
International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

43

3D Modeling and Simulation using Image Stitching

Sean N. Braganza
Computer Department

K. J. Somaiya College of
Engineering, Mumbai, India

ShubhamR.Langer
Computer Department

K. J. Somaiya College of
Engineering,Mumbai, India

Sushant R. Gaikwad
Computer Department

K. J. Somaiya College of
Engineering, Mumbai, India

Pallavi G.Bhoite
Computer Department

K. J. Somaiya College of Engineering
Mumbai, India

ABSTRACT
In recent years, 3D modeling has played an increasingly

significant role in various fields, including motion pictures,

video game industry, earth science and medical industry.Yet,

3D modeling continues to be a complex and tedious process

which involves the use of various high-end devices such as

3D scanners which in turn require great expertise while

working with them.A series of algorithms and several

calculations produces ―scans‖ that have to be merged to create

a three dimensional true to life representation of the model.

This makes the entire process cumbersome, especially when

modeling interior scenes for purposes of simulation. This

paper introduces a cost-effective modeling method for the

same which is least complex, user friendly and involves the

concept of Image Stitching and 3D graphics rendering

software while also allowing simulation of user movement

within the created scene on a computer. The paper will

demonstrate that the proposed system is more effective and

efficient at the same time.

General Terms
Image stitching, Key-points, Simulation, 3D modeling,

Blender, UV Mapping, SIFT, RANSAC, OpenGL, API

Keywords

3D Modeling, OpenGL, Interior Modeling, Blender, UV

Mapping, SIFT, RANSAC, Feature Detection, Homography

Estimation, Wavefront, Mesh, Model, Computer Graphics,

Assimp, GLFS, GLEW, SOIL

1. INTRODUCTION
In Computer Graphics, the process of developing a

mathematical representation of any 3D surface object using

specialized software is called 3D modeling. It is used in

various industries like films, animations, gaming, interior

designing and architecture and has a wide range of

applications.

Simulating movement within a room requiresthe creation of a

detailed 3D model of the room concerned. This would

involve, capturing various characteristics of the room using

the different modeling methods before simulating movement.

This in turn involves connecting points in 3D space by line

segments to form polygonal mesh. For those without access to

required equipment, skill or expertise, the entire task could

prove to be complex and infeasible especially in cases where

only a rough and approximate model of the room is

required.However, the approach suggested in this paper aims

to simplify the task by doing away with tedious modeling

methods and using instead, the concept of image stitching to

obtain realistic images of the room which would then be

mapped to computer aided 3Dgraphical structures

representative of the room. Simulation will then follow.

The first step involves capturing multiple photos of the room

to be modeled to obtain apanoramic view of the room. This

means physically setting up the camera, configuring it to

capture all photos identically, and then taking the sequence of

photos. The end result is a set of images which encompasses

the entire field of view, where all are taken from virtually the

same point of perspective.

The next step is the use of Blender, which is an open source

3D computer graphics software, for creating the model of a

room to which the stitched images from the first step will be

mapped. Note that henceforth, the room referred to in this

paper is a simple four walled room with a ceiling and floor.

Hence, a 3D cuboid with dimensions replicating the walls,

ceiling and floor of the room is created.Using UV mapping

stitched images of the walls are mapped to this computer

generated 3D model. The output of this will be a room with

the images mapped on to its walls.

The final part involves simulating user movement within the

room. This involves the use of Open Graphics Library

(OpenGL), a graphics API (Application Programming

Interface) that allows the rendering of 2D and 3D graphics.

The model obtained from the previous stage is imported into

an OpenGL application that has been programmed to accept

user input by means of the mouse and keyboard. The final

result would be an application consisting of the 3D room

wherein simulation of movement around and within will be

possible.

2. IMAGE STITCHING
Image Stitching is a process of combining multiple

photographic images with overlapping regions to produce a

segmented panorama or a high resolution image

[1].Sometimes when capturing an image of an object, only a

partial image of the object is obtained especially when the size

of the object is quite large. However if two or more images

withoverlapping regions are obtained, they can be merged on

the basis of the overlapping portions to obtain a picture of

greater size and resolution that what would have been

obtained from a single picture of the object. Based on this

concept, images of the room to be modeled are captured in the

essence that only the walls are photographed. However, each

wall will be photographed in two halves.

