
International Journal of Computer Applications (0975 – 8887)  

Volume 115 – No. 19, April 2015 

13 

Application Mapping onto Butterfly-Fat-Tree based 

Network-on-Chip using Discrete Particle Swarm 

Optimization 

 
 

 
 
 

 
 

 

 

ABSTRACT 

This paper addresses the problem of application mapping onto 

Butterfly-Fat-Tree (BFT) based Network-on-Chip design. It 

proposes a new mapping technique based on discrete Particle 

Swarm Optimization (PSO) to map the cores of the core graph 

to the routers. The basic PSO has been augmented by running 

multiple PSO and deterministically generating a part of the 

initial population for PSO. The mapping results have been 

compared with well-known techniques reported in the 

literature for a number of benchmark applications. The 

reported strategy produces results superior to those obtained 

via existing approaches within a reasonable CPU time.  

Keywords 

Application mapping, Network-on-Chip, System-on-Chip, 

Butterfly-Fat-Tree, Discrete Particle Swarm Optimization  

1. INTRODUCTION 

Network-on-Chip (NoC) has evolved as a viable strategy to 

implement Intellectual Property (IP) core based System-on-

Chip (SoC) designs. It solves the traditional problems of 

bandwidth limitations of bus-based SoC design by providing 

an on-chip network fabric consisting of routers connected in a 

certain topology. Conventional data signal exchanges are 

replaced by message passing between the cores through the 

router fabric [1]–[4]. A major challenge in NoC based system 

design is to associate the IP cores implementing tasks of an 

application with routers. This is commonly known as the 

process of application mapping. This has got a very 

significant role to play in performance of the overall system as 

it directly influences the communication time, the required 

link bandwidth, the admissible delay of the router, and energy 

consumption of the whole NoC [5], [6]. Furthermore, these 

requirements vary from one application domain to another. 

For example, while multimedia applications require high 

bandwidth, real time systems require guaranteed delay, and 

portable devices require low power consumption. Most of the 

application mapping algorithms reported in the literature 

assumes a mesh-connected router fabric for the NoC. In [6]–

[10], authors have proposed many topologies for NoC. 

Butterfly-Fat-Tree (BFT) enjoys several advantages over 

other topologies [7], [10]. The BFT topology can be easily 

implemented inside chips. It has the advantage of having 

small diameter as well as symmetric structure. There are 

various versions of the networks connected in the tree like 

architecture and most of them have recursive structures. The 

wire routing is also simpler. In chip design, for same number 

of cores, the area occupied by BFT is less than the mesh 

topology. These characteristics make BFT a popular scheme 

for interconnecting IPs [7], [10]. In [7], [9]–[10] authors have 

shown a detailed performance comparison of BFT with mesh 

using synthetic traffic. However, it remains unclear how BFT 

performs with respect to the benchmark applications. This 

work attempts to map the benchmark application onto BFT 

based NoC. Such process can be called as application 

mapping.  

Application mapping problem is NP-hard [11]. This paper 

explores a meta-heuristic, Discrete Particle Swarm 

Optimization (DPSO), to perform application mapping onto 

BFT-based NoCs. The salient features of the approach are as 

follows. 

1. A PSO based approach has been presented for application 

mapping onto BFT targeting minimization of the overall 

communication cost. 

2. We have also used a multi-stage PSO. The local and 

global best information of 𝑖𝑡  stage have been passed to 

the particles in (𝑖 + 1)𝑡  stage. This ensures faster 

convergence and improved quality of solution for the 

successive stages. 

3. For any stage of PSO, the initial population generation is 

not fully random. A good number of particles have been 

created using a heuristic. This has enabled our PSO to 

explore the promising regions of search space much 

better. 

4. The communication cost metric values of the mapping 

solutions of our approach have been compared with the 

existing approach for BFT mapping. It shows good 

improvement in solution quality. 

5. Comparison of dynamic performance (in terms of average 

network latency) and energy consumption have also been 

carried out. 

The rest of the paper is organized as follows. Section 2 gives a 

brief survey of previous works on application mapping. 

Section 3 gives an overview of BFT. Section 4 presents the 

problem formulation. DPSO formulation of the mapping 

problem and its augmentations are presented in Section 5. 

Section 6 embodies performance analysis of our approach and 

compares with others by taking some real SoC benchmarks. 

Latency and energy values have also been compared. Section 

7 draws the conclusion.   

2. RELATED WORKS 
Application mapping onto mesh structured NoC is a well 

studied area. A recent survey on this can be found in [12]. 

PMAP, a two-phase mapping algorithm for placing clusters 

onto processors has been presented in [11], where highly 

communicating clusters are placed on adjacent nodes of the 

processor network. Each cluster contains all tasks which are to 

Pradip Kumar Sahu, Kanchan Manna and Santanu Chattopadhyay 

Electronics and Electrical Communication Engineering,  
Indian Institute of Technology, Kharagpur, West Bengal, India 

 
 



International Journal of Computer Applications (0975 – 8887)  

Volume 115 – No. 19, April 2015 

14 

be executed in the same processor having zero interconnection 

overhead to increase parallelism. In [13], GMAP, and PBB a 

branch and bound algorithm, have been proposed that map 

cores onto a tile-based NoC architecture satisfying the 

bandwidth constraint and minimizing the total energy 

consumption. In [14], NMAP, a mapping technique has been 

proposed with minimum path routing in the mesh architecture 

which satisfies the bandwidth constraint and minimizes the 

average communication delay. MOCA, a two phase heuristic 

for low energy mesh based on-chip interconnection 

architecture has been proposed in [15]. In the first phase, the 

cores are mapped to different routers of the mesh by invoking 

a bi-partitioning based slicing tree generation technique. In 

the second phase, it attempts to find a minimal path from 

source to destination for each traffic trace. A binomial IP 

mapping and optimization algorithm (BMAP) has been 

proposed in [16] to reduce hardware cost of on-chip network. 

Spiral, a mapping algorithm has been proposed in [17] which 

reduce the cumulative energy consumption of communication 

links and the overall system execution time. In this mapping 

technique, the high priority resources are mapped spirally 

from the centre to the boundaries of the mesh based NoC by 

placing highly communicating cores as close as possible to 

each other. Onyx, a bandwidth constrained application 

mapping has been presented in [18] to minimize the overall 

communication cost of NoC. CHMAP [19] is a chain-

mapping algorithm that produces chains of connected cores in 

order to introduce a method for application mapping onto 

mesh-based NoC. CMAP [20] is a constructive application 

mapping algorithm that maps cores onto NoC minimizing 

total communication cost and energy. In [21], authors have 

taken NMAP [14] as their initial mapping solution. A branch-

and-bound algorithm, as in [13], has been applied upon the 

NMAP mapping solution to arrive at a better solution. 

CastNet, an energy-aware application mapping and routing 

technique for NoC has been proposed in [22]. In [23]–[24], a 

mapping algorithm has been proposed to reduce both static 

and dynamic cost of mesh based NoC using Kernighan-Lin 

(K-L) partitioning scheme. A thermal uniformity-aware 

application mapping strategy onto mesh-based NoC has been 

proposed in [25] using a constructive heuristic to make the 

temperature profile uniform, as well as reduce the peak 

temperature with tolerable performance degradation. 

