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ABSTRACT 

In this paper, a new two parameters model is introduced. We 

called it the inverse flexible Weibull extension (IFW) 

distribution. Several properties of this distribution have been 

discussed. The maximum likelihood estimators of the 

parameters are derived. Two real data sets are analyzed using 

the new model, which show that the new model fits the data 

better than some other very well known models. 
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1. INTRODUCTION 
The Weibull distribution [1] is one of the most important and 

famous distributions used in the modeling of lifetimes of 

components of engineering applications, physical systems and 

many different fields. In previous years, many authors 

provided many new extensions for the Weibull distribution. 

Mudholkar and et al. [2] proposed the exponentiated Weibull 

distribution. The inverse Weibull distribution is discussed by 

Drapella[3], Mudholkar and Kollia[4] and Jiang et al.[5], 

among others. The inverse Weibull is the distribution of the 

reciprocal of a random variable, which has a Weibull 

distribution. A three parameter modified Weibull extension is 

proposed by Xie et al. [6]. Sarhan et al.[7] has defined the 

exponentiated modified Weibull extension distribution. 

Bebbington et al.[8] introduced a new two parameter 

distribution referred to as a flexible Weibull extension, which 

has a hazard function that can be increasing, decreasing or 

bathtub shaped. A flexible Weibull extension distribution has 

cumulative distribution function (cdf) given by 

𝐺 𝑥 =  1 − 𝑒−𝑒
𝛼𝑥 −𝛽/𝑥

 , 𝑥 > 0,                                           (1) 

and its probability density function (pdf) takes the following 

form 

𝑔 𝑥 =  𝛼 +
𝛽

𝑥2 𝑒
𝛼𝑥−𝛽/𝑥𝑒−𝑒

𝛼𝑥 −𝛽/𝑥
, 𝑥 > 0.                         (2) 

El-Gohary et al. [9] proposed the exponentiated flexible 

Weibull extension (EFW) distribution. In this paper we 

propose a new two parameter distribution which is the 

distribution of the reciprocal of a random variable has the 

flexible Weibull extension distribution as was done for the 

inverse weibull (IW) distribution. We referred to it by the 

inverse flexible Weibull extension (IFW) distribution. 

The paper is organized as follows.  In Section 2, we present 

the IFW distribution, and provide its cumulative distribution 

function, the probability density function , the survival 

function and the hazard function. Some statistical properties 

such as the quantile , the median, the mode and the moments 

are obtained in Section 3. Section 4 obtains the parameter 

estimation using MLE method. In Section 5, a numerical 

result are obtained by using two real data sets. Finally, a 

conclusion for the results is given in Section 6. 

2. INVERSE FLEXIBLE WEIBULL 

EXTENSION DISTRIBUTION 
In this section, we introduce the inverse flexible Weibull 

extension distribution. 

2.1 IFW Specifications 
In this subsection, we define the inverse flexible Weibull 

extension distribution according to the following theorem. 

Theorem 1.    Let a non-negative random variable 𝑌 has 

the flexible Weibull extension distribution, symbolically we 

write 𝑌~ 𝐹𝑊(𝛼, 𝛽). Define a new random variable 𝑋 = 1 𝑌    

, then the random variable 𝑋 has the inverse flexible Weibull 

extension distribution, symbolically we write 𝑋~ 𝐼𝐹𝑊(𝛼, 𝛽). 

The cumulative distribution function and the probability 

density function of 𝑋 are respectively given by 

𝐹𝑋 𝑥 = 𝑒−𝑒
𝛼 𝑥 −𝛽𝑥

, 𝑥 > 0, 𝛼, 𝛽 > 0,                                 (3) 

and 

𝑓𝑋 𝑥 =  𝛽 +
𝛼

𝑥2 𝑒
𝛼 𝑥 −𝛽𝑥 𝑒−𝑒

𝛼 𝑥 −𝛽𝑥
, 𝑥 > 0, 𝛼, 𝛽 > 0.     (4) 

Proof:  Since 

 𝑭𝑿 𝒙 = 𝐏 𝐗 ≤ 𝐱 = 𝐏  𝐘 ≥
𝟏

𝐱
  

              = 𝟏 − 𝐏  𝐘 <
𝟏

𝐱
 = 𝟏 − 𝑮 

𝟏

𝒙
 .                                 (5) 

Substituting from (1) into (5), we find (3). By derivation the 

cdf of X given in (3) with respect to x, we find the pdf of X  

given in (4), which complete the proof. 