Image stitching algorithms involves two basic stages, namely,

Feature Detection and Homography Estimation based on

those detected features.

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

44

2.1 Feature Detection
For any object in an image, interesting points from the object

can be extracted to provide a ―feature description‖ of the

object. This description extracted from an image can then be

used to identify the object when attempting to locate the

object in an image containing many other objects. For reliable

recognition, we need to ensure that the features extracted are

detectable even when an image undergoes change in scale,

noise and illumination. These points are usually found in high

contrast regions of the image. Also the relative positions

between the features should not vary from one image to

another [2].

There are different algorithms for featuredetection, namely

Scale Invariant Feature Transform(SIFT), Speeded Up Robust

Features (SURF) and Features from Accelerated Segment

Test(FAST).

A comparative study of these algorithms yielded the following

findings:

1. The amount of features detected is purely dependent

on the type of images used.

2. For highly textured images, SIFT and SURF

detected more features.

3. SIFT found more matches then SURF and FAST.

4. The amount of features detected is proportional to

the amount of matches [3].

This concluded that SIFT was most appropriate for the

proposed system.

2.1.1 Scale-Invariant Feature Transform
The SIFT algorithm proposed by David G. Lowe is an

approach for extracting distinctive invariant features from

images. It has been successfully applied to a variety of

computer vision problems based on feature matching

including object recognition, pose estimation and image

retrieval among others. The different stages involved in the

SIFT algorithm are:

1. Scale-space extrema detection: Using a difference-of-

Gaussian function, a scale space is generated for each of the

images provided to the algorithm. The images‘ scale space is

then searched to determine points of interest. These points are

required to be invariant to scale, orientation and other

transformations.

2. Key-point localization: These points of interest function as

key-points. Their locations and scale are determined.

3. Orientation assignment: Based on the gradient directions

of each key-point, an orientation is assigned. Henceforth, all

operations are performed on the location, scale and orientation

information of the key-points.

4. Key-point descriptor: Around each key-point, image

gradients are measured and transformed into a suitable format.

This information is regarded as a descriptor and is used in

key-point matching in later stages of the algorithm. This

approach has been named the Scale Invariant Feature

Transform (SIFT), as it transforms image data into scale

invariant coordinates relative to local features. [4]

Figure 2.1.1 – Image 1 (Real World Image of a wall)

Figure 2.1.2 – Image 2 (Real World Image of the second

half of the wall from Figure 2.1 Supplied to SIFT)

Figure 2.1.3 – Output of SIFT shows keypoints detected

between the two images.

2.2 Homography Estimation
2.2.1 Homography
It is possible to represent a 2D point (a, b) in an image as a 3D

vector = (a1, a2, a3) where a = a1/a2 and b= a2/a3. This is the

homogeneous representation of a point where the point lies on

the projective plane (P2).

A mapping from P2 → P2 is projectivity if and only if there

exists a non-singular 3×3 matrix H such that for any point in P

2 represented by vector x it is true that it‘s mapped point

equals Hx. Hence it becomes necessary to calculate the 3*3

Homography matrix H for calculating the xi that maps with

the corresponding xi‘.

Homographies can be estimated by calculating feature

correspondences between the images.

The simplest algorithm for solving the homography given a

set of point correspondences is Direct Linear

Transform(DLT). It solves asset of variables from a set of

similarity relations. But the problem with the DLT is that it

requires a set of correspondences as input which makes them

robust for the cases where the source of noise is in the

measurement of the correspondence feature positions. It fails

when two features in an image do not correspond to the same

feature in the real world. Then the need of another algorithm

arises which can robustly differentiate between inliers and

outliers so that homography is calculated using only inliers

[5].

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

45

The best suited algorithm for that is RANdomSAmple

Consensus (RANSAC) [6].

2.2.2 Random Sample Consensus
RANSAC is the most widely used for homography estimation

due to its robustness. It is an iterative procedure to estimate

the parameters of the given model from the available set of

data that also contains outliers.

