer Applications (0975 – 8887)

Volume 116 – No. 23, April 2015

41

Interest Group Management of Data Int. Conf., San

Diego, CA, Jun. 2003, pp. 76–85.

[9] Seema Kolkur , Madhavi Naik (Samant) “Program

plagiarism detection using data dependency matrix

method” , in proceedings of International Conference on

Computer Applications 2010 , Pondicherry , India

December 24-27, 2010, pp 215-220.

[10] Seema Kolkur, Madhavi Naik (Samant) “Comparative

study of two different aspects of program plagiarism

detection”, presented and published in proceedings of

International Conference On Sunrise Technologies 2011,

Dhule, India January 13-15, 2011.

[11] Xin Chen, Brent Francia, Ming Li, Member, IEEE, Brian

McKinnon, and Amit Seker “Shared Information and

Program Plagiarism Detection” IEEE TRANSACTIONS

ON INFORMATION THEORY, VOL. 50, NO. 7, JULY

2004.

[12] Chao Liu, Chen Chen, Jiawei Han , Philip S. Yu

“GPLAG: Detection of Software Plagiarism by Program

Dependence Graph Analysis”, KDD’06, Philadelphia,

Pennsylvania, USA. August 20–23, 2006.

[13] Tommy W. S. Chow and M. K. M. Rahman “

Multilayer SOM With Tree-Structured Data for Efficient

Document Retrieval and Plagiarism Detection“IEEE

TRANSACTIONS ON NEURAL NETWORKS, VOL.

20, NO. 9, SEPTEMBER 2009.

[14] K. L. Verco and M. J. Wise, “Software for detecting

suspected plagiarism: Comparing structure and attribute-

counting systems,” in Proc. 1st SIGCSE Australasian

Conf. Computer Science Education, J. Rosenberg, Ed.,

New York, Jul. 1996, pp. 81–88.

[15] M. Joy and M. Luck, “Plagiarism in programming

assignments,” IEEE Trans. Educ., vol. 42, no. 2, pp.

129–133, May 1999.

[16] X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker,

“Shared information and program plagiarism detection,”

IEEE Trans. Inf. Theory, vol. 50, no. 7, pp. 1545–1551,

Jul. 2004.

[17] C. Liu, C. Chen, J. Han, and P. S. Yu, “Gplag: Detection

of software plagiarism by program dependence graph

analysis,” in Proc. 12th Int. Conf. Special Interest Group

Knowledge Discovery and Data Mining, New York,

2006, pp. 872–881.

[18] A. Apostolico, “String editing and longest common

subsequences,” in Handbook of Formal Languages,

Volume 2 Linear Modeling: Background and

Application. Berlin, Germany: Springer-Verlag, 1997,

pp. 361–398.

[19] L. Bergroth, H. Hakonen, and T. Raita, “A survey of

longest common subsequence algorithms,” in Proc. 7th

Int. Symp. String Processing Information Retrieval, Los

Alamitos, CA, 2000, pp. 39–48.

[20] V. Levenshtein, “Binary codes capable of correcting

deletions, insertions and reversals,” Sov. Phys.—Dokl.,

vol. 10, no. 8, pp. 707–710, 1966.

[21] C. Daly and J. Horgan, “Patterns of plagiarism,” in Proc.

36th SIGCSE Tech. Symp. Computer Science Education,

New York, 2005, pp. 383–387.

[22] ―MC88110: Second Generation RISC Microprocessor

User’s Manual,‖ Motorola Inc., Schaumburg, IL, 1991.

[23] A. S. Tanenbaum, Modern Operating Systems, 2nd ed.

Engelewood Cliffs, NJ: Prentice-Hall, 2001.

[24] M. Córdoba and M. Nieto, Jul. 2007, Technical Univ.

Madrid, Spain

http://www.datsi.fi.upm.es/docencia/Estructura/U_Contr

ol

[25] C. Bell and A. Newell, Computer Structures: Readings

and Examples. New York: McGraw-Hill, 1971.

[26] F. Culwin and T. Lancaster, 2001, Plagiarism,

Prevention, Deterrence and Detection [Online].

Available: http://www.ilt.ac.uk/resources/ Culwin-

Lancaster.htm

IJCATM : www.ijcaonline.org

