
International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 2, April 2015

42

Domain Specific Languages in Practice

Ivo Damyanov
South-West University

Blagoevgrad
Bulgaria

Mila Sukalinska
South-West University

Blagoevgrad
Bulgaria

ABSTRACT

Over the last three decades, an increasing number of

languages used for designing and developing software have

been created. Software developers gain the benefits of

combining multiple programming languages and paradigms in

application development, as a result the so-called language

engineering approach can be outlined. It involves Domain-

Specific Languages (DSLs) and automatic code generation.

This paper offers a brief review of the use of DSL as a

modeling and programming language and it tight connection

with automatic code generation. The evolution of the

developed software product requires evolution of the domain-

specific language as well. Some of the risks of abandoning of

DSLs during development are discussed.

Keywords

Metaprogramming, DSL, code generation, language

engineering, modeling.

1. INTRODUCTION
The rapid improvements in software development tools over

the last decade allows software developers to increasingly use

domain-specific languages and automatic code generation.

These two contrivances are examples of the so-called

metaprogramming. Metaprogramming itself is a paradigm in

which programs are designed to read, generate, analyze and

transform other programs or modify themselves while

running.

Domain-specific languages are adjusted to a particular domain

and provide notations close to it [1]. Based on the features of

the problem domain they improve the communication

between developers and domain experts.

One of the first detailed publications on domain-specific

languages was published by Jon Bentley in 1986. He referred

to them as little languages [2]. DSLs as little languages are

tightly bound to a specific domain and their expressive power

significantly differs from that of General Purpose Languages

(GPLs). However, DSLs can improve development time and

program correctness.

In 1994 Martin Ward [3] describes the concept of problems

solving with the implementation of domain-specific languages

and called this paradigm language-oriented programming.

There are various techniques introduced to manage the

complexity of the application development process. One of

these is the so-called Domain-Driven Design (DDD) –

introduced by Eric Evans [4]. He points out the fact that it is

very important for the project’s success to have a common

language used between domain experts and developers.

Without such language multiple transitions will be necessary.

The overall cost of all translations, plus the possibility of

misunderstanding, will put the project at risk. Ubiquitous in

the team’s work, that language should be structured around

the domain model. In DDD a ubiquitous language can be

materialized as one or more DSLs. These languages are also

part of the Software Factories [5], where the process of

modeling and implementing software product families

realized in such a way that a given system can be

automatically generated from a specification written in a

domain-specific language.

There are several approaches to exploiting domain-specific

languages in development. A DSL program could be

interpreted or compiled, or can be used as a model to drive the

process of code generation of GPL program chunks or even

entire tiers of the developed system [6].

The remainder of this paper is structured as follows: In

Section 2 the benefits and drawbacks of domain-specific

languages are analyzed. In Section 3 DSLs are observed as

specific modeling languages. In Section 4 DSLs (and

modeling) and code generation are analyzed in view of the

changes of development requirements. The evolution of DSL

as a result of the evolution of the software systems is

discussed.

2. BACKGROUNDS
A well-designed DSL should be based on the following three

principles [7]:

• A DSL provides a direct mapping to the artifacts of

the problem domain.

• DSL must use the common vocabulary of the

problem domain. The vocabulary becomes the

catalyst for better communication between

developers and business users (domain experts).

• The DSL must abstract the underlying

implementation. The DSL cannot contain accidental

complexities that deal with implementation details.

2.1 Pros and Cons
There are many discussions on the web about the advantages

and disadvantages of DSL. In fact, the better their design is,

the easier the process of writing programs becomes.

Pros

Domain-specific languages have different expressive power

compared to the general purpose languages, but they can

significantly shorten the time for the development of an

application, they can improve the correctness of the developed

application, and the communication between the domain

expert and the programmer. DSL can be used as mechanism

to protect software systems as intellectual property and be a

very powerful tool for creating a self-documented code. With

DSL multiple programming paradigms can be combined and

syntactic noise can be rapidly lowered.