It assumes that the data consists of ―inliers‖ ,i.e. whose

distribution is well explained even if it may be subject to

noise, and ―outliers‖ whose distribution is not well explained

and also do not fit the model.

A random sample of 4 correspondences is chosen and

homography H is estimated for these 4 correspondences for a

number of iterations. These correspondences are then

classified as inliers or outliers that depend on its concurrence

with the Homography matrix. The iteration with maximum

number of inliers is selected after all the iterations are done.

For calculating the Homography matrix, the correspondences

which were taken as inliers from that iteration are

considered.The major issue with the RANSAC is identifying

the correspondences as inliers and outliers. Generally a

distance threshold,‗t‘ is assigned for classifying them as

either.

Another issue with the algorithm is deciding the number of

iterations to be run for finding the correspondences. It makes

no sense and is also infeasible at the same time if every

combination of 4 correspondences are taken. So determining

the number of iterations to be run becomes important [7].

Figure 2.2.1– Output of RANSAC shows number of inlier

matches as per estimated Homography Matrix

Using the Scale Invariant Feature Transform(SIFT) and the

RANdom Sample Consensus(RANSAC) algorithms in data

manipulation software such as MATLAB or OpenCV, the

images obtained of each wall of the room are stitched,

providing high resolution images of the six interior. The final

output will appear similar to Figure 2.2.2.

Figure 2.2.2 – Stitched Image. Output of the Image

Stitching Stage

3. MODELLING AND UV MAPPING
The procedure followed above results in a stitched image of

the real life interior scene that needs to be modeled. After the

images have been stitched, the next step is to create a three

dimensional model of the room of approximate dimensions.

While there exist several 3D modeling and design

applications, Blender is the modeling software of choice.This

is facilitated by 3D Modeling Application, Blender, which

also aids in mapping images on to the faces of this computer

generated model. The end user of the application system

however will be required to interact with only a portion of

Blender, more specifically, the UV mapping stage.

3.1 Modeling
Blender is a professional free and open-source 3D computer

graphics software product used for creating animated films,

visual effects, art, 3D printed models, interactive 3D

applications and video games. Blender's features include 3D

modeling, UV unwrapping, texturing, raster graphics

editing, soft body simulation, sculpting.The two primary

modes of work that are relevant to the applicationsystem

are Object Mode and Edit Mode. Object mode is used to

manipulate individual objects as a unit, while Edit mode is

used to manipulate the actual object data. Object Mode can be

used to move, scale, and rotate entire polygon meshes, and

Edit Mode can be used to manipulate the individual vertices

of a single mesh. [8]

Blender contains a collection of several meshes that serve as

the basis for modeling any 3D object. A mesh, is a collection

of vertices, faces and edges that describe the face of a 3D

object wherein

 A vertex is a single point

 An edge is a straight line segment connecting two

vertices.

 A face is a flat surface enclosed by edges

These meshes can be manipulated by in several aspects

inclusive of size, lighting and shape. Relevant to the

application is Blender‘s ‗Cube‘ mesh, consisting of six faces

as shown in Figure 3.1.1. This ‗Cube‘ mesh is manipulated in

size to resemble the dimensional layout of the room.

Figure 3.1.1 Cube Mesh

3.2 UV Mapping
Given the cube obtained as a result of the modeling stage and

the high resolution, stitched images of the faces of the real

world room, the next step involves mapping these images to

the faces of the modeled cube.

Image mapping or UV mapping as it referred to, is the process

of projecting a texture onto a three dimensional object. ‘U‘

and ‗V‘ denote the axes of the two dimensional texture. UV

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

46

texturing permits polygons that make up a 3D object to be

painted with color from an image. The image is called a UV

texture map, but it's just an ordinary image. The UV mapping

process involves assigning pixels in the image to surface

mappings on the polygon, usually done by

"programmatically" copying a triangle shaped piece of the

image map and pasting it onto a triangle on the object.UV is

the alternative to XY, it only maps into a texture space rather

than into the geometric space of the object. But the rendering

computation uses the UV texture coordinates to determine

how to paint the three-dimensional surface [9].