Since the cdf of IFW is in closed form, we can use it to 

generate simulated data by using the following formula 

x =
1

2β
 −𝑙𝑛 −𝑙𝑛⁡ U  +   𝑙𝑛 −𝑙𝑛⁡ U   

2
+ 4αβ , 

where U is a random variable which follows a standard 

uniform distribution on (0,1) interval. 

2.2 Survival and Hazard Rate Functions 
If 𝐗~ 𝐈𝐅𝐖(𝛂, 𝛃), then the survival function and the hazard 

rate function of  𝐗  are given respectively by 

𝑆 𝑥 = 1 − 𝐹 𝑥 = 1 − 𝑒−𝑒
𝛼 𝑥 −𝛽𝑥

,                                       (6) 

and 

𝑕 𝑥 =
𝑓(𝑥)

𝑆(𝑥)
=

 𝛽+
𝛼

𝑥2 𝑒
𝛼 𝑥 −𝛽𝑥 𝑒−𝑒𝛼 𝑥 −𝛽𝑥

1−𝑒−𝑒𝛼 𝑥 −𝛽𝑥 .                                    (7) 
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Fig 1: The pdf of the IFW distribution at different values 

of its parameters. 

 

Fig 2: The hazard function of the IFW distribution at 

different values of its parameters. 

3. STATISTICAL PROPERTIES 
In this section, we will derive some of statistical properties for 

the IFW, specially moments, modes, quantiles and median. 

3.1 Quantile and Median of IFW 
In this subsection,  we will present the forms of  the quantile, 

the mode and the median of IFW as closed forms. The 

quantile  xq   of the  X~ IFW(α, β)  is given by 

𝑥𝑞 =
1

2𝛽
 −𝑙𝑛 −ln⁡ 𝑞  +   𝑙𝑛 −𝑙𝑛⁡ 𝑞   

2
+ 4𝛼𝛽  , 0 < q < 1.   (8) 

Sitting  𝑞 = 1

2
  in (8), we get the median of IFW(α, β) 

distribution as 

𝑀𝑒𝑑(𝑋) =
1

2𝛽
 −𝑙𝑛  −ln⁡ 1

2
  +   𝑙𝑛  −𝑙𝑛⁡ 1

2
   

2

+ 4𝛼𝛽   .        (9) 

3.2 The Mode  
In this subsection, we will derive the mode of the  IFW(α, β)  

distribution by derivation its pdf with respect to 𝑥  and equate 

it to zero. The mode is the solution of the following equation 

with respect to x  

 𝛼

𝑥2+𝛽  𝑒𝛼 𝑥 −𝛽𝑥 − 1 − 2𝛼

𝛼𝑥 +𝛽𝑥2=0 .                                       (10) 

It is not possible to get an analytic solution in 𝑥 to (9) in the 

general case. It has to be obtained numerically by using 

methods such as fixed-point or bisection method. 

3.3 The Moments 
In this subsection, we will derive the 𝑟𝑡𝑕  moments of the 

IFW(α, β)  distribution as infinite series expansion. 

Theorem 2.    If  𝑋~ 𝐼𝐹𝑊 𝛼, 𝛽 , then the  𝑟𝑡𝑕  moment of 𝑋 

is given by  

𝜇(𝑟) =   
(−1)𝑗𝛼𝑘𝛤 𝑟 − 𝑘 − 1 

𝑘!  𝑗! 𝛽𝑟−𝑘−1 𝑗 + 1 𝑟−2𝑘+1

∞

𝑘=0

∞

𝑗=0

 
 𝑟 − 𝑘  𝑟 − 𝑘 − 1 

𝛽

+ 𝛼 𝑗 + 1 2 .                                                    (11) 

Proof:   The rth   moment of the positive random variable X 

with pdf  𝑓 𝑥; 𝛼, 𝛽  is given by 

𝜇 𝑟 =  𝑥𝑟𝑓 𝑥; 𝛼, 𝛽 𝑑𝑥.