Cons

Regardless of the lower final cost of the overall development

a higher starting price of the application development is often

pointed out as a disadvantage. Developing application that

involves building appropriate DSL is a hard process that

requires programmers to be language experts as well. In such

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 2, April 2015

43

cases the creation of DSL requires complete knowledge of

domain constraints. Debugging and unit testing is hard to

perform when DSL is used in implementation. DSLs can lead

to language cacophony. Proper selection of DSLs and

adequate usage is crucial.

2.2 Taxonomy
The availability of language tools aka language workbench is

important for the creation and future use of DSL. When can a

language be qualified as domain-specific? A common

indicator of a DSL is that it is not Turing-complete. These

languages can be categorized as external or internal [8].

Fig 1: Taxonomy of DSL

An external DSL is a language that is different from the main

language (usually GPL). Common examples are languages

like SQL, CSS and HTML. Most of them are bound to a

particular technology or infrastructure. Often such DSLs are

interpreted or translated through code generation tools into

GPL code. Ever since XML gained popularity, many external

DSLs have been modelled upon it. Some XML based

languages were actually equipped with nice graphical outlook.

The advantages of external DSLs include: loose specification

and minimal or no following of common standards. In such a

way developers can express the domain artifacts in compact

and useful form. The quality of such a language strongly

depends on the ability of the developer to write a high quality

code generator or interpreter. External DSLs are not

symbolically integrated with the main language and thus

things such as refactoring are hard (or even impossible) to be

automatically implemented. On the other hand, internal DSL

is embedded into the main language and thus it is completely

symbolically integrated in it. Internal DSLs are a particular

way of using GPL. Internal DSLs provide domain friendly

syntactic sugar to the existing API, using underlying

programming language constructs. In fact there are two

approaches for implementing internal DSLs – heterogeneous

and homogeneous. Under the heterogeneous approach, the

host language and the embedded language are not processed

by the same compiler/interpreter. Two different

compilers/interpreters are needed – hence the term

heterogeneous. In the case of homogeneous implementation,

the host compiler/interpreter is reused or extended so that the

host and embedded language are processed by the same

compiler/interpreter.

Some general purpose languages are well suited to be

extended with internal DSLs. There is an ongoing discussion

in the software developers’ community on how the quality of

internal DSL depends on the features of the host GPL. Martin

Fowler and Eric Evans refer to internal DSL as a fluent

interface. This term emphasizes the fact that an internal DSL

is really just a particular kind of Application programming

interface (API), but API designed in such a way that its

vocabulary is suitable for sentence-like constructions, rather

than sequence of method calls, and the constructions make

sense even in a standalone context [9]. Because internal DSLs

comply the host language syntax they are not quite readable to

non-developers as some of the external DSLs. The grammar

of the host language imposes restrictions on the expressive

possibilities of the internal DSLs.

Depending on the host language there are different approaches

and efforts which need to be developed in order to extend the

language with internal DSLs. Some of the host languages are

already dynamic unlike others where it could be a challenge to

achieve this flexibility.

In summary, the approaches for DSL development could see

them as interpreted, compiled, preprocessed, embedded or

hybrid, or in the form of fluent interface. In their daily

programming tasks software developers often need to choose

between command-query API and fluent interface. How

should they make a decision whether to build the API as a

fluent interface or transform the well-known API into internal

DSL? These questions are sometimes answered by developers

in their daily tasks by way of creating different helper classes.

Developers “carry” these helpers from project to project and

they represent their vision how to improve the commonly

used API. Sometimes these helper classes are written

spontaneously and sometimes deliberately and carefully. In

fact depending on the developers’ experience, they can turn

into proper DSL implementation that will remain stable

throughout all similar projects or will be abandoned and

completely overwritten in the next project.

3. MODELING WITH DSL
External DSLs are not Computer Aided Software Engineering

(CASE) tools. After the rise of CASE during the 90s of the

last century, CASE dramatically failed. Martin Fowler [10]

summarizes the reason for its failure:

“I think CASE tools failed for a number of reasons, but

underlying it all was the fact that they couldn't come up with a

coherent programming environment that would allow people

to build general enterprise applications more effectively than

the alternatives.”

