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ABSTRACT 

For a successful project development, it is important for any 

software organization that the project should be completed 

within time and budget, and the project should have requisite 

quality. This paper presents an Ensemble learning based 

Adaptive Neuro-Fuzzy Approach for Software Development 

Time Estimation. The concept behind this technique is based 

on ensemble learning methods. This technique combines 

multiple models into one model. The ensemble fits a new 

learner to the difference between the experiential response and 

the aggregated prediction of all learners which grown 

previously. In this paper, we describe a brief literature review 

of different techniques of software development time 

estimation along with a comparison of different techniques 

with our approach.  
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1. INTRODUCTION 
Accurate effort estimation is the state of art of software 

engineering, effort estimation of software is the preliminary 

phase between the client and the business enterprise. The 

relationship between the client and the business enterprise 

begins with the estimation of the software[1]. The overall 

software project can be defined by a number of attributes such 

as size and complexity. These attributes are the basic building 

block for effort estimation in software project. There are some 

multiplicative factors that determine the effort required to 

complete your software project such as cost drivers. There are 

different models for software development, so they  define its 

own cost drivers such as Boehm’s COCOMO defines many 

cost drivers based on product, computer, personnel, and 

project attributes and Albrecht’s Function Point defines five 

main components system for  function  point analysis which is 

given in Fig 1. Alongside this enormous development, it is 

likewise understood the vitality of all these models in 

assessing the product advancement expenses and setting up 

the calendars for more rapidly and effortlessly in the foreseen 

situations[2]. Appraisals are completed at different phases of a 

product venture. Effort estimation is expecting more 

significance as a characteristic result of expanded outsourcing 

of programming advancement work[3]. In an outsourcing 

situation, effort estimation is required for the valuation of 

suppliers' recommendations. Potential builders considering an 

offer would need to examine the framework detail and 

produce assesses on which to base recommendations[4]. On 

account of in-house improvement, estimation is important to 

assess contending requests for the product and to allot the 

accessible assets to the most elevated work[5]. 

 

Figure.1 Software effort estimation process 

Therefore, the outcome of software cost estimation can be 

listed as[6]: 

 At every step estimation for effort is carried out 

during software project development.  

 Budget for outsourced assignment is ready. 

 Evaluation of different vendor’s proposal is based 

on which an agreement with the selected vendor on 

the price to be paid is contracted 

 A budget is allocated in the case of in-house 

development. 

 A schedule for development process. 

In this paper, we are going to accurately estimate the software 

effort with the help of Neuro Fuzzy approach and ensemble 

learning methods. A comparison with different types of neural 

network models based upon various parameters such as 

Magnitude of Relative Error (MRE), Mean Magnitude of 

Relative Error (MMRE), Balanced Relative Error (BRE) and 

Prediction (Pred). 

2. RELATED WORK 
Some of the models used for examining software effort 

estimation are:  

(a) Algorithmic Models: From the examination of verifiable 

information, expenses are examined utilizing scientific 

formulae, connecting expenses or inputs with measurements 
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to deliver an expected yield[7]. These measurements are by 

and large qualities of the target framework and the usage 

environment called expense drivers. Different algorithmic 

forms; Linear models[8], Multiplicative models[9] and 

WalstonFelix[10]. 

(b) Expert Judgment: Expert judgment procedures include 

counselling, gathering of the specialists to utilize their 

experience and comprehension of the proposed undertaking 

project and evaluation of its cost[4]. This is requesting an 

assessment of assignment exertion from somebody who is 

proficient about either the application or the advancement 

environment. This strategy is frequently utilized when 

assessing the effort expected to change a current bit of 

programming. A standout amongst the most widely 

recognized techniques which work as indicated by this 

procedure is Delphi. Delphi orchestrates a particular meeting 

among the task specialists and tries to attain to the genuine 

data about the undertaking from their debates[5]. 

(c) Analogy Based: Relationship is characterized as 

"derivation that if two or more things concur with each other 

in a few regards, they will most likely concur in others". In 

software expense estimation approach a comparative, 

finished, task is recognized and its genuine exertion is utilized 

as the premise of the appraisal for the new venture[6]. It is 

infrequently utilized at the early phases of software 

advancement in light of such inalienable vulnerability and 

imprecision connected with property estimation. Similarity 

based thinking is regularly utilized in software effort 

estimation as an equivalent word for case based thinking 

(CBR) to portray the run of the mill case-based methodology 

where experience is held for future reference. 

(d) Computational Intelligence Techniques: Computational 

knowledge is the investigation of versatile components to 

empower or encourage wise conduct in mind boggling and 

evolving situations. Thusly, computational insight joins false 

neural systems, transformative figuring, swarm Intelligence 

and fuzzy frameworks. Software cost estimation frameworks 

are extensive complex nonlinear stochastic systems[11]. 

Subsequently, it is elusive ideal gimmick weighting and 

undertaking determination in any cost estimation model. 