∞

0

                                                              (12) 

Substituting from (4) into (12), we get 

𝜇 𝑟 =  𝑥𝑟  𝛽 +
𝛼

𝑥2
 𝑒𝛼 𝑥 −𝛽𝑥 𝑒−𝑒

𝛼 𝑥 −𝛽𝑥
𝑑𝑥.

∞

0

      

        = 𝛽 𝑥𝑟𝑒𝛼 𝑥 −𝛽𝑥 𝑒−𝑒
𝛼 𝑥 −𝛽𝑥

𝑑𝑥 + 𝛼 𝑥𝑟−2𝑒𝛼 𝑥 −𝛽𝑥 𝑒−𝑒
𝛼 𝑥 −𝛽𝑥

𝑑𝑥.

∞

0

∞

0

 

Let  

𝐼1 =  𝑥𝑟𝑒𝛼 𝑥 −𝛽𝑥𝑒
−𝑒𝛼 𝑥 −𝛽𝑥

𝑑𝑥,   𝐼2 =  𝑥𝑟−2𝑒𝛼 𝑥 −𝛽𝑥𝑒
−𝑒𝛼 𝑥 −𝛽𝑥

𝑑𝑥.
∞

0

∞

0
 

Then 

 𝜇 𝑟 = 𝛽𝐼1 + 𝛼𝐼2.                                                                 (13) 

Using the series expansion of  e−eα x −βx
 , one gets 

𝐼1 =  
 −1 𝑗

𝑗!

∞

𝑗=0

 𝑥𝑟𝑒 𝑗+1 𝛼 𝑥 𝑒
− 𝑗+1 𝛽𝑥

𝑑𝑥.

∞

0

 

Using the series expansion of  𝑒 𝑗+1 𝛼 𝑥  , we have 

𝐼1 =   
 −1 𝑗𝛼𝑘 𝑗 + 1 𝑘

𝑗!   𝑘!

∞

𝑘=0

∞

𝑗=0

 𝑥𝑟−𝑘𝑒− 𝑗+1 𝛽𝑥𝑑𝑥.

∞

0

 

Using the substitution y = (j + 1)βx in the above integral, 

then we can get 

𝐼1 =   
 −1 𝑗𝛼𝑘

𝑗!   𝑘! 𝛽𝑟−𝑘+1 𝑗 + 1 𝑟−2𝑘+1

∞

𝑘=0

∞

𝑗=0

 𝑦𝑟−𝑘𝑒−𝑦𝑑𝑦.

∞

0

 

From the definition of complete Gamma function, one gets 

𝐼1 =   
 −1 𝑗𝛼𝑘𝛤 𝑟 − 𝑘 + 1 

𝑗!   𝑘! 𝛽𝑟−𝑘+1 𝑗 + 1 𝑟−2𝑘+1
 .        

∞

𝑘=0

∞

𝑗=0

                          (14) 

Similarly, we can obtain 𝐼2 as follows 

𝐼2 =   
 −1 𝑗𝛼𝑘𝛤 𝑟 − 𝑘 − 1 

𝑗!   𝑘! 𝛽𝑟−𝑘−1 𝑗 + 1 𝑟−2𝑘−1

∞

𝑘=0

∞

𝑗=0

.                                   (15) 

Substituting from (14) and (15) into (13), we find (11), which 

completes the proof. 

3.4 Moment Generating Function 

 In this subsection, we derived the moment generating 

function of  IFW(α, β) distribution as infinite series expansion 

according to the following theorem. 

Theorem 3.  If 𝑿~ 𝑰𝑭𝑾 𝜶,𝜷 , then the moment 

generating function 𝑴𝑿 𝒕  is given by 
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MX t =     
 −1 𝑗𝛼𝑘𝛤 𝑟 − 𝑘 − 1 𝑡𝑟

𝑟!  𝑘!  𝑗!  𝛽𝑟−𝑘−1 𝑗 + 1 𝑟−2𝑘+1
  𝛼 𝑗 + 1 2

∞

𝑘=0

∞

𝑗=0

∞

𝑟=0

+  
 𝑟 − 𝑘  𝑟 − 𝑘 − 1 

𝛽
  .                             (16) 

Proof:  We start with the well known definition of the 

moment generating function given by 

MX t =  𝑒𝑥𝑡𝑓 𝑥; 𝛼, 𝛽 𝑑𝑥.

