
International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 21, April 2015

37

An Effort Estimation Model for Software Development
using Ensemble Learning

Abhishek Kumar
M.Tech Student,Department of CSE

Maharana Pratap College of Technology, Gwalior

(M.P.)

Unmukh Datta
H.O.D Department of Computer Science Engg.

Maharana Pratap College of Technology, Gwalior
(M.P.)

ABSTRACT

For a successful project development, it is important for any

software organization that the project should be completed

within time and budget, and the project should have requisite

quality. This paper presents an Ensemble learning based

Adaptive Neuro-Fuzzy Approach for Software Development

Time Estimation. The concept behind this technique is based

on ensemble learning methods. This technique combines

multiple models into one model. The ensemble fits a new

learner to the difference between the experiential response and

the aggregated prediction of all learners which grown

previously. In this paper, we describe a brief literature review

of different techniques of software development time

estimation along with a comparison of different techniques

with our approach.

General Terms

Neuro Fuzzy, Software Time Estimation, Ensemble Learning

Keywords

Membership Function (MF), COCOMO, Adaptive Neuro

Fuzzy Inference System (ANFIS), Neural Network, Fuzzy

Logic, Prediction, MRE, MMRE, BRE, Development Time

(DT),

1. INTRODUCTION
Accurate effort estimation is the state of art of software

engineering, effort estimation of software is the preliminary

phase between the client and the business enterprise. The

relationship between the client and the business enterprise

begins with the estimation of the software[1]. The overall

software project can be defined by a number of attributes such

as size and complexity. These attributes are the basic building

block for effort estimation in software project. There are some

multiplicative factors that determine the effort required to

complete your software project such as cost drivers. There are

different models for software development, so they define its

own cost drivers such as Boehm’s COCOMO defines many

cost drivers based on product, computer, personnel, and

project attributes and Albrecht’s Function Point defines five

main components system for function point analysis which is

given in Fig 1. Alongside this enormous development, it is

likewise understood the vitality of all these models in

assessing the product advancement expenses and setting up

the calendars for more rapidly and effortlessly in the foreseen

situations[2]. Appraisals are completed at different phases of a

product venture. Effort estimation is expecting more

significance as a characteristic result of expanded outsourcing

of programming advancement work[3]. In an outsourcing

situation, effort estimation is required for the valuation of

suppliers' recommendations. Potential builders considering an

offer would need to examine the framework detail and

produce assesses on which to base recommendations[4]. On

account of in-house improvement, estimation is important to

assess contending requests for the product and to allot the

accessible assets to the most elevated work[5].

Figure.1 Software effort estimation process

Therefore, the outcome of software cost estimation can be

listed as[6]:

 At every step estimation for effort is carried out

during software project development.

 Budget for outsourced assignment is ready.

 Evaluation of different vendor’s proposal is based

on which an agreement with the selected vendor on

the price to be paid is contracted

 A budget is allocated in the case of in-house

development.

 A schedule for development process.

In this paper, we are going to accurately estimate the software

effort with the help of Neuro Fuzzy approach and ensemble

learning methods. A comparison with different types of neural

network models based upon various parameters such as

Magnitude of Relative Error (MRE), Mean Magnitude of

Relative Error (MMRE), Balanced Relative Error (BRE) and

Prediction (Pred).

2. RELATED WORK
Some of the models used for examining software effort

estimation are:

(a) Algorithmic Models: From the examination of verifiable

information, expenses are examined utilizing scientific

formulae, connecting expenses or inputs with measurements

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 21, April 2015

38

to deliver an expected yield[7]. These measurements are by

and large qualities of the target framework and the usage

environment called expense drivers. Different algorithmic

forms; Linear models[8], Multiplicative models[9] and

WalstonFelix[10].

(b) Expert Judgment: Expert judgment procedures include

counselling, gathering of the specialists to utilize their

experience and comprehension of the proposed undertaking

project and evaluation of its cost[4]. This is requesting an

assessment of assignment exertion from somebody who is

proficient about either the application or the advancement

environment. This strategy is frequently utilized when

assessing the effort expected to change a current bit of

programming. A standout amongst the most widely

recognized techniques which work as indicated by this

procedure is Delphi. Delphi orchestrates a particular meeting

among the task specialists and tries to attain to the genuine

data about the undertaking from their debates[5].