After the CASE another continuously evolving approach

emerged. The Model Driven Architecture (MDA) was

announced in 2001 by Object Management Group (OMG) as

a tangible implementation of Model Driven Design based on

Unified Modeling Language (UML) which was adopted by

OMG in 1997.

In fact DSL appears to be a counterpart to MDA (and UML)

approach. Domain-specific languages allow software

engineers to focus on design decisions directly related to the

particular domain (problem).

DSL programs can be viewed as models and processed by

model-driven (metadata-driven) code generators.

3.1 Models and Model Transformations
Three major transformations can be identified, namely: model

transformation, model extraction and code generation. Most

of the present integrated development environments (IDE) can

perform model extraction, for example the generation of class

diagrams. Object-relational mapping (ORM) diagram

generation from database schema is an example of model

transformation. Transformation of ORM diagram to GPL code

is an example for code generation.

DSL

External Internal

Heterogeneous Homogeneous

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 2, April 2015

44

Fig 2: Model transformation and code generation

3.2 Model-Driven Code Generation
Domain-Specific Model (DSM) driven development and

transformation from DSM to code require careful design so

that they can become really usable. Sometimes partitioning

models (partial models) are proposed as improvement to

maintainability and understanding. This also adds benefits to

model management in multi-user environments [11].

As an effective way to manage the complexity of software

development, the modeling provides [12]:

• Better understanding of software systems, and a

way to create and communicate software designs

before committing additional resources.

• An effective way of traceability through software

development process.

• Ability to visualize entire systems and manage

complexity.

• Preliminary software correctness through model

verification.

• Better cost and time estimation.

Where can code generation techniques be applied effectively?

People would argue that code generation should be used as

much as possible, but experience shows that there will be a

negative effect resulting from covering the whole application.

This will dramatically complicate the DSLs used. Complex

DSLs are hard to manage, especially when there are

requirements changes.

4. HANDLING CHANGES AND DSL

EVOLUTION
Requirements management is a very important part of project

development as the change in requirements adds to the

complexity of the project development. This is also true when

DSL is utilized in the development process.

The process of development should be adaptable to:

• Functional changes - such as the inclusion of new

functionalities or change the existing ones.

• Non-functional changes: e.g. to change the security,

reliability, usability and system performance.

• Changes in the platform - move to new hardware or

OS platform.

Regardless of the applied methodology requirements are often

not fully provided and programmers identify new

requirements or requirements changes in the process of

development of software product.

Some DSL are created from scratch just for developing a

certain system. On the other hand technology related DSLs

remain stable over time and undergo a long process of

improvement and standardization. A well-designed DSL

should not be affected by requirements changes, but the

underlying code generation process and the resulting GPL

code usually are. The language developer gains his knowledge

for the domain during code writing and this affects the

language itself.

Table 1. Influence of requirements changes

 Model/DSL
Code

Generator

Functional changes ● ○

Non-functional

changes
 ●

Platform changes ●

● – high influence ○ – low influence

Functional changes mostly affect the written model and if

there are no DSL constructs, this can influence the language

improvements. The evolution of language will cause changes

in the code generator as well. On the other hand non-

functional changes affect non-functional aspects weaved in

the application. The weaving process is handled by the code

generator. Moving a developed product to a different target

platform should not affect functionality, business logic or

appearance. Platform changes involve non-functional

changes, for example different OS introduce different security

issues whereas changing hardware can introduce performance

issues. In addition, platform changes may advance in

switching to different underlying GPL.

Whether you use DSL in single large project for a long time

or in many projects for a short time, it will evolve along with

the understanding of the problem domain, and it is crucially

important for a strategy to be developed on how the domain-

specific language should be maintained to mitigate the threat

of abandonment at a later stage. The threat level may vary

depending on the type of the language (internal or external),

target of the language (architecture, technology, or problem

domain), as well as the expected features of the language

(such as backward compatibility, automatic migration to the

new language version of all old programs/models), etc.