∞

0

 

Using the series expansion of  𝑒𝑥𝑡  , we have 

MX t =  
𝑡𝑟

𝑟!

∞

𝑟=0

 𝑥𝑟𝑓 𝑥; 𝛼, 𝛽 𝑑𝑥 =  
𝑡𝑟

𝑟!

∞

𝑟=0

𝜇(𝑟).

∞

0

               (17) 

Substituting from (11) into (17), we find (16), which 

completes the proof. 

4. ESTIMATION AND INFERENCE 
In this section, we discuss the estimation of the model 

parameters by using the method of maximum likelihood. Also 

the asymptotic confidence intervals of these parameters will 

be derived. 

4.1 Maximum Likelihood Estimators 
We will derive the maximum likelihood estimators (MLEs) of 

the unknown parameters α and β. Assume that x1 , x2 , … ., xn    

be a random sample of size n from IFW α, β , then the 

likelihood function  𝑙 of this sample is 

𝑙 =  𝑓 𝑥𝑖 ; 𝛼, 𝛽 .

𝑛

𝑖=1

                                                                    (18) 

Substituting from (4) into (18), we get 

𝑙 =    𝛽 +
𝛼

𝑥𝑖
2 𝑒

𝛼 𝑥𝑖 −𝛽𝑥𝑖𝑒−𝑒
𝛼 𝑥𝑖 −𝛽𝑥𝑖  .

𝑛

𝑖=1

                  

The log-likelihood function  L = ln⁡(𝑙)  is given by 

𝐿 = 𝛼 
1

𝑥𝑖

𝑛

𝑖=0

− 𝛽 𝑥𝑖 − 𝑒𝛼 𝑥𝑖 −𝛽𝑥𝑖 +  𝑙𝑛  𝛽 +
𝛼

𝑥𝑖
2 .

𝑛

𝑖=0

𝑛

𝑖=0

𝑛

𝑖=0

     

The first partial derivatives of log of the likelihood L with 

respect to α and β are obtained as follows 

















2

1

/

11

11

i

n

ii

xxn

ii

n

i xx

e

x

L ii

 

and 

.
2

2

1

/

11 














 i

i
n

i

xx

i

n

i

i

n

i x

x
exx

L
ii  

The normal equations can be obtained by setting the first 

partial derivatives of 𝐿 to zero's. That is, the normal equations 

take the following form: 

0
11

2
1

/

11




 




 



i

n

ii

xxn

ii

n

i xx

e

x

ii

 

and 

.0
2

2

1

/

11




 




 



i

i
n

i

xx

i

n

i

i

n

i x

x
exx ii  

The normal equations do not have explicit solutions and they 

have to be obtained numerically. 

4.2 Asymptotic Confidence Bounds 
In this subsection, we derive the asymptotic confidence 

intervals of the unknown parameters α and β when 𝛼, 𝛽 > 0      

[10]. 

The simplest large sample approach is to assume that the 

MLEs  𝛼 , 𝛽   are approximately multivariate normal with 

mean  𝛼, 𝛽  and covariance matrix 𝐼0
−1 see [11], where 𝐼0

−1 is 

the inverse of the observed information matrix which defined 

by 

𝐼0
−1 =

 

 
 

𝜕2𝐿

𝜕𝛼2

𝜕2𝐿

𝜕𝛼𝜕𝛽

𝜕2𝐿

𝜕𝛽𝜕𝛼

𝜕2𝐿

𝜕𝛽2
 

 
 

−1

=  
𝑉𝑎𝑟(𝛼 ) 𝐶𝑜𝑣(𝛼 , 𝛽 )

𝐶𝑜𝑣(𝛽 , 𝛼 ) 𝑉𝑎𝑟(𝛽 )
 .              (19) 

The second partial derivatives include in 𝐼0
−1 are given as 

follows 

,
)(

1
22

1
2

/

1
2

2
















 i

n

ii

xxn

i xx

eL ii

 

              
)( 22

2

1

/

1

2
















 i

i
n

i

xx
n

i x

x
e

L
ii

 

and 

.
)(

   
22

4

1

/2

1
2

2
















 i

i
n

i

xx

i

n

i x

x
ex

L
ii

 

We can derive the  1 − 𝛼 100% confidence intervals of the 

parameters α and β by using variance covariance matrix as in 

the following forms 

 ,   )()(
22



   VarVar ZZ
 

where Zδ

2

  is the upper  δ/2  th percentile of the standard 

normal distribution. 