A two-step Genetic Algorithm (GA) for mapping applications 

onto NoC has been proposed in [26], which reduces the 

overall execution time. In the first step, the cores of a core 

graph are assigned onto different IPs assuming the edge 

delays to be constant and equal to the average edge delay. In 

second step, the IPs are mapped to tiles of NoC taking the 

actual edge delay based on the network traffic model, and the 

total system delay is minimized. A multi-objective Genetic 

Algorithm (MOGA) based application mapping technique has 

been proposed in [27], where one-one as well as many-many 

mapping between switches and tiles have been taken into 

consideration to minimize energy consumption and required 

link bandwidth. In [28], CGMAP, a genetic algorithm based 

application mapping technique has been proposed that uses 

the chaotic mapping operator instead of the random processes 

in GA. GAMR [29], a genetic algorithm based mapping and 

routing approach addresses a two phase mapping of IP cores 

onto NoC architecture and generates a deterministic dead-lock 

free minimal routing path for each communication to 

minimize the total communication energy and maximum link 

bandwidth of the NoC architecture. GBMAP, an evolutionary 

approach for mapping cores onto NoC architecture has been 

proposed in [30], which reduces energy consumption and total 

bandwidth requirement of NoC. PLBMR, a Particle Swarm 

Optimization (PSO) based two-phase application mapping 

algorithm proposed in [31] minimizes the NoC 

communication energy and allocates the routing path for 

balancing the link-load. In first phase, the PSO maps IP cores 

onto NoC to minimize the energy consumption, and in the 

second phase the routing paths are allocated to every pair to 

satisfy the link-load balance. A mapping technique based on 

discrete PSO has been presented in [32]. However, it only 

considers improvement over genetic algorithm based method 

and reports relative improvements only. In [33], a hybrid 

multi-objective algorithm has been proposed, where Dijkstra 

shortest path algorithm has been used to find the shortest path 

among communicating cores to satisfy the bandwidth 

constraints and then a multi-objective pareto based PSO 

technique is applied upon that to improve performance. 

PSMAP, a meta-heuristic strategy using PSO technique has 

been proposed in [34] to reduce both static and dynamic cost 

of NoC for mesh based application mapping. A discrete 

multiple PSO based mapping technique has been proposed 

[35] to optimize the performances using deterministic initial 

solutions. In [36], an Ant Colony Optimization (ACO) based 

algorithm has been proposed for application mapping onto 

NoC to minimize the bandwidth requirement. The results have 

been compared with random mapping techniques.  

All the application mapping techniques of NoC discussed 

above are based on mesh based network architecture. But it is 

essential to check the suitability of these approaches in other 

network topologies when applications are mapped onto that. 

In this light, application mapping techniques have been 

proposed in [23], [37] and [23], [38], [39] to map applications 

onto Butterfly-Fat-Tree (BFT) and Mesh-of-Tree (MoT) 

based NoC respectively to enhance communication cost. 

3. BFT-AN OVERVIEW 
 

 

 

 

 

 

Fig. 1 shows a BFT [7, 40] structure in which routers and their 

interconnections are shown. The IPs are placed at the leaf 

level. A pair of coordinates (𝑙,𝑝) is used to label each node, 

where 𝑙 denotes a node’s level and 𝑝 denotes its position 

within that level. In general, at the lowest level, there are 𝑁 

functional IPs with addresses ranging from 1 to 𝑁. A pair 

(0, 𝑛) denotes the location of an IP at the lowest level. Each 

switch, denoted by 𝑆 (𝑙, 𝑝) has four children ports and two 

parent ports. The IPs are connected to 𝑁/4 switches at the 

first level.  For 𝑁 number of IPs, the diameter of network is 

log2 𝑁/4 and the bisection width is  𝑁. Fig. 1 shows BFT 

architecture connecting 16 cores to the routers. The cores are 

connected at leaf level routers, and each leaf level router 

connects 4 cores. It has small diameter as well as symmetric 

structure. 

Fig. 1. Butterfly-Fat-Tree topology 

graph  

 

u2u1 u4u3 u6u5 u8u7 u10u9 u12u11 u14u13 u16u15

 

S (2, 2) S (2, 1) 

S (1, 4) S (1, 3) S (1, 2) S (1, 1) 

(0, 2) (0, 1) (0, 16) ·   ·   · 



International Journal of Computer Applications (0975 – 8887)  

Volume 115 – No. 19, April 2015 

15 

4. PROBLEM FORMULATION 
An application consists of a set of tasks, each of which is 

implemented by an IP core. After the cores participating in an 

application have been decided, the application can be 

represented in the form of a core graph [14], defined as 

follows. 

Definition 1: The core graph for an application is a directed 

graph, 𝐺(𝐶, 𝐸) with each vertex 𝑐𝑖 ∈ 𝐶 representing a core 

and the directed edge 𝑒𝑖 ,𝑗  ∈ 𝐸 representing the 

communication between the cores 𝑐𝑖  and 𝑐𝑗  . The weight of 

edge 𝑒𝑖,𝑗  , denoted by 𝑐𝑜𝑚𝑚𝑖,𝑗  , represents the bandwidth 

requirement of the communication from 𝑐𝑖  to 𝑐𝑗  . 

Definition 2: The NoC topology graph [14] is a directed 

graph 𝑃(𝑈, 𝐹) with each vertex 𝑢𝑖  ∈ 𝑈 representing a node in 

the topology and the directed edge 𝑓𝑖 ,𝑗  ∈ 𝐹 representing a 

direct communication between the vertices 𝑢𝑖   and 𝑢𝑗  . The 

weight of the edge 𝑓𝑖 ,𝑗  , denoted as 𝑏𝑤𝑖 ,𝑗 , represents the 

bandwidth available across the edge 𝑓𝑖 ,𝑗  .  

A mapping of the core graph 𝐺(𝐶, 𝐸) onto the topology graph 

𝑃(𝑈, 𝐹) is defined by the function 𝑚𝑎𝑝: 𝐶 → 𝑈, 𝑠𝑢𝑐 𝑡𝑎𝑡, 

𝑐𝑖 𝐶,  𝑢𝑗 𝑈 𝑎𝑛𝑑 𝑚𝑎𝑝(𝑐𝑖) = 𝑢𝑗 . The function associates 

core 𝑐𝑖  to node 𝑢𝑗 . Naturally, mapping is defined only 

when  𝐶 ≤  𝑈 . The quality of such a mapping is defined in 

terms of the total 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 of the application 

under this mapping [14]. So, the 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 
between two vertices 𝑢𝑖  and 𝑢𝑗  is given by the product of 

bandwidth requirement and number of hops. However, this 

cost model holds for the case in which the routers are all of 

equal latency (as in mesh). We have used the BFT router 

design reported in [10]. For BFT, root routers show a latency 

of one cycle, if it is a simple FIFO, otherwise it takes two 

cycles. The stem and leaf routers always show a latency of 

two cycles. We have converted the hops into the router clock 

cycles needed by the path. Let us call the path from  𝑢𝑖  to 𝑢𝑗  as 

path 𝑘. The communication cost of the path is given by,   

𝑥𝑘 = 𝑟𝑐𝑖,𝑗 × 𝑏𝑤𝑖 ,𝑗  

where, 𝑟𝑐𝑖,𝑗 = number of router cycles required in the path 

from 𝑢𝑖   to  𝑢𝑗  

      𝑏𝑤𝑖,𝑗 = bandwidth requirement of the path 𝑢𝑖   to  𝑢𝑗   

Total communication cost of the network is given by,  

𝑇𝑥 =   𝑥𝑘

 𝐸 

𝑘=1

 

where │𝐸│ is the total number of paths available in the 

network from different source to destination vertices of the 

mapped core graph. 

5. MAPPING USING DISCRETE 

PARTICLE SWARM OPTIMIZATION 
Particle Swarm Optimization (PSO) [41] is a population based 

stochastic technique developed by Eberhart and Kennedy in 

1995, inspired by social behavior of bird flocking or fish 

schooling. In a PSO system, multiple candidate solutions 

coexist and collaborate simultaneously. Each solution, called 

a particle, flies (evolves) in the problem space according to its 

own experience as well as the experience of neighboring 

particles. It has been successfully applied in many problem 

areas. In a PSO, each single solution is a particle in the search 

space, having a fitness value. The quality of a particle is 

evaluated by its fitness. Inspired by its success in solving 

problems in continuous domain, several researchers have 

attempted to apply it in discrete domain as well. A well-

known problem that has been attempted to be solved using 

discrete PSO (DPSO) technique is the Travelling Salesman 

Problem (TSP) [42]. This has motivated us to look for a 

DPSO formulation of the application mapping problem.  