(c) Analogy Based: Relationship is characterized as

"derivation that if two or more things concur with each other

in a few regards, they will most likely concur in others". In

software expense estimation approach a comparative,

finished, task is recognized and its genuine exertion is utilized

as the premise of the appraisal for the new venture[6]. It is

infrequently utilized at the early phases of software

advancement in light of such inalienable vulnerability and

imprecision connected with property estimation. Similarity

based thinking is regularly utilized in software effort

estimation as an equivalent word for case based thinking

(CBR) to portray the run of the mill case-based methodology

where experience is held for future reference.

(d) Computational Intelligence Techniques: Computational

knowledge is the investigation of versatile components to

empower or encourage wise conduct in mind boggling and

evolving situations. Thusly, computational insight joins false

neural systems, transformative figuring, swarm Intelligence

and fuzzy frameworks. Software cost estimation frameworks

are extensive complex nonlinear stochastic systems[11].

Subsequently, it is elusive ideal gimmick weighting and

undertaking determination in any cost estimation model.

Computational Intelligence gives a plausible approach to

acquire either ideal or imperfect arrangements. Computational

Intelligence techniques can be adjusted to element changes in

venture parameters. Software cost estimation moves can be

made taking into account continuous datasets and verifiable

thinking. Analysts have led a considerable measure of work

for utilizations of computational insight in the field of

software cost estimation.

3. NEURO FUZZY MODEL
A neuro fuzzy framework is a blend of neural system and

fuzzy frameworks in such a path, to the point that neural

system or neural system calculations are utilized to focus the

parameters of the fuzzy framework. This implies that the

primary proposition of neuro fuzzy methodology is to make or

enhance a fuzzy framework naturally by a method for neural

system strategies[12]. A much more vital viewpoint is that the

framework ought to dependably be interpretable regarding

fuzzy if-then rule, in light of the fact that it is in view of a

fuzzy framework reflecting unclear information. The thought

of a neuro fuzzy framework is to discover the parameters of a

fuzzy framework by the method for taking in techniques got

from neural network[13]. A typical way to apply a learning

calculation to a fuzzy framework is to speak to it in an

uncommon neural system like structural engineering. At that

point a learning calculation, for example, back propagation is

utilized to prepare the framework. Nonetheless, neural system

learning calculations are generally inclination plummet

strategies. This can't be connected straightforwardly to a fuzzy

framework, in light of the fact that the capacities used to

understand the induction methodology are normally not

differentiable. Keeping in mind the end goal to understand the

framework, we have to supplant the capacities utilized as a

part of the fuzzy framework (like min and max) by

differentiable capacities or don't utilize an inclination based

neural learning calculation however a more qualified

procedure[14]. Cutting edge neuro fuzzy frameworks are

regularly spoken to as multilayer nourish forward neural

system. A neuro fuzzy framework is a fuzzy framework that is

prepared by learning calculation (normally) gotten from

neural system theory[15]. The (heuristic) learning

methodology works on neighbourhood data, and causes just

nearby changes in the hidden fuzzy framework. The learning

procedure is not information based, however information

driven. Furthermore, a neural- fuzzy framework can simply be

deciphered as an arrangement of fuzzy rules. It is conceivable

both to make the framework out of preparing information

starting with no outside help, and to instate it from earlier

learning as fuzzy rules[16]. The learning methodology of a

neural- fuzzy framework considers the semantic properties of

the hidden fuzzy framework. It likewise approximates a n-

dimensional (obscure) capacity that is in part given by the

preparation information. The fuzzy guidelines encoded inside

the framework speak to obscure specimens, and can be seen

as unclear models of the preparation data[17].

Figure.2 General Neuro-fuzzy models for software

Development Time estimation.