5. DATA ANALYSIS 
In this section we analyze two real data sets to illustrate that 

the IFW can be a good lifetime model, comparing with many 

known distributions such as flexible Weibull, inverse Weibull, 

generalized inverse Weibull and exponentiated generalized 

inverse Weibull distributions (FW,IW,GIW,EGIW). We have 

fitted all selected distributions in each example, we calculated 

the Kolmogorov Smirnov (K-S) distance test statistic and its 

corresponding p-value, the log-likeihood values (L), Akaike 

information criterion (AIC), correct Akaike information 

criterion (CAIC) and Bayesian information criterion (BIC) 

test statistic. 

Example 5.1.  The data set in Table 1, gives the lifetimes 

of 50 devices that were provided by (Aarset, 1987) [12]. The 

MLEs of the unknown parameters and the Kolmogorov-

Smirnov (K-S) test statistic with its corresponding p-value for 

the five tested models are given in Table 2. The fitted survival 

and failure rate functions are shown in Fig 3 and Fig 4  
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respectively. The K-S test statistic value for IFW model is  

0.276 and the corresponding p-value is 𝟕. 𝟑𝟖 × 𝟏𝟎−𝟒. We 

observe that the IFW model has the lowest K-S value and the 

highest p-value for these data among all the models 

considered except EGIW model, which means that the new 

model fits the data better than the FW, IW and GIW models. 

Table 1. Life time of 50 devices, see Aarset (1987). 

0.1 0.2 1 1 1 1 1 2 3 6 

7 11 12 18 18 18 18 18 21 32 

36 40 45 46 47 50 55 60 63 63 

67 67 67 67 72 75 79 82 82 83 

84 84 84 85 85 85 85 85 86 86 

 

Fig 3: The empirical and fitted survival functions of 

selected models for Aarset data. 

Substituting the MLEs of the unknown parameters into (19), 

we get estimation of the variance covariance matrix as the 

following: 

𝐼0
−1 =  1.2229 × 10−3 −4.4751 × 10−6

−4.4751 × 10−6 1.0002 × 10−5  . 

The approximate 95%  two sided confidence intervals of the 

unknown parameters 𝛼 and β are given respectively as 

[0.0964, 0.2335] and [0, 0.02998].     

 

Fig 4: The fitted hazard functions of selected models for 

Aarset data. 

In Fig 5 and Fig 6 we plot the profiles of the log-likelihood 

function of α and β for Aarset data. From Fig 5 and Fig 6 we 

show that the likelihood equations have a unique solution. 

Table 2. The MLEs,  K-S and p-values for Aarset data. 

The 
model 

MLE of the parameters 
K-S 

value 
P-value 

𝛂  𝛃  𝛉  𝛌  

FW 0.012 0.70 - - - - 0.469 4.29×10−9 

IW 1.043 0.397 - - - - 0.435 5.95×10−9 

GIW 0.596 0.274 1.27 - - 0.324 3.72×10−5 

EGIW 1.008 0.61 2.14 0.75 0.254 2.47×10−3 

IFW 0.165 0.024 - - - - 0.276 7.38×10−4 

Table 3. The log-likelihood, AIC, CAIC and BIC values 

for Aarset data. 

The model L AIC CAIC BIC 

FW -281.07 566.14 566.396 569.964 

IW -287.48 580.951 581.473 586.687 

GIW -254.92 517.839 518.727 525.487 

EGIW -250.81 505.620 505.880 509.448 

IFW -242.57 488.914 489.169 492.738 

 

Fig 5: The profile of the log-likelihood function of α for 

Aarset  data. 