5.1 Particle Structure 
In application mapping problem, PSO formulation of the 

particle corresponds to a possible mapping of cores to the 

nodes. An example of a particle structure has been shown in 

Fig. 2. The numbers shown within circles in the boxes are the 

core numbers present in the core graph. The numbers outside 

the box are the core positions (nodes) of the topology graph. It 

is assumed that the nodes are numbered in an increasing order 

from the left to right position. The figure shows that core 1 is 

attached to the leaf router 1, called node1; core 4 is placed at 

node 2, and so on. If the number of nodes present in the 

topology graph is greater than the number of cores present in 

the core graph, dummy nodes are added to the core graph to 

make the two numbers same. Dummy nodes are connected to 

all core nodes and between themselves. Edges connecting a 

core node to dummy nodes and the edges between dummy 

nodes are assigned a cost zero. Let 𝑁 be the number of cores 

present in the core graph for mapping of cores onto the 

topology graph, after connecting dummy nodes, if required. 

For these 𝑁 cores, there are 𝑁 node positions in the topology 

graph. A particle is a permutation of numbers from 1 to 𝑁, 

which shows the placement of cores to the node positions of 

the topology graph. The overall communication cost is 

influenced by the position of cores in a particle. In our 

formulation, the overall communication cost forms the fitness 

function. Fitness of a particle 𝑝𝑖  is equal to the overall 

communication cost after placement of cores of the core graph 

to different nodes, as specified by the particle. 

6 75821 4 3

Core Positions 1 42 3 5 6 7 8

Core Number

 

 

5.2 Evolution of Generations 
In the general DPSO framework, let the position of a particle 

(in an n-dimensional space) at 𝑘𝑡   iteration be 𝑝𝑘 = <
𝑝𝑘 ,1, 𝑝𝑘 ,2 ,···  𝑝𝑘,𝑛  >. For 𝑖𝑡  particle, the quantity is denoted 

as 𝑝𝑘
𝑖 . Let 𝑝𝑏𝑒𝑠𝑡𝑖  be the local best solution that particle 𝑖 has 

seen so far and  𝑔𝑏𝑒𝑠𝑡𝑘  be the global best particle of 

iteration 𝑘. The new position of particle 𝑖 is calculated as 

follows: 

𝑝𝑘1
𝑖 = (𝑠1 ∗ 𝐼 ⊕ 𝑠2 𝑝𝑘 ⟶ 𝑝𝑏𝑒𝑠𝑡𝑖 ⊕ 𝑠3 𝑝𝑘 ⟶ 𝑔𝑏𝑒𝑠𝑡𝑘 )

· 𝑝𝑘
𝑖  

In the above expressions, 𝑎 ⟶ 𝑏 represents a sequence of 

swapping to be applied on components of a to transform it to b. 

For example, if a = < 1, 3, 4, 2 > and b = < 2, 1, 3, 4 >, 𝑎 ⟶ 𝑏 = 

< swap (1, 4), swap (2, 4), swap (3, 4) >. The operator ⊕ is the 

fusion operator. For two swap sequences a and b, a ⊕ b is equal 

to the sequence in which the sequence of swaps in a is followed 

by the sequence of swaps in b. The constants 𝑠1, 𝑠2, 𝑠3 are the 

inertia, self-confidence and swarm confidence values. The 

quantity 𝑠𝑖 ∗ (𝑎 ⟶ 𝑏) means that the swaps in the sequence 

𝑎 ⟶ 𝑏 will be applied with a probability 𝑠𝑖 . I is the sequence of 

identity swaps, such as, < swap (1, 1), swap (2, 2), ··· swap (n, 

n) >. It corresponds to the inertia of the particle to maintain its 

current configuration. The final swap corresponding to 𝑠1 ∗ 𝐼 ⊕

 

Fig. 2. Particle structure 



International Journal of Computer Applications (0975 – 8887)  

Volume 115 – No. 19, April 2015 

16 

𝑠2 ∗  𝑝𝑘 ⟶ 𝑝𝑏𝑒𝑠𝑡𝑖 ⊕ 𝑠3 ∗  𝑝𝑘 ⟶ 𝑔𝑏𝑒𝑠𝑡𝑘  is applied on 

particle 𝑝𝑘
𝑖  to generate 𝑝𝑘1

𝑖 . 

In reference to the application mapping problem, for a 

particle 𝑝, the node associated with a core is identified by the 

position index of the core in 𝑝. The indexing of the position 

takes value between 1 and 𝑁(𝑁 being the number of nodes). 

The index corresponds to the core positions in the topology 

graph (Fig. 2). Let the swap operator 𝑆𝑂𝑗 ,𝑘  

(𝑤𝑒𝑟𝑒, 𝑗 𝑎𝑛𝑑 𝑘 =  1, 2,···  𝑁) be such that it swaps  𝑗𝑡  

and 𝑘𝑡  positions of particle p to create a new particle 𝑝𝑛𝑒𝑤 . 

For example, let us consider the 

particle 𝑝 =  {1, 4, 3, 6, 2, 8, 5, 7}, where the numbers 

represent the core numbers of the core graph and the position 

represents the core positions in the topology graph. The swap 

operator 𝑆𝑂4,6  swaps the cores at position 4 and 6, which 

creates a new particle 𝑝𝑛𝑒𝑤 =  {1, 4, 3, 6, 5, 8, 2, 7}. 

To align a particle 𝑝𝑖  with its local best, the swap sequence is 

identified. Let this be  𝑆𝑆𝑖
𝑙_𝑏𝑒𝑠𝑡

. Then another swap sequence 

is identified to align the particle with the global best. Let this 

be 𝑆𝑆𝑖
𝑔_𝑏𝑒𝑠𝑡

. Now the swap sequence 𝑆𝑆𝑖
𝑙_𝑏𝑒𝑠𝑡 is applied on 

particle 𝑝𝑖  with a probability of 𝑠2 [43]. Let the modified 

particle be 𝑝𝑖
𝑙_𝑏𝑒𝑠𝑡 . Then the swap sequence 𝑆𝑆𝑖

𝑔_𝑏𝑒𝑠𝑡
is applied 

on 𝑝𝑖
𝑙_𝑏𝑒𝑠𝑡  with a probability of  𝑠3[43]. This creates a new 

particle 𝑝𝑖
𝑛𝑒𝑤 . Its fitness is evaluated and the local best is 

updated for particle 𝑖, if it is better than the previous local best 

for the particle. If the best fitness in a generation is better than 

the global best of the previous generation, the global best is 

also updated. The procedure 𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝑆𝑤𝑎𝑝_𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

shows the strategy to determine a swap sequence for the 

purpose of alignment. 

Procedure 𝐂𝐨𝐦𝐩𝐮𝐭𝐞_𝐒𝐰𝐚𝐩_𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞 

Input: Source sequence 𝑆𝑜𝑢𝑟_𝑠𝑒𝑞, Destination sequence 

𝐷𝑒𝑠𝑡_𝑠𝑒𝑞 

Output: Swap sequence 𝑆𝑤𝑎𝑝_𝑠𝑒𝑞 to align 𝑆𝑜𝑢𝑟_𝑠𝑒𝑞 to 

𝐷𝑒𝑠𝑡_𝑠𝑒𝑞 

Begin 

For 𝑖 = 1 to 𝑙𝑒𝑛𝑔𝑡 (𝑆𝑜𝑢𝑟_𝑠𝑒𝑞) 

  𝑆𝑤𝑎𝑝_𝑠𝑒𝑞[𝑖] = Index of  𝑆𝑜𝑢𝑟_𝑠𝑒𝑞[𝑖] in 𝐷𝑒𝑠𝑡_𝑠𝑒𝑞 

End For 

End 

5.3 Convergence of DPSO 
From [44], it can be found that the convergence condition for 

this DPSO is given by, 

(1– 𝑠1 )2 ≤ 𝑠2 𝑠3 ≤ (1  𝑠1 )2 

Accordingly, we have worked with various values 

of 𝑠1 , 𝑠2  𝑎𝑛𝑑 𝑠3 in this range. The values  𝑠1 = 1.0, 𝑠2 =

0.04, 𝑠3 = 0.02 have been observed to produce good results 

for most of the applications we have experimented with. 