4. ENSEMBLE LEARNING
Ensemble learning alludes to a gathering of routines that take

in a target work via preparing various individual learners and

consolidating their expectations. It utilizes numerous learning

calculations to get preferred prescient execution over could be

gotten from any of the constituent learning calculations[18].

In ensemble algorithms, bagging methods form structure a

class of calculations which assemble a few occurrences of a

discovery estimator on arbitrary subsets of the first preparing

set and after that total their individual forecasts to structure a

last expectation. These techniques are utilized as an approach

to decrease the change of a base estimator (e.g., a choice tree),

by bringing randomization into its development system and

afterward making a troupe out of it. As a rule, sacking

strategies constitute an exceptionally straightforward

approach to enhance regarding a solitary model, without

making it important to adjust the fundamental base

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 21, April 2015

39

calculation. This gives an approach to decrease over fitting,

stowing systems work best with solid and complex models

(e.g., completely created choice trees), interestingly with

boosting strategies which normally work best with powerless

models (e.g., shallow choice trees).

Figure.3 Bagging and Boosting

5. METHODOLOGY
The main idea behind ensemble learning is to combine

multiple models into one. At every processed step, the

ensemble fits a new learner to the difference between the

experimental response and the aggregated prediction of all

learners developed earlier. Ensemble fits to minimize mean-

squared error during the process. As in ANFIS we are

providing only one model, it was not possible to combine an

arbitrary number of models into one. In this work we are

using two general ensemble learning methods bagging and

boosting. The fig.4 shows the proposed model for modeling

the Bagging and LSBoost predictor.

The algorithm for the proposed work is as follows:

Step 1: Determine the all inputs of the model.

Step 2: Divide the data into two sets, one is Training data set,

and test data set. The train data set contains 70% to 90% of all

data and the left behind data are used for the test data set.

Step 3: Generate an ANFIS model by assigning the no. of

membership functions and the type of membership function.

Step 4: Train this network by taking the value of epochs 100

and save this Fuzzy Inference System file (.fis).

Step 5: Generate the Bagging and Boosting model by:

i. Setting the Number of Ensemble Members.

ii. Preparing the Weak Learners.

iii. Fit the ensembles (Bagging and Boosting).

iv. Save the fitted ensembles.

 Step 6: Calculate the value of Development Time with these

saved models i.e ANFIS, Bagging and Boosting file and the

testing data set.

Step 7: Calculate and Compare the Value of MMRE and

PRED.

At the step of ensemble learning, bagging nodes first train a

set of models with particular data values, then tests data is

predicted with each of the models in the set and at last the

voting node detects the majority class. After which

the Boosting nodes i.e. Learner and Predictor will apply the

LSBoost algorithm to the data set together with the

corresponding model.

Figure.4 Final methodology

6. PERFORMANCE EVALUATION

METRICS
The valuation consists of comparing the accuracy of the

estimated effort with the actual effort. The following

evaluation criterion has been used to assess and compare the

performance of the proposed models.

MMRE: It is one of the common standards for the evaluation

of cost estimation model i.e. magnitude of relative error

(MRE), and mean magnitude of relative error (MMRE) .MRE

is defined as follow:

𝑀𝑀𝑅𝐸

=
1

𝑛

 𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑖𝑚𝑒 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑇𝑖𝑚𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑖𝑚𝑒
× 100

𝑛

𝑖=1

PRED: Prediction (PRED) at level n is defined as the % of

projects that have absolute relative error less than n. A model

which gives higher PRED is better than that which gives

lower PRED.

BRE: A model which gives lower BRE (Balanced Relative

Error) is better than that which gives higher BRE.

𝐵𝑅𝐸(%) =
 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇𝑖𝑚𝑒 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑖𝑚𝑒

𝑀𝑖𝑛(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇𝑖𝑚𝑒,𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑖𝑚𝑒)
× 100

7. RESULTS AND DISCUSSION
Our experiment consists in estimating the software

development effort by using the neural networks approach on

the Lopez-Martin et.al. Data set. They used the sets of system

development projects, where the Development Time (DT),

Dhama Coupling (DC), McCabe Complexity (MC) and the

Lines of Code (LOC) metrics were used for 41 modules. The

development time of each of the 41 modules were used

including five phases: requirements understanding, algorithm

design, coding, compiling and testing [6, 7]. Table I shows the

different dataset used for carrying out experimentation. These

models were trained with first 31 inputs from the standard

dataset and later 10 inputs from the same dataset were used to

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 21, April 2015

40

test the models. The effectiveness of neural network model

over the regression analysis model has already been provided

with the same dataset[8]. The simulation was done using the

fuzzy logic toolbox, neural network toolbox and ANFIS

toolbox in MATLAB.