 

Fig 6: The profile of the log-likelihood function of β for 

Aarset data. 
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Example 5.2.  Table 4, gives the data set corresponding to 

remission times (in months) of 128 bladder cancer patients 

reported in Lee and Wang (2003) [13]. The fitted survival and 

failure rate functions are shown in Fig 7 and Fig 8  

respectively. From Fig. 7. we can observed that, the IFW 

distribution fits the data set better than all other distributions 

considered here, because its fitted curve is closer to the 

empirical curve. In fact, based on the values of the L, AIC, 

BIC, CAIC and K-S test statistic given in Table 5 and Table 6, 

we observe that the IFW distribution provides the best fit for 

these data among all the models used here. To show that the 

likelihood equations have a unique solution, we plot the 

profiles of the log-likelihood function of 𝛼 and β for Lee and 

Wang data. in Fig 7 and Fig 8. 

Table 4. Remission times of 128 bladder cancer patients, 

see Lee and Wang. 

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 

0.20 2.23 3.52 4.98 6.97 9.02 13.29 0.40 

2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50 

2.46 3.64 5.09 7.26 9.47 14.24 25.82 0.51 

2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81 

2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 

3.88 5.32 7.39 10.34 14.83 34.26 0.90 2.69 

4.18 5.34 7.59 10.66 15.96 36.66 1.05 2.69 

4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75 

4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33 

5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62 

7.87 11.64 17.36 1.40 3.02 4.34 5.71 7.93 

1.46 18.10 11.79 4.40 5.85 8.26 11.98 19.13 

1.76 3.25 4.50 6.25 8.37 12.02 2.02 13.31 

4.51 6.54 8.53 12.03 20.28 2.02 3.36 12.07 

6.76 21.73 2.07 3.36 6.93 8.65 12.63 22.69 

Table 5. The MLEs, K-S and p-values for Lee and Wang 

data. 

The 
model 

MLE of the parameters K-S 
value 

P-value 
𝛂  𝛃  𝛉  𝛌  

FW 0.054 0.915 - - - - 0.390 1.1×10−17 

IW 16.14 0.464 - - - - 0.503 4.0×10−29 

GIW 0.75 0.34 1.79 - - 0.369 7.2×10−16 

EGIW 1.006 0.5 1.05 2 0.608 2.4×10−42 

IFW 0.126 0.143 - - - - 0.333 5.3×10−13 

Table 6. The log-likelihood, AIC, CAIC and BIC values 

for Lee and Wang data. 

The model L AIC CAIC BIC 

FW -525.53 1055.07 1055.16 1060.77 

IW -500.12 1004.25 1004.33 1009.94 

GIW -495.18 966.362 996.56 1004.92 

EGIW -488.05 984.09 984.42 995.5 

IFW -453.61 911.22 911.31 916.92 

 

Fig 7: The empirical and fitted sarvival functions of 

selected models for Lee and Wang data. 

 

Fig 8: The fitted hazard functions of selected models for 

Lee and Wang data. 

 

Fig 9: The profile of the log-likelihood function of α for 

Lee and Wang data. 
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Fig 10: The profile of the log-likelihood function of β for 

Lee and Wang data. 

Substituting the MLEs of the unknown parameters into (19), 

we get estimation of the variance covariance matrix as the 

following: 

𝐼0
−1 =  8.624 × 10−4 −3.461 × 10−5

−3.461 × 10−5 1.407 × 10−4  . 

The approximate 95%  two sided confidence intervals of the 

unknown parameters 𝛼 and β are given respectively as 

[0.0683, 0.1834] and [0.1197, 0.1662].   

6. CONCLUSIONS 
In this paper, we proposed a new two parameters model we 

called it the inverse flexible Weibull extension distribution. 

Some statistical properties of this distribution have been 

derived and discussed. The quantile, median, and mode of 

IFW are derived in closed forms. The maximum likelihood 

estimators of the parameters are derived and we obtained the 

observed Fisher information matrix. Two real data sets are 

analyzed using the new distribution and it is compared with 

the flexible Weibull, inverse Weibull, generalized inverse 

Weibull and exponentiated generalized inverse Weibull 

distributions.  It is evident from the comparisons that the new 

distribution is the best distribution for fitting these data sets 

compared to other distributions considered here.  
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