5.4 PSO Algorithm 

𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 

For each particle 

 Initialize particle with random solution 

 Evaluate 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 value of each particle  

 Set 𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡 of each particle to itself 

End For 

Set 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑒𝑠𝑡 to the best fit particle            

𝐄𝐯𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 
Do 

          For each particle 𝑝𝑖  

 Identify 𝑆𝑆𝑖
𝑙_𝑏𝑒𝑠𝑡  and 𝑆𝑆𝑖

𝑔_𝑏𝑒𝑠𝑡
   

 𝑝𝑖
𝑛𝑒𝑤 = Modify 𝑝𝑖by applying 𝑆𝑆𝑖

𝑙_𝑏𝑒𝑠𝑡   

                            with   probability 𝑠2 followed by 𝑆𝑆𝑖
𝑔_𝑏𝑒𝑠𝑡

 

             with probability 𝑠3 

 Evaluate 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 of 𝑝𝑖
𝑛𝑒𝑤    

  

 If 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 of 𝑝𝑖
𝑛𝑒𝑤 is better than the local best  

for 𝑝𝑖    then update 𝑙𝑜𝑐𝑎𝑙_𝑏𝑒𝑠𝑡 for 𝑝𝑖  

          End For 

 Find the particle with the best 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 and  

                           update 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑒𝑠𝑡 

While maximum generation (pre-specified) not attained and 

𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑒𝑠𝑡 is not remaining unaltered for a pre-specified 

number of generations 

 

5.5 Augmentations to the PSO 
The DPSO formulation discussed above has been augmented 

in the following two ways to achieve better solutions. 

1. Multiple PSO: Similar to any other search procedure, 

PSO also performs both exploration and exploitation of the 

search space. The exploration process explores different 

regions of the search space, while the exploitation process 

checks for local minima around the globally explored points. 

In the initial portion of a PSO run, it performs more of 

exploration. However, as further generations evolve, the 

particles start converging, thus, making more of exploitation. 

Several strategies have been proposed in the literature [45], 

[46] to use multiple swarms within the overall process to 

strike a balance between exploration and exploitation. One 

such strategy, Locust swarm [45] is based on a “devour and 

move on” strategy – after a subswarm has found a local 

optima, a set of scouts are deployed to explore new promising 

regions. However, the scouts are guided by the intelligence 

gathered by the previous subswarms. We have utilized a 

similar strategy for better exploration of search-space. 

For this we have run the PSO [34] several times to improve 

upon the global best solution. Suppose that the 𝑖𝑡  run of the 

PSO produces the local best 𝑝𝑏𝑒𝑠𝑡𝑖
𝑘  for each particle 𝑘 and 

the global best 𝑔𝑏𝑒𝑠𝑡𝑖 . In the  (𝑖 + 1)𝑡  run of the PSO, we 

start with a new set of particles. However, the global and local 

best information of the particles are passed from 𝑖𝑡  to 

 (𝑖 + 1)𝑡  PSO. The number of times for which the PSO is 

run, that is, the terminating criteria is decided by the 

following. 

(i) A user specified upper limit may be there. In our 

experimentation we have kept it at 200 individual PSO 

runs. 

(ii) The global best cost does not improve in last 20 PSO 

runs. 

2) Initial population generations: For initial population 

generation, we have used a modified Kernighan-Lin 

partitioning strategy [34], [47]. It has been originally 

developed to partition modules in VLSI physical design. It 

bipartitions a set of modules, so that highly connected 

modules are kept in one partition. In NoC, after the task to 

core mapping has been decided, an application consists of a 

set of cores carrying out specific tasks. The cores need to 

communicate between themselves, thus requiring bandwidths 



International Journal of Computer Applications (0975 – 8887)  

Volume 115 – No. 19, April 2015 

17 

for communication. Before going to the actual mapping, we 

propose to use a modified Kernighan-Lin (KL) bi-partitioning 

strategy to identify the closeness of cores by analyzing their 

bandwidth requirements. This bi-partitioning is applied 

(recursively) until the closest four cores are left in one final 

partition due to topological structure of BFT. The motivation 

for using this algorithm is that the cores with more 

communication requirement should be attached nearby routers 

in the NoC architecture. During the mapping phase, these 

partitions are taken into consideration to minimize the 

communication cost between mapped cores. The following 

algorithm is used to recursively partition the core graph.  

Initially, at level-0, all cores are in one partition. At level-1, 

there are two partition sets, having partition numbers 0 and 1, 

each containing half the nodes of the core graph. At next level 

(level-2), four partitions are generated (two each from 

partition-0 and partition-1 of level-1) having partition 

numbers 0, 1, 2 and 3. This continues until there are only four 

cores (λ = 4) left in each partition for BFT. As KL 

partitioning results depend on the initial partitioning, we run 

the algorithm for L (preset) times, each time starting with a 

different randomly generated initial partition. Each initial 

partition gives different final partition having 4-cores in each 

group. Those final partitions are used as particles for our PSO. 

The value of L is decided according to the number of particles 

we require for our PSO. In this process by using modified KL 

partitioning algorithm the initial population for our PSO is 

generated. 

Since KL is a bi-partitioning strategy, we assume that the 

number of nodes in core graph is an exact power of 2. 

Otherwise, we add a number of dummy nodes. Dummy nodes 

are connected to all core nodes and between themselves. 

Edges connecting a core node to dummy nodes are assigned 

cost zero while the edges between the dummy nodes are 

assigned cost infinity. Such a cost assignment favours the 

situation in which all dummy nodes will get clustered 

together. These dummy nodes are removed at the end of the 

initial mapping phase. 

The algorithm takes a core graph G = (C, E) as input, where C 

is the set of cores in the application and E is the set of edges 

depicting communication between them. It computes sets of 

clusters at different levels of partitioning. The level-0 

clusters, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠  0 , is a single set consisting of all cores in 

C. They are partitioned into two sets at the next level. Thus 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 [1] is a collection of two sets. The cores belonging 

to a set should be placed close to each other in the NoC, 

compared to two cores belonging to two different sets. In 

general, a set in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 [𝑖] (that is, an ith level cluster of 

cores) gives rise to two 𝑖 + 1 level disjoint sets 

in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 [𝑖 + 1]. The process continues till each set in a 

cluster contains only 2 cores for Mesh and MoT, and only 4 

cores for BFT. The algorithm is invoked with level=0, 

Cores_to_be_Partitioned = C. 