With respect to the application, textures refer to the real

world, high resolution images obtained as a result of the

Image Stitching stage. Every point in the UV map

corresponds to a vertex in the mesh. The lines joining the UVs

correspond to edges in the mesh. Each face in the UV map

corresponds to a mesh face.

Each face of a mesh can have many UV Textures. Each UV

Texture can have an individual image assigned to it. When

unwrapping a face to a UV Texture in the UV/Image Editor,

each face of the mesh is automatically assigned four UV

coordinates: These coordinates define the way an image or a

texture is mapped onto the face. These are 2D coordinates,

which is why they're called UV, to distinguish them from

XYZ coordinates. These coordinates can be used for

rendering or for real-time OpenGL display as well.

Every face in Blender can have a link to a different image.

The UV coordinates define how this image is mapped onto the

face. This image then can be rendered or displayed in real

time. A 3D window has to be in "Face Select" mode to be able

to assign Images or change UV coordinates of the active Mesh

Object. This allows a face to participate in many UV Textures

[10].

Unwrapping the cube results in all its faces lying down on the

plane in the form of ‗T‘ as shown in Figure 3.2.1. This ‗T‘

image is saved as an image file for further processing,

preferably in ―.png‖ format due to the high resolution offered

and compatibility with other image manipulation software

applications.

Figure 3.2.1 – An Empty ‘T’ obtained by unwrapping a

cube mesh.

 The six faces of the ‗T‘ are representative of the 4 walls, floor

and ceiling of the room. Since this ‗T‘ contains information of

the cube‘s texture maps, irrespective of the images placed in

the six faces, simply loading the model in blender will cause

the images placed in the ‗T‘ to be mapped to the

corresponding faces. Using this concept then, the ‗T‘ is

manipulated externally using any Image manipulation

software of choice such as Microsoft Paint. Manipulation here

refers to simply pasting the stitched images of the faces of the

real world room onto the corresponding faces of the ‗T‘.

The output obtained after placing the images obtained from

the Image Stitching stage on to the T is depicted in Figure

3.2.2:

Figure 3.2.2 – Complete ‘T’ obtained as a result of

mapping the stitched images onto it

Reloading the cube mesh in blender results in the updated ‗T‘

being mapped onto it as depicted in Figure 3.2.3

 Figure 3.2.3(a)Updated External faces of the cube mesh

Figure 3.2.3(b)Interior faces of the cube mesh

This mesh serves as the final 3D model rendered for

simulation and will henceforth be referred to as the ‗cube

model‘.

3.3 Exporting the Cube Model
Since the simulation aspect of the application is programmed

in OpenGL, it demands that the cube model obtained as a

result of the modeling and UV mapping steps be exported in a

file format compatible with OpenGL.

A common issue is however that there are dozens of different

file formats where each exports the model data in its own

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

47

unique way. Model formats like the Wavefront.obj only

contains model data with minor material information like

model colors and diffuse/specular maps, while model formats

like the XML-based Collada file format are extremely

extensive and contain models, lights, many types of materials,

animation data, cameras, complete scene information and

much more. The wavefront object format is generally

considered to be an easy-to-parse model format [11].

The OBJ file format is a simple data-format that represents 3D

geometry alone — namely, the position of each vertex, the

UV position of each texture coordinate vertex, vertex normals,

and the faces that make each polygon defined as a list of

vertices, and texture vertices. Vertices are stored in a counter-

clockwise order by default, making explicit declaration of

face normals unnecessary. OBJ coordinates have no units, but

OBJ files can contain scale information in a human readable

comment line.

Materials that describe the visual aspects of the polygons are

stored in external .mtl files. The .MTL File Format is a

companion file format that describes surface shading

(material) properties of objects within one or more .OBJ files.

A .OBJ file references one or more .MTL files (called

"material libraries"), and from there, references one or more

material descriptions by name. [12].

Exporting the cube model in Wavefront .obj file format results

in a .obj file and companion .mtl file which references the ‗T‘

that contains mapping information.