Project

No.

Actual

DT

Estimate DT

using FFBP

NN

EstimateDT

USING

Cascaded

FFBP NN

Estimated

DT using

Layer

Recurrent

NN

Estimated DT

using

Trapezoidal MF

using Neuro

fuzzy

GBell Boosting Bagging

31 19 9.04 9.54 9.49 19.0000 18.99988 18.95345 18.95345

32 13 9 9.84 9 13.0000 12.9999 12.91972 12.91972

33 12 9 21.91 9 12.0000 12.00052 12.10164 12.10164

34 12 9 9 9 12.0000 7.581409 12.23131 12.23131

35 21 21.98 22 9.21 21.0000 15.67964 21.42979 21.42979

36 21 21.99 22 18.89 21.0000 204.0081 26.37097 26.37097

37 19 21.97 21.87 9.17 19.0000 19 19.00911 19.00911

38 18 21.99 9.71 19.19 18.0000 18.00004 18.00497 18.00497

39 24 9.31 9 9.12 16.6995 24.5 24.51646 24.51646

40 25 9.31 9 9.12 16.6995 24.5 24.51646 24.51646

41 18 9 9 9 16.6684 17.99998 17.98736 17.98736

Table 1. Summarizes the comparison of various neural network models, Neuro fuzzy models with Ensemble learning model

using parameters.

Figure.4 Comparison of various neural network models, Neuro fuzzy models with Ensemble learning model using parameters.

We obtained the Development Time (DT) for each of the

trained neural network models with respect to other models

and a comparative analysis was carried out which is shown in

figure.4, based on the different standardized assessment

criteria like MRE, MMRE, BRE and Pred(25).

8. 8. CONCLUSION
The paper proposed a new approach for estimating of

software project development time using ensemble learning

methods. In this paper, Adaptive Neuro Fuzzy Inference

model is considered with bagging and boosting to predict the

future values. It is observed that Neuro Fuzzy model using

these function gives better results than all other models. It is

also observed that ensemble learning techniques give better

results for all the three parameters. In order to achieve more

accurate estimation, the estimated values of several other

techniques and combine their results may be useful. A

comparison of different models for cost estimation is carried

out.

9. ACKNOWLEDGMENTS
The authors are greatly indebted to the Department of

Computer Science and Engineering,,Maharana Pratap

College of Technology, Gwalior (M.P.),for providing

excellent lab facilities that make this work possible.

10. REFERENCES
[1] M. Chemuturi, “Software Estimation Best Practices,

Tools & Techniques: A Complete Guide for Software

Projects Estimator”, available at

1 2 3 4 5 6 7 8 9 10 11

0

50

100

150

200

250

300

350

400

450
Bagging

Boosting

GBell

Estimated DT using Trapezoidal MF using

Neuro fuzzy

Estimated DT using Layer Recurrent NN

EstimateDT USING Cascaded FFBP NN

Estimate DT using FFBP NN

Actual DT

Project No.

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 21, April 2015

41

:http://books.google.co.in/books?id=IwEOB2Mfzx0C&p

g=PA1 &source=gbs _toc_r

&cad=4#v=onepage&q&f=false, 2009.

[2] S Basha and P. Dhavachelvan, “Analysis of Empirical

Software Effort EstimationModels”, International Journal

of Computer Science and Information Security (IJCSIS),

Vol. 7, No. 3, 2010.

[3] B. Hughes and M. Cotterell, “Software Project

Management”, Tata McGraw-Hill,2006.