Algorithm KL-Partitioning 

Input: Core graph 𝐺 = (𝐶, 𝐸): the core graph with set of  

                 cores C and edges E 

 𝑙𝑒𝑣𝑒𝑙: level of partitioning 

 𝐶𝑜𝑟𝑒𝑠_𝑡𝑜_𝑏𝑒_𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑: the subset of cores  

                 in C  to be partitioned  

Output: A set of clusters 

   𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠[𝑖] is the 𝑖𝑡  level collection of  

                  disjoint sets of cores  

Begin 

       𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠[𝑙𝑒𝑣𝑒𝑙]= 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠[𝑙𝑒𝑣𝑒𝑙] ∪ 𝐶𝑜𝑟𝑒𝑠_𝑡𝑜_𝑏𝑒_𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑  

       If |𝐶𝑜𝑟𝑒𝑠_𝑡𝑜_𝑏𝑒_𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑 | ≤ 𝜆 return            /∗ λ = 2  

                                                 for mesh and MoT, 4 for BFT∗/ 
(𝑝1 , 𝑝2) = Random partitioning of cores in 𝐶𝑜𝑟𝑒𝑠_𝑡𝑜_𝑏𝑒_𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑                                                                                    
KL (G, p1, p2) 

       KL-Partitioning (G, level + 1, p1) 
       KL-Partitioning (G, level + 1, p2) 

End 

𝐊𝐋(𝑮, 𝒑𝟏, 𝒑𝟐) 
Input:Core graph 𝐺 = (𝐶, 𝐸): the core graph with set of cores 

C and edges E 

𝑝1, 𝑝2: non-empty equal-sized sets, such that 𝑝1 ∪ 𝑝2 = 𝐶, 

𝑝1 ∩ 𝑝2 = ∅  
Output: updated 𝑝1, 𝑝2 

Begin 

           do 

 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 = 𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 = (𝑝1, 𝑝2) 

 Unlock all cores 

          While   𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑_𝑐𝑜𝑟𝑒𝑠_𝑒𝑥𝑖𝑠𝑡(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛) do 

 swap = Select_next_move(current_partition)                                                                  

current_partition=Move_and_lock_cores(current_p

artition, swap) 
 best_partition=Get_better_partition 

                                      (best_partition,current_partition) 
          End While 
 If not (𝐶𝑜𝑠𝑡_𝑓𝑐𝑡 (𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ) < 𝐶𝑜𝑠𝑡_𝑓𝑐𝑡((𝑝1, 𝑝2))    then 

     Return (𝑝1, 𝑝2) // Terminate, no improvement 

 Else // do another iteration 

  (𝑝1, 𝑝2) = 𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 

  Unlock all cores 

 End If 

          End do 

End 

𝐒𝐞𝐥𝐞𝐜𝐭_𝐧𝐞𝐱𝐭_𝐦𝐨𝐯𝐞 (𝐏) 

Begin 

          For each unlocked (𝑐𝑖 𝑝1, 𝑐𝑗p2) do 

 Append (𝑐𝑜𝑠𝑡𝑙𝑜𝑔, 𝐶𝑜𝑠𝑡𝐹𝑐𝑡 (𝑆𝑤𝑎𝑝 (𝑃, 𝑐𝑖 , 𝑐𝑗 )) 

          End For 

 Return (𝑐𝑖 , 𝑐𝑗 swap in 𝑐𝑜𝑠𝑡𝑙𝑜𝑔 with lowest cost) 

End 

6.  SIMULATION RESULT 
In this section, we present the simulation results of our BFT 

application mapping techniques (Single PSO and Multiple 

augmented PSO), and compare with the solutions of other 

existing BFT mapping techniques for number of SoC 

benchmark applications. The core graphs for the applications 

are shown in Fig. 3. 

6.1 Result on Communication Cost 
Communication cost is an indicative measure about the 

performance of a network. We have compared the 

communication cost for the benchmarks when mapped onto 

BFT network using our techniques and a mapping technique 

for BFT based NoC, KL_BFT [23].  

Table 1 shows the comparative study across the mapping 

algorithms for the benchmarks. It can be noted that our BFT 

mapping technique with single PSO produces similar result 

for most of the benchmarks with reasonable CPU time. 

However, for DVOPD the result produced is inferior to 

KL_BFT [23]. The proposed BFT mapping technique with 

multiple augmented PSO produces the best result for each of 

the benchmarks with reasonable CPU time. This establishes 

the necessity of augmenting the basic PSO to achieve better 

results. 



International Journal of Computer Applications (0975 – 8887)  

Volume 115 – No. 19, April 2015 

18 

Table 1. Communication Cost and CPU Time for different Applications with their corresponding Techniques 

Mapping 

Algorithms 

DVOPD VOPD MPEG-4 PIP 

Comm. Cost 

(bw × rc) 

CPU 

time in s 

Comm. Cost 

(bw× rc) 

CPU 

time in s 

Comm. Cost 

(bw × rc) 

CPU 

time in s 

Comm. Cost 

(bw × rc) 

CPU 

time in s 

KL_BFT [23] 24982 0.010 10498 0.0 10144 0.0 1536 0.0 

Our Single PSO 25162 0.650 10498 0.032 10144 0.012 1536 0.004 

Our Multiple 

Augmented PSO 
24806 2.090 10498 0.080 10144 0.060 1536 0.040 

Mapping 

Algorithms 

MWD 263enc mp3dec mp3enc mp3dec 263dec mp3dec 

Comm. Cost 

(bw × rc) 

CPU 

time in s 

Comm. Cost 

(bw× rc) 

CPU 

time in s 

Comm. Cost 

(bw × rc) 

CPU 

time in s 

Comm. Cost 

(bw × rc) 

CPU 

time in s 

KL_BFT [23] 3264 0.0 561.876 0.0 41.782 0.0 42.180 0.0 

Our Single PSO 3264 0.020 561.876 0.024 41.782 0.060 42.180 0.016 

Our Multiple 

Augmented PSO 
3264 0.062 561.876 0.076 41.782 0.072 42.180 0.076 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) VOPD (g) MP3 ENC MP3 DEC (h) 263 DEC MP3 DEC 

 

 
1 2 

9 

3 

4 

8 

5 6 7 

10 

64 
12 11 

128 

96 

64 

64 

96 

96 

96 

96 

96 96 

128 

 

 

38.016 

1 

2 

9 

3 

4 

8 

5 

6 

7 

10 11 
4.06 

37.958

2 

 0.5 

0.193 

2.083 

0.025 

0.01 

46.733

6 

12 

24.634 

38.001 

38.001 

 

 
1 

2 

9 

3 

4 

8 

5 

6 

7 

10 

13 

12 

11 

0.025 

2.083 4.06 

0.5 
1.0 

1.0 

0.87 

0.15 

0.18 

2.083 

0.01 

4.06 

0.5 

 

 

3.672 

1 

2 

9 3 

4 8 

5 

6 

7 

10 

14 

11 

2.083 0.5 
3.672 

0.5 

0.025 

0.1 0.5 

0.187 0.025 

0.01 

0.38 
4.06 

0.25 

12 

13 

3.672 

(a) DVOPD 

(d) PIP 

(e) MWD (f) 263 ENC MP3 DEC 

(c) MPEG-4 

9 5 

7 

1 

11 

2 4 10 

12 8 

190 

3 

6 

0.5 

600 

173 
40 

670 

40 
500 250 

910 

32 60 

0.5 

5 1 

7 

2 

8 

3 6 

4 

64 128 

64 

64 64 

64 64 

64 

1 2 

9 

3 

8 

5 6 7 

10 13 

31 

362 

15 

11 12 

14 

70 362 

353 

49 

357 27 

300 

94 

4 

362 

500 313 

16 

16 

32 

157 

313 

16 

16 
16 

16 

16 17 

24 

18 

23 

20 21 22 

25 28 

126 

362 

30 

26 27 

29 

70 362 

353 

49 

357 27 

300 

94 

19 

362 

500 313 

16 

16 

540 

157 

313 

16 

16 
16 

16 

126 

540 

1 2 

9 

3 

8 

5 6 7 

10 14 11 

362 

16 

12 13 

15 

70 362 

353 

49 

357 27 

300 

94 

4 

362 

500 313 

16 

16 

16 

157 

313 

16 

16 
16 

16 

Fig. 3. Application core graphs with communication bandwidth (MB/s) [12] 



International Journal of Computer Applications (0975 – 8887)  

Volume 115 – No. 19, April 2015 

19 

All the algorithms are run on an Intel Core i5 platform with 

4GB main memory and 2.4 GHz clock frequency. The CPU 

times needed in each of the techniques for individual 

benchmarks are noted in Table 1. The DPSO algorithm has 

been run with at most 200 particles for at most 100 

generations without improvement. 