Computational Intelligence gives a plausible approach to 

acquire either ideal or imperfect arrangements. Computational 

Intelligence techniques can be adjusted to element changes in 

venture parameters. Software cost estimation moves can be 

made taking into account continuous datasets and verifiable 

thinking. Analysts have led a considerable measure of work 

for utilizations of computational insight in the field of 

software cost estimation. 

3. NEURO FUZZY MODEL 
A neuro fuzzy framework is a blend of neural system and 

fuzzy frameworks in such a path, to the point that neural 

system or neural system calculations are utilized to focus the 

parameters of the fuzzy framework. This implies that the 

primary proposition of neuro fuzzy methodology is to make or 

enhance a fuzzy framework naturally by a method for neural 

system strategies[12]. A much more vital viewpoint is that the 

framework ought to dependably be interpretable regarding 

fuzzy if-then rule, in light of the fact that it is in view of a 

fuzzy framework reflecting unclear information. The thought 

of a neuro fuzzy framework is to discover the parameters of a 

fuzzy framework by the method for taking in techniques got 

from neural network[13]. A typical way to apply a learning 

calculation to a fuzzy framework is to speak to it in an 

uncommon neural system like structural engineering. At that 

point a learning calculation, for example, back propagation is 

utilized to prepare the framework. Nonetheless, neural system 

learning calculations are generally inclination plummet 

strategies. This can't be connected straightforwardly to a fuzzy 

framework, in light of the fact that the capacities used to 

understand the induction methodology are normally not 

differentiable. Keeping in mind the end goal to understand the 

framework, we have to supplant the capacities utilized as a 

part of the fuzzy framework (like min and max) by 

differentiable capacities or don't utilize an inclination based 

neural learning calculation however a more qualified 

procedure[14]. Cutting edge neuro fuzzy frameworks are 

regularly spoken to as multilayer nourish forward neural 

system. A neuro fuzzy framework is a fuzzy framework that is 

prepared by learning calculation (normally) gotten from 

neural system theory[15]. The (heuristic) learning 

methodology works on neighbourhood data, and causes just 

nearby changes in the hidden fuzzy framework. The learning 

procedure is not information based, however information 

driven. Furthermore, a neural- fuzzy framework can simply be 

deciphered as an arrangement of fuzzy rules. It is conceivable 

both to make the framework out of preparing information 

starting with no outside help, and to instate it from earlier 

learning as fuzzy rules[16]. The learning methodology of a 

neural- fuzzy framework considers the semantic properties of 

the hidden fuzzy framework. It likewise approximates a n-

dimensional (obscure) capacity that is in part given by the 

preparation information. The fuzzy guidelines encoded inside 

the framework speak to obscure specimens, and can be seen 

as unclear models of the preparation data[17].  

 

Figure.2 General Neuro-fuzzy models for software 

Development Time estimation. 

4. ENSEMBLE LEARNING 
Ensemble learning alludes to a gathering of routines that take 

in a target work via preparing various individual learners and 

consolidating their expectations. It utilizes numerous learning 

calculations to get preferred prescient execution over could be 

gotten from any of the constituent learning calculations[18]. 

In ensemble algorithms, bagging methods form structure a 

class of calculations which assemble a few occurrences of a 

discovery estimator on arbitrary subsets of the first preparing 

set and after that total their individual forecasts to structure a 

last expectation. These techniques are utilized as an approach 

to decrease the change of a base estimator (e.g., a choice tree), 

by bringing randomization into its development system and 

afterward making a troupe out of it. As a rule, sacking 

strategies constitute an exceptionally straightforward 

approach to enhance regarding a solitary model, without 

making it important to adjust the fundamental base 
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calculation. This gives an approach to decrease over fitting, 

stowing systems work best with solid and complex models 

(e.g., completely created choice trees), interestingly with 

boosting strategies which normally work best with powerless 

models (e.g., shallow choice trees). 

 

Figure.3 Bagging and Boosting 

5. METHODOLOGY 
The main idea behind ensemble learning is to combine 

multiple models into one. At every processed step, the 

ensemble fits a new learner to the difference between the 

experimental response and the aggregated prediction of all 

learners developed earlier. Ensemble fits to minimize mean-

squared error during the process. As in ANFIS we are 

providing only one model, it was not possible to combine an 

arbitrary number of models into one. In this work we are 

using two general ensemble learning methods bagging and 

boosting. The fig.4 shows the proposed model for modeling 

the Bagging and LSBoost predictor. 

The algorithm for the proposed work is as follows: 

Step 1: Determine the all inputs of the model.  

Step 2: Divide the data into two sets, one is Training data set, 

and test data set. The train data set contains 70% to 90% of all 

data and the left behind data are used for the test data set. 

Step 3: Generate an ANFIS model by assigning the no. of 

membership functions and the type of membership function. 

Step 4: Train this network by taking the value of epochs 100 

and save this Fuzzy Inference System file (.fis). 

Step 5: Generate the Bagging and Boosting model by: 

i. Setting the Number of Ensemble Members. 

ii. Preparing the Weak Learners. 

iii. Fit the ensembles (Bagging and Boosting).  

iv. Save the fitted ensembles. 