[4] B. W. Boehm, “Software Engineering Economics”,

Prentice-Hall, Englewood Cliffs, NJ, USA, 1981.

[5] T. Gruschke, “Empirical Studies of Software Cost

Estimation: Training of Effort Estimation Uncertainty

Assessment Skills”, 11th IEEE International Software

Metrics Symposium, IEEE, 2005.

[6] C. C. Kung and J. Y. Su, “Affine Takagi-Sugeno fuzzy

modeling algorithm by Fuzzy c-regression models

clustering with a novel cluster validity criterion”,

IETControl Theory Appl., pp. 1255 – 1265, 2007.

[7] V. Khatibi, Dayang and N. A. Jawawi, “ Software Cost

Estimation Methods: AReview”, Journal of Emerging

Trends in Computing and Information Sciences, CIS

Journal, Vol. 2, no. 1, ISSN 2079-8407, 2011.

[8] N. Sharma1, A. Bajpai and M. R. Litoriya, “A

Comparison of Software Cost Estimation Methods: A

Survey”, The International Journal of Computer Science

and Applications (TIJCSA), Vol.1, no. 3, ISSN – 2278 –

1080, May 2012.

[9] J. Keung, “Software Development Cost Estimation

Using Analogy: A Review”, Australian Software

Engineering conference, IEEE, 2009,

DOI:10.1109/ASWEC.2009.32, 1530-0803/09.

[10] T. R. Benala, S. Dehuri and R. Mall, “Computational

Intelligence in Software Cost Estimation: An Emerging

Paradigm”, ACM SIGSOFT Software Engineering

NotesPage, Vol. 37, no.3, 2012, DOI:

10.1145/180921.2180932.

[11] J.S. Pahariya, V. Ravi and M. Carr, “Software Cost

Estimation using Computational Intelligence

Techniques”, World Congress on Nature & Biologically

Inspired Computing(NaBIC 2009)978-1-4244-5612-

3/09/2009 IEEE, 2009.

[12] Mrinal Kanti Ghose, Roheet Bhatnagar and Vandana

Bhattacharjee. “Comparing Some Neural Network

Models forSoftware Development Effort Prediction”,

IEEE 2011

[13] Venus Marza, Amin Seyyedi, and Luiz Fernando

Capretz, “Estimating Development Time of Software

Projects Using a Neuro Fuzzy Approach”, World

Academy of Science, Engineering and Technology 22-

2008.

[14] Vachik S. Dave Kamlesh Dutta, Neural Network based

Software Effort Estimation & Evaluation criterion

MMRE, International Conference on Computer &

Communication Technology (ICCCT)-2011.

[15] Cuauhtémoc López Martín, Software Development

Effort Estimation Using Fuzzy Logic: A Case Study,

Proceedings of the Sixth Mexican International

Conference on Computer Science (ENC’05), 0-7695-

2454-0/05 $20.00 © IEEE 2005.

[16] Moataz A. Ahmed, Moshood Omolade Saliuand Jarallah

Al Ghamdi, “Adaptive fuzzy logic-based framework for

software development effort prediction”, Information and

Software Technology 47- 2005.

[17] C.J. Burgess, M. Lefley, Can genetic programming

improve software effort estimation? A comparative

evaluation, Information and Software Technology 43

(2001) 863–873.

[18] Anish Mittal,Kamal Parkash,Harish Mittal “ Software

Cost Estimation Using Fuzzy Logic”, ACM SIGSOFT

Software Engineering Notes Page 1 November 2010

Volume 35 Number 1.

IJCATM : www.ijcaonline.org

http://books.google.co.in/books?id=IwEOB2Mfzx0C&pg=PA1%20&source=gbs%20_toc_r%20&cad=4#v=onepage&q&f=false, 2009.
http://books.google.co.in/books?id=IwEOB2Mfzx0C&pg=PA1%20&source=gbs%20_toc_r%20&cad=4#v=onepage&q&f=false, 2009.
http://books.google.co.in/books?id=IwEOB2Mfzx0C&pg=PA1%20&source=gbs%20_toc_r%20&cad=4#v=onepage&q&f=false, 2009.