6.2 Network Latency Comparison 
For a better comparison among the mapping solutions, we 

have simulated each of the networks. The application traffic is 

generated by consulting the bandwidth requirements in 

different communications of the core graph. Synthetic self-

similar traffic has been generated, guided by the 

communication requirements of cores in the application. Self-

similar traffic has been observed in the burst traffic between 

on-chip modules in typical video and networking applications. 

A detailed description of such traffic generation strategy can 

be found in [48, 49]. We have used similar technique to 

generate traffic for our applications.  A SystemC based 

simulator [10] has been utilized to compute the average 

network latency of the mapping solutions. 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 refers to 

the length of time elapsed between the injection of a header 

flit at the source node and the reception of the tail flit at the 

destination. To reach destination node from source node, flits 

must travel through a path consisting of routers and 

interconnects. Depending on source/destination pair, each 

packet may encounter a different amount of 𝑙𝑎𝑡𝑒𝑛𝑐𝑦. There 

are also some overheads at source and destination nodes 

which contribute to the overall latency. For packet 𝑖, the 

overall 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 can be defined as,  

𝐿𝑖 =  𝑆𝑒𝑛𝑑𝑒𝑟 𝑜𝑣𝑒𝑟𝑒𝑎𝑑 +  𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 
+ (𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑜𝑣𝑒𝑟𝑒𝑎𝑑) 

So the 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 will be, 

𝐿𝑎𝑣𝑔 =
 𝐿𝑖

𝑇𝑃
1

𝑇𝑃
 

where, 𝑇𝑃 be the total number of packets reaching their 

destination nodes. The latency is represented in terms of the 

number of router cycles. Table 2 shows the 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 results 

for each of the mappings by running the simulation for 2 

00,000 clock cycles. Here also it can be observed that the 

augmented PSO produces least latency solutions. 

Dynamic performance of the network in terms of latency, our 

proposed multiple augmented PSO technique produces better 

solutions than our single PSO technique and the BFT based 

NoC mapping technique proposed in KL_BFT [23] in almost 

all cases. 

6.3 Energy Comparison 
Energy consumed by the network is another determinant of 

the quality of mapping. Power/energy calculation depends on 

the power consumed by the routers and by the links. Energy 

consumption of links is determined separately from that of 

routers. In the absence of any information about sizes of 

individual cores, similar to [50], we have assumed each of 

them to be of dimension 2.5 𝑚𝑚 × 2.5 𝑚𝑚. Copper wire 

(resistivity = 17 nΩ-m) has been chosen as interconnection 

link. The width and thickness of the wire have been taken to 

be 0.25 µ𝑚 and 0.5 µ𝑚 respectively. The spacing between 

two adjacent wires is kept at 0.25 µ𝑚. The spacing between 

two adjacent metal layers is fixed at 0.75 µ𝑚 and is filled by a 

dielectric material having relative permittivity of 2.9 [10], 

[50]. Energy consumption for all possible transitions in the 

wires have been calculated using HSPICE [51]. 

Energy consumption of each router has been determined using 

Synopsys Prime Power in 90 nm CMOS technology with 

Faraday library by running their gate level netlists [52]. The 

number of toggles of every individual I/O pin of the router 

and their probability of remaining in logic-1 state for the 

entire simulation window has been calculated from the NoC 

simulator. This information is then fed to Synopsys Prime 

Power tool [53] to estimate the power of each router with the 

following parameters: Process = typical, Supply Voltage = 1 

V, Temperature = 75 °C and router clock period = 666 ps [9–

10], [50], [54]–[56]. 

Table 3 shows comparison of mapping solutions obtained via 

different approaches, in terms of energy consumption. Table 

3, apart from reporting total network energy, also notes the 

average packet energy. As noted in [50], packet energy is an 

important attribute for characterizing NoC structures. With 

more packets traversing through the network, the total energy 

consumption will increase, however average packet energy is 

expected to reduce. This is what has precisely happened and is 

shown in Table 3.  

From this table, it can be noted that our proposed multiple 

augmented PSO mapping technique results in less total 

network energy and average packet energy than single PSO 

technique and the BFT based NoC mapping technique 

proposed in KL_BFT [23] for all benchmark applications. 

6.4 Bigger Application 
To check the applicability of the PSO based approach on 

larger SoCs, we have used the TGFF tool [57] to generate a 

few task graphs with 64 and 128 cores. By varying 

bandwidth, number of start nodes and in-out degree for nodes, 

different task graphs have been generated via TGFF. The 

bandwidths are varied from 10 𝑀𝐵/𝑠 to 1500 𝑀𝐵/𝑠 for 

some graphs and 50 𝑀𝐵/𝑠 to 150 𝑀𝐵/𝑠 for other graphs. 

The in-out degrees of nodes are varied from 1 to 8 to generate 

both low and high communication graphs. Number of start 

nodes also varied to generate different graphs and to see the 

effect of mapping solutions upon them. Table 4 notes the 

mapping solutions for these task graphs. Here, it can be 

observed that our multiple augmented PSO based mapping 

technique produces better requiring, on an average, 0.91% and 

12.37%, less communication than our single PSO mapping 

technique and KL_BFT [23] respectively within a reasonable 

CPU time. 

7. CONCLUSION 

In this paper we have presented mapping strategies for BFT 

based NoC using single PSO and multiple augmented discrete 

PSO technique. It can be noted from the results that, our 

multi-stage augmented PSO mapping strategy shows better 

result than our single-stage PSO mapping strategy and 

KL_BFT. For the NoCs having higher number of cores, our 

multi-stage augmented PSO mapping strategy produces the 

best solutions. Comparison of solutions produced establishes 

our mapping techniques onto BFT based NoC to be a strong 

competitor of previously available mapping strategies. The 

future scope of work includes trying out some actual system 

in which the mapping problem is solved using the multiple 

augmented PSO approach. The study of latency and energy 

profile of such a system can establish the effectiveness of the 

approach further. 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 115 – No. 19, April 2015 

20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. REFERENCES 
[1] L. Benini, G. De Micheli, “Networks on Chips: A New 

SoC Paradigm,” IEEE Computer, vol. 35, no. 1, pp. 70-

78, 2002. 

[2] W. J. Dally, B. Towles, “Route Packets, Not Wires: On-

Chip Interconnection Networks,” Proceedings of the 

Design Automation Conference (DAC), pp. 684-689, 

2001. 

[3] S. Kumar, A. Jantsch, J. P. Soininen, M. Forsell, M. 

Millberg, J. Oberg, K. Tiensyrja, A. Hemani, “A 

Network on Chip Architecture and Design 

Methodology,” Proceedings of ISVLSI, pp. 117-124, 

2002. 

[4] S. Kundu, S. Chattopadhyay, “Interfacing Cores and 

Routers in Network-on-Chip Using GALS,” IEEE 

International Symposium on Integrated Circuits (ISIC), 

pp. 154-157, 2007. 

[5] L. Benini, “Application Specific NoC Design,” IEEE 

Design, Automation and Test in Europe Conference 

(DATE’06), vol. 1, pp. 1–5, 2006. 