Table 2. Influence of requirements changes

DSL
Abandonment

Risk

Type

External ♦

Internal

Homogeneous
●

Internal

Heterogeneous
■

Target

Architecture ●

Technology ●

Model

GPL code

Model

Transformation

Code

Generation

Model

Extraction

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 2, April 2015

45

Problem Domain ♦

Requirements

Backward

Compatibility
■

Automatic

Migration
♦

♦ – high, ■ – average, ● – low

Empirical data on DSLs usage in different software

development projects and the cases when DSLs have been

abandoned are summarized in Table 2.

External DSL rely on a larger number of tools than internal

one. The maintenance of the developed product deteriorates

with maintenance of these tools, which is sometimes hard.

Moving a project to a new team is often accompanied by

misuse or misunderstanding of external tools (even those not

connected with particular DSL). Fluent interface, on the other

hand, is easy to maintain because the refactoring of the

product code and the internal DSL is blended. Requirements,

such as backward compatibility and/or adding new tools’

functionality for automatic migration to the newer version of

domain-specific language, also bring high risk. The highest

risk resulting from the abandonment of DSLs, however, is

misunderstanding in the problem domain.

5. CONCLUSIONS
Slowly but surely domain-specific languages take their place

in software development. After more than 30 years of

development they compete with general purpose languages.

Software developers turn from single language experts to

polyglots. Metaprogramming becomes the main paradigm in

programming. The era of command line compilers and

MAKE tool is already forgotten - the modern IDE have

replaced them. But the course of time keeps changing and the

Language Workbenches are approaching.

The immediate future requires solutions that will allow the

implementation and use of DSLs on wider scope. It is up to

the developer to decide on the way in which a DSL will be

implemented and used. Some may choose to implement

declarative DSL or imperative, internal or external.

Nevertheless, a well-designed DSL should capture the essence

of the application domain, and in that sense, there is no better

tool to develop the software system.

The successful completion of software project, requires proper

understanding of software risks one of which is the risk of

abandonment of domain-specific languages during the

development process. These languages evolve along with the

understanding of the problem domain and product

development progress. Keeping them and related tools up-to-

date together with proper documentation of their usage will

mitigate the risk of abandonment in later stages.

6. REFERENCES
[1] Hudak, P. 1998 Modular domain specific languages and

tools. In Proceedings of the 5th International Conference

on Software Reuse (JCSR’98), P. Devanbu and J. Poulin,

Eds. IEEE Computer Society, 134–142.

[2] Bentley J. 1986 Little languages. CACM, 29(8), 711–

721.

[3] Ward, M.P. 1994 Language-oriented programming.

Software-Concepts and Tools 15(4), 147-161.

[4] Evans, E. 2003 Domain-Driven Design: Tackling

Complexity in the Heart of Software, Addison-Wesley

Professional

[5] Greenfield, J., Short, K., Cook, S., Kent, S. and Crupi, J.

2004 Software Factories: Assembling Applications with

Patterns, Models, Frameworks, and Tools. Wiley

Computer Publishing

[6] Damyanov, I., Holmes, N. 2004 Metadata Driven Code

Generation using .NET Framework, Proceedings of

International Conference on Computer Systems and

Technologies - CompSysTech’2004, 1-6

[7] Debasish, G. 2011 DSLs in Action, Manning

Publications

[8] Verna, D. 2013 Extensible Languages. Blurring the

Distinction between DSL and GPL, Formal and Practical

Aspects of Domain-Specific Languages: Recent

Developments, Marjan Mernik Eds, IRMA International,

1–31

[9] Fowler M. 2010 Domain Specific Languages, Addison-

Wesley Professional

[10] Fowler M., Blog

http://www.martinfowler.com/bliki/ModelDrivenArchite

cture.html (visited 05.02.2015)

[11] Warmer, J. B., Kleppe, A. G. 2006 Building a Flexible

Software Factory Using Partial Domain Specific Models,

In: Sixth OOPSLA Workshop on Domain-Specific

Modeling (DSM'06)

[12] Cemosem, G., Naiburg, E. 2004 The Value of Modelling.

A Technical Discussion of Software Modeling, IBM

IJCATM : www.ijcaonline.org