 Step 6: Calculate the value of Development Time with these 

saved models i.e ANFIS, Bagging and Boosting file and the 

testing data set. 

Step 7: Calculate and Compare the Value of MMRE and 

PRED. 

At the step of ensemble learning, bagging nodes first train a 

set of models with particular data values, then tests data is 

predicted with each of the models in the set and at last the 

voting node detects the majority class. After which 

the Boosting nodes i.e. Learner and Predictor will apply the 

LSBoost algorithm to the data set together with the 

corresponding model.  

 

Figure.4 Final methodology 

6. PERFORMANCE EVALUATION 

METRICS  
The valuation consists of comparing the accuracy of the 

estimated effort with the actual effort. The following 

evaluation criterion has been used to assess and compare the 

performance of the proposed models.  

MMRE: It is one of the common standards for the evaluation 

of cost estimation model i.e. magnitude of relative error 

(MRE), and mean magnitude of relative error (MMRE) .MRE 

is defined as follow: 

𝑀𝑀𝑅𝐸

=
1

𝑛
 
 𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑖𝑚𝑒 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  𝑇𝑖𝑚𝑒 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑖𝑚𝑒
× 100

𝑛

𝑖=1

 

PRED: Prediction (PRED) at level n is defined as the % of 

projects that have absolute relative error less than n. A model 

which gives higher PRED is better than that which gives 

lower PRED. 

BRE: A model which gives lower BRE (Balanced Relative 

Error) is better than that which gives higher BRE. 

𝐵𝑅𝐸(%) =
 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  𝑇𝑖𝑚𝑒 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑖𝑚𝑒 

𝑀𝑖𝑛(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇𝑖𝑚𝑒,𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑖𝑚𝑒)
× 100                            

7. RESULTS AND DISCUSSION 
Our experiment consists in estimating the software 

development effort by using the neural networks approach on 

the Lopez-Martin et.al. Data set. They used the sets of system 

development projects, where the Development Time (DT), 

Dhama Coupling (DC), McCabe Complexity (MC) and the 

Lines of Code (LOC) metrics were used for 41 modules. The 

development time of each of the 41 modules were used 

including five phases: requirements understanding, algorithm 

design, coding, compiling and testing [6, 7]. Table I shows the 

different dataset used for carrying out experimentation. These 

models were trained with first 31 inputs from the standard 

dataset and later 10 inputs from the same dataset were used to 
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test the models. The effectiveness of neural network model 

over the regression analysis model has already been provided 

with the same dataset[8]. The simulation was done using the 

fuzzy logic toolbox, neural network toolbox and ANFIS 

toolbox in MATLAB.  

Project 

No. 

Actual 

DT 

Estimate DT 

using FFBP 

NN 

EstimateDT 

USING 

Cascaded 

FFBP NN 

Estimated 

DT using 

Layer 

Recurrent 

NN 

Estimated DT 

using 

Trapezoidal MF 

using Neuro 

fuzzy 

GBell Boosting Bagging 

31 19 9.04 9.54 9.49 19.0000 18.99988 18.95345 18.95345 

32 13 9 9.84 9 13.0000 12.9999 12.91972 12.91972 

33 12 9 21.91 9 12.0000 12.00052 12.10164 12.10164 

34 12 9 9 9 12.0000 7.581409 12.23131 12.23131 

35 21 21.98 22 9.21 21.0000 15.67964 21.42979 21.42979 

36 21 21.99 22 18.89 21.0000 204.0081 26.37097 26.37097 

37 19 21.97 21.87 9.17 19.0000 19 19.00911 19.00911 

38 18 21.99 9.71 19.19 18.0000 18.00004 18.00497 18.00497 

39 24 9.31 9 9.12 16.6995 24.5 24.51646 24.51646 

40 25 9.31 9 9.12 16.6995 24.5 24.51646 24.51646 

41 18 9 9 9 16.6684 17.99998 17.98736 17.98736 

Table 1. Summarizes the comparison of various neural network models, Neuro fuzzy models with Ensemble learning model 

using parameters. 

Figure.4 Comparison of various neural network models, Neuro fuzzy models with Ensemble learning model using parameters. 

We obtained the Development Time (DT) for each of the 

trained neural network models with respect to other models 

and a comparative analysis was carried out which is shown in 

figure.4, based on the different standardized assessment 

criteria like MRE, MMRE, BRE and Pred(25). 

8. 8. CONCLUSION 
The paper proposed a new approach for estimating of 

software project development time using ensemble learning 

methods. In this paper, Adaptive Neuro Fuzzy Inference 

model is considered with bagging and boosting to predict the 

future values. It is observed that Neuro Fuzzy model using 

these function gives better results than all other models. It is 

also observed that ensemble learning techniques give better 

results for all the three parameters. In order to achieve more 

accurate estimation, the estimated values of several other 

techniques and combine their results may be useful. A 

comparison of different models for cost estimation is carried 

out. 
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