Mapping 

Algorithms 
DVOPD VOPD MPEG-4 PIP MWD 

263enc 

mp3dec 

mp3enc 

mp3dec 

263dec 

mp3dec 

KL_BFT [23] 104.85 103.60 90.80 83.50 90.30 92.50 84.30 86.50 

Our Single PSO 104.80 103.58 90.75 83.50 90.25 92.40 84.22 86.40 

Our Multiple 

Augmented PSO 
104.55 103.50 90.60 83.50 90.10 92.20 84.10 86.30 

 

Table 2. Average Network Latency in Router cycle 

Mapping 

Algorithms 

Total Network Energy in μJ Average Packet Energy in nJ 

DVOPD VOPD MPEG-4 PIP DVOPD VOPD MPEG-4 PIP 

KL_BFT [23] 66.71 32.33 27.13 12.51 117.04 109.21 95.87 219.47 

Our Single PSO 66.70 32.20 27.0 12.51 117.01 108.78 95.40 219.47 

Our Multiple 

Augmented PSO 
66.30 32.0 26.50 12.50 116.32 108.11 93.64 219.30 

 

Table 3. Communication Energy 

 Table 4. Communication Cost and CPU Time for different TGFF Task Graphs with their corresponding 

Techniques 

TGFF 

Task Graphs 

KL_BFT [23] Our single PSO Our multiple augmented PSO 

Comm. Cost 

(bw × rc) 

CPU time 

in s 

Comm. Cost 

(bw × rc) 

CPU time 

in s 

Comm. Cost 

(bw × rc) 

CPU time 

in s 

64 

C 

O 

R 

E 

S 

G1 20859.07 2.44 22990.39 6.97 20682.0 186.50 

G2 309416.59 0.70 324198.56 8.50 306714.0 185.0 

G3 299896.50 0.26 327510.21 7.30 298025.25 79.0 

G4 122950.40 2.50 135761.08 8.0 122708.65 222.0 

G5 15452.98 0.74 17303.88 10.66 15360.44 182.0 

G6 104187.66 1.42 113907.82 6.0 103317.12 42.0 

128 

C 

O 

R 

E 

S 

G7 136413.67 4.32 158982.89 212.0 133257.65 821.40 

G8 1003356.75 3.97 1227588.37 233.37 991568.62 838.50 

G9 684005.81 3.37 839407.62 184.0 683725.19 435.0 

G10 173698.27 4.42 201500.26 272.0 170944.68 747.0 

Average % of Improvement 
over KL_BFT 0.91 

over Our single PSO 12.37 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 115 – No. 19, April 2015 

21 

[6] H. Elmiligi, A. A. Morgan, M. W. El-Kharashi, F. 

Gebali, “A Topology-based Design Methodology for 

Networks-on-Chip Applications,” In Proceedings of the 

second International Design and Test Workshop 

(IDT’07), pp.  61–65, 2007. 

[7] P.P. Pande, C. Greca, M. Jones, A. Ivanov, R. Saleh, 

“Performance Evaluation and Design Trade-offs for MP-

SOC Interconnect Architectures,” IEEE Transactions on 

Computers, vol. 54, no. 8, pp.1025–1040, 2005. 

[8] A. O. Balkan, Q. Gang, U. Vishkin, “Mesh-of-Trees  and 

Alternative Interconnection Network for Single-Chip 

Parallel Processing,” IEEE Transactions on Very Large 

Scale Integration (VLSI) Systems, vol. 17, pp. 1419-

1432,  2009. 

[9] K. Manna, S. Chattopadhaya, I. Sengupta, “An Efficient 

Routing Technique for Mesh-of-Tree-based NoC and its 

Performance Comparison,” International Journal of 

High Performance Systems Architecture, vol. 4, no. 1, pp 

25-37, 2012. 

[10] S. Kundu, S. Chattopadhyay, “Design and Evaluation of 

Mesh-of-Tree based Network-on-Chip using Virtual 

Channel Router,” Journal of Microprocessors and 

Microsystems, Elsevier, vol. 36, issue 6, pp. 471–488, 

2012. 

[11] N. Koziris, M. Romesis, P. Tsanakas, G. 

Papakonstantinou, “An Efficient Algorithm for the 

Physical Mapping of Clustered Task Graphs onto  

Multiprocessor Architectures,” Proceedings of  8th 

EuroPDP, pp. 406-413,  2000. 

[12] P. K. Sahu,  S. Chattopadhyay, “A Survey on 

Application Mapping Strategies for Network-on-Chip 

Design,”  Journal of Systems Architecture, Elsevier, vol. 

59, 2013, pp. 60-76. 

[13] J. Hu, R. Marculescu,“Energy-Aware Mapping for Tile-

based NOC Architectures Under Performance 

Constraints,” ASP-DAC, pp.  233-239, 2003. 

[14] S. Murali, G. De Micheli, “Bandwidth Constrained 

Mapping of Cores onto NoC Architectures,” Proceedings 

of Design, Automation and Test in Europe Conference  

and Exhibition (DATE), vol. 2,  pp. 896-901, 2004. 

[15] K. Srinivasan, K. S. Chatha, A Technique for Low 

Energy Mapping and Routing in Network-on-Chip 

Architecture, IEEE International Symposiun on Low 

Power Electronics and Design (ISLPED), pp. 387-392, 

2005. 

[16] T. Shen, C. H. Chao, Y. K. Lien, and A. Y. Wu, “A New 

Binomial Mapping and Optimization Algorithm for 

Reduced-Complexity Mesh-  based  on-Chip Network,” 

Proceedings of NOCS’07, pp. 317-322, 2007. 

[17] R. Mehran, S. Saeidi, A. Khademzadeh, A. A. Kusha, 

“Spiral: A Heuristic Mapping Algorithm for Network on 

Chip,” IEICE Electronics Express, vol. 4, no. 15, pp. 

478-484, 2007. 

[18] M. Janidarmian, A. Khademzadeh, M. Tavanpour, 

“Onyx: A New Heuristic Bandwidth-Constrained 

Mapping of Cores onto Network on Chip,” IEICE 

Electronics Express, vol. 6, no. 1, pp. 1-7, 2009. 

[19] M. Tavanpour , A. Khademzadeh,  M. Janidarmian, 

“Chain-Mapping for Mesh based  Network-on-Chip 

Architecture,” IEICE Electronics Express, vol. 6, no. 22, 

pp. 1535-1541, 2009. 

[20] Y. Chen, L. Xie, J. Li, “An Energy-Aware Heuristic 

Constructive Mapping Algorithm for Network on Chip,” 

International Conference on ASIC (ASICON), pp. 101-

104, 2009. 

[21] M. Reshadi, A. Khademzadeh, A. Reza, “Elixir: A New 

Bandwidth-Constrained Mapping for Networks-on-

Chip,” IEICE Electronics Express, vol. 7, no. 2, pp. 73-

79, 2010. 

[22] S. Tosun, “New Heuristic Algorithm for Energy Aware 

Application Mapping and Routing on Mesh-based 

NoCs,” Journal of System Architecture, Elsevier, 57, pp. 

69-78, 2011. 

[23] P. K. Sahu, K. Manna, T. Shah, and S. Chattopadyay, 

“Extending Kernighan–Lin partitioning heuristic for 

application mapping onto Network-on-Chip,” Journal of 

System Architecture, Elsevier, vol. 60, pp. 562-578, 

2014. 

[24] P. K. Sahu, N. Shah, K. Manna, S. Chattopadhyay, “A 

New Application Mapping Algorithm for Mesh based 

Network-on-Chip Design,” IEEE International 

Conference (INDICON), pp. 1-4, 2010. 

[25] P. K. Sahu, K. Manna, T. Shah, and S. Chattopadyay, 

“Thermal Uniformity-Aware Application Mapping for 

Network-on-Chip Design,” International Journal of 

Computer Applications, vol. 99 (2), pp. 8-22, 2014. 

[26] T. Lei, S. Kumar, “A Two-step Genetic Algorithm for 

Mapping Task Graphs to a Network on Chip 

Architecture,” Proceedings of the Euromicro Symposium 

on Digital System Design (DSD), pp. 180-187, 2003. 

[27] K. Bhardwaj, R. K. Jena, “Energy and Bandwidth Aware 

Mapping of IPs onto Regular NoC Architectures Using 

Multi-objective Genetic Algorithms,” International 

Symposium on System-on-Chip (SOC), pp. 27-31,2009. 

[28] F. M. Darbari, A. Khademzadeh, G. G. Fard, “CGMAP: 

A New Approach to Network-on-Chip Mapping 

Problem,” IEICE Electronics Express, vol. 6, no. 1, pp. 

27-34, 2009. 

[29] G. Fen, W. Ning, “Genetic Algorithm based Mapping 

and Routing Approach for Network on Chip 

Architectures,” Chinese Journal of Electronics, vol. 19, 

no. 1, pp. 91-96, 2010. 

[30] M. Tavanpour, A. Khademzadeh, S. Pourkiani, M. 

Yaghobi, “GBMAP: An Evolutionary Approach to 

Mapping Cores onto a Mesh-based NoC Architecture,” 

Journal of Communication and Computer, vol. 7, no. 3, 

pp. 1-7, 2010. 

[31] W. Zhou, Y. Zhang, Z. Mao, “Link-load Balance Aware 

Mapping and Routing for NoC, WSEAS Transactions on 

Circuits and Systems,” vol. 6, issue 11. pp. 583-591, 

2007. 

[32] W. Lei, L. Xiang, “Energy- and Latency-Aware NoC 

mapping Based on Discrete Particle Swarm 

Optimization,” Proceedings of IEEE Internationa 

Conference on Communications and Mobile Computing, 

pp. 263-268, 2010. 

[33] A. H. Benyamina, P. Boulet, A. Aroul, S. eltar, K. Dellal, 

“Mapping Real Time Applications on NoC Architecture 

http://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=8SThEg0AAAAJ&citation_for_view=8SThEg0AAAAJ:aqlVkmm33-oC
http://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=8SThEg0AAAAJ&citation_for_view=8SThEg0AAAAJ:aqlVkmm33-oC
http://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=8SThEg0AAAAJ&citation_for_view=8SThEg0AAAAJ:aqlVkmm33-oC


International Journal of Computer Applications (0975 – 8887)  

Volume 115 – No. 19, April 2015 

22 

with Hybrid Multi-objective Algorithm,” International 

Conference on Metaheuristics and Nature Inspired 

Computing, pp. 1-10, 2010. 

[34] P. K. Sahu, P. Venkatesh, S. Gollapalli, S. 

Chattopadhyay, “Application Mapping onto Mesh 

Structured Network-on-Chip using Particle Swarm 

Optimization,” IEEE International symposium on VLSI 

(ISVLSI), pp. 335-336, 2011. 

[35] P. K. Sahu, T. Shah, K. Manna, and S. Chattopadhyay, 

“Application Mapping onto Mesh based Network-on-

Chip using Discrete Particle Swarm Optimization,” IEEE 

Transactions on VLSI Systems (T-VLSI), vol. 2, issue 22, 

pp. 300-312, 2014. 

[36] J. Wang, Y. Li, S. Chai, Q. Peng, “Bandwidth-Aware 

Application Mapping for NoC-Based MPSoCs,” Journal 

of Computational Information Systems, 7:1, pp. 152-159, 

2011. 

[37] P. K. Sahu, N. Shah, K. Manna, S. Chattopadhyay, “An 

Application Mapping Technique for Butterfly-Fat-Tree 

Network-on-Chip,” IEEE International Conference on 

Emerging Applications and Information Technology 

(EAIT), pp. 383-386, 2011. 

[38] P. K. Sahu, N. Shah, K. Manna, S. Chattopadhyay, “A 

New Application Mapping Strategy for Mesh-of-Tree 

based Network-on-Chip,” IEEE International 

Conference on Emerging Trends in Electrical and 

Computer Technology (ICETECT), pp. 518-523, 2011. 

[39] P. K. Sahu, A. Sharma, S. Chattopadhyay, “Application 

Mapping onto Mesh-of-Tree based Network-on-Chip 

using Discrete Particle Swarm Optimization,” IEEE 

International Symposium on Electronic System Design 

(ISED), pp. 172-176, 2012. 

[40] P. P. Pande, C. Grecu, A. Ivanov,  R. Saleh, “High-

Throughput Switch-based Interconnect for future SoCs,”   

IEEE International Workshop on System-on-Chip for 

Real Time Applications, pp. 304–310, 2003. 

[41] I. Kennedy, R. C.Eberhart, “Particle Swarm 

Optimization,” Proceedings of IEEE International 

Conference on Neural Networks, NJ. pp.1942-1948, 

1995. 

[42] K. Wang, L. Huang, C. Zhou, W. Pang, “Particle Swarm 

Optimization for Traveling Salesman Problem,” 

Proceedings of the Second International Conference on 

Machine Learning and Cybermetics, pp. 1583-1585, 

2003.  

[43] Yuhui Shi, Russell Eberhart, “Parameter Selection in 

Particle Swarm Optimization,” Springer Berlin/ 

Heidelberg, vol. 1447/1998, pp. 591-600, 2006. 

[44] L. Guilan, Z. Hai, S. Chunhe, “Convergence Analysis of 

a Dynamic Discrete PSO Algorithm,” International 

Conference on Intelligent Networks and Intelligent 

Systems (ICINIS), pp. 89-92, 2008. 

[45] A. B. Röhler, S. Chen, “An Analysis of Sub-swarms in 

Multi-swarm Systems,” Proceedings of Joint 

Australasian Conference in Artificial Intelligence, 

Springer-Verlag, pp. 271–280, 2011. 

[46] S. Chen, J. Montgomery “Selection Strategies for Initial 

Positions and Initial Velocities in Multi–optima Particle 

Swarms,” Proceedings of the Genetic and Evolutionary 

Computation Conference, pp. 53–60,2011. 

[47] B. Kernighan, S. Lin, “An Efficient Heuristic Procedure 

for Partitioning Graphs,” Bell System Technical Journal, 

vol. 49, no. 2,  pp. 291–307, 1970. 

[48] G. V. Varatkar, R. Marculescu, “On-Chip Traffic 

Modelling and Synthesis for MPEG-2 Video 

applications,” IEEE Trasactions on Very Large Scale 

Integration (VLSI) Systems, vol. 12, issue. 1, pp. 108-

119, 2004. 

[49] K. C. Chang, T. F. Chen, Low-power Algorithm for 

Automatic Topology Generation for Application-specific 

Networks on Chips, IET Computers & Digital 

Techniques, vol. 2, no. 3, pp. 239-249, 2008. 

[50] B. S. Feero, P. P. Pande, “Networks-on-chip in a three-

dimensional environment: A performance evaluation,” 

IEEE Transactions on Computers, vol. 58, no. 1, pp. 32-

45, 2009. 

[51] “HSPICE Reference Guide”, Version U-2003.09, 

September 2003, Synopsys Inc. 

[52] “Design Vision User Guide”, Version U-2003.03, March 

2003, Synopsys Inc. 

[53] “Synopsys Prime Power Mannual”, Version Y-2006.06, 

June 2006, Synopsys Inc. 

[54] C. A. Nicopoulor, D. Park, J. Kim, N. Vijaykrishnan, M. 

S. Yousif, C. R. Das, “ViChaR: A Dynamic Virtual 

Channel Regulator for Network-on-Chip Routers,” 

IEEE/ACM Symposium on Micro architecture, pp. 333-

346, 2006. 

[55] S. Pasricha, N. Dutta, “On-chip Communication 

Architectures: System on Chip Interconnect,” Morgan 

Kaufmann Publishers, Chapter: 5, Page: 176, Table 5.7: 

2008.  

[56] S. Traboulsi, N. Pohl, J. Hausner, A. Bilgic, V. Frascola, 

“Power Analysis and Optimization of the ZUC Stream 

Cipher for LTE-Advanced Mobile Terminals,” IEEE 

Latin American Symposium on Circuits and Systems, pp. 

1-4, 2012. 

[57] R. P. Dick, D. L. Rhodes, W. Wolf, “TGFF: Task Graphs 

For Free,” Proceedings of  International Workshop on 

Hardware/Software Codesign, 1998. 

 

IJCATM : www.ijcaonline.org 