4. SIMULATION
Simulation is the process of recreating a real world process.

With respect to the application being developed, it refers to

the recreation of forward, backward, left, right and strafing

movements of a real world person navigating an interior

scene. This will be facilitated by means of mouse and

keyboard input as done in computer based video games. To

facilitate this, and to allow for easy loading of object files and

relative simplicity in programming, Open Graphics Library

(OpenGL) is used as the programming interface of choice.

The purpose of this stage is to create the final build of the

application that processes the complete, UV mapped model

obtained as a direct result of previous stages and develop an

interface to allow for user interactivity.

4.1 Programming in OpenGL
OpenGL is mainly considered an API (an Application

Programming Interface) that provides us with a large set of

functions that we can use to manipulate graphics and images.

However, OpenGL by itself is not an API, but merely a

specification.

The OpenGL specification specifies exactly what the

result/output of each function should be and how it should

perform. It is then up to the developers implementing this

specification to come up with a solution of how this function

should operate.

4.1.1 Defining the application
The core of OpenGL‘s functionality resides in libraries

written in C language. For this reason, the design of any

application requires the use of a compiler such as Microsoft‘s

Visual Studio.

Instrumental to every OpenGL application‘s design, are the

GLFW and GLEW (OpenGL Extension Wrangler) Libraries.

GLFW is a library, written in C, specifically targeted at

OpenGL providing the bare necessities required for rendering

goodies to the screen. It allows us to create an OpenGL

context, define window parameters and handle user input

which is all that we need. Also, since OpenGL is a

standard/specification it is up to the driver manufacturer to

implement the specification to a driver that the specific

graphics card supports. Since there are many different

versions of OpenGL drivers, the location of most of its

functions is not known at compile-time and needs to be

queried at run-time. It is then the task of the developer to

retrieve the location of the functions he/she needs and store

them in function pointers for later use. This is made easier

through the use of GLEW which performs the taskof

retrieving locations and storing them in pointers without user

intervention. It is hence essential to link these libraries to the

application before commencing development [13].

The first step in designing any graphical application is the

creation of a window as shown in Figure 4.1.1(a), of sufficient

resolution and dimensions. This window specifies an area on

the screen of a computer wherein 2D and 3D rendered

graphics are to be displayed. Furthermore, users can view the

outcome of their interactions with created graphical models

and objects by means of the window.

Figure 4.1.1 (a) – A Window of 800x600 resolution.

The second step involvesshader definition.In OpenGL

everything is in 3D space, but the screen and window are a 2D

array of pixels so a large part of OpenGL‘s work is about

transforming all 3D coordinates to 2D pixels that fit on your

screen. The process of transforming 3D coordinates to 2D

coordinates is managed by the graphics pipeline of

OpenGL.The graphics pipeline (Shown in Figure 4.1.1(b))

takes as input a set of 3D coordinates and transforms these to

colored 2D pixels on your screen. The graphics pipeline can

be divided into several steps where each step requires the

output of the previous step as its input. All of these steps are

highly specialized (they have one specific function) and can

easily be executed in parallel. Because of their parallel nature

most graphics cards of today have thousands of small

processing cores to quickly process your data within the

graphics pipeline by running small programs on the GPU for

each step of the pipeline. These small programs are called

shaders.

Figure 4.1.1(b)– The Graphics Pipeline

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

48

Some of these shaders are configurable and it is these shaders

that the application should be concerned with – more

specifically the Vertex and Fragment Shaders. The first part of

the pipeline is the vertex shader that takes as input a single

vertex. The main purpose of the vertex shader is to transform

3D coordinates into different 3D coordinates (more on that

later) and the vertex shader allows us to do some basic

processing on the vertex attributes.Hence, all transformations

that need to be performed on the room model will be done

here. The main purpose of the fragment shader is to calculate

the final color of a pixel and this is usually the stage where all

the advanced OpenGL effects occur. Usually the fragment

shader contains data about the 3D scene that it can use to

calculate the final pixel color (like lights, shadows, color of

the light and so on)[14]. Hence, the fragment shader will be

responsible for handling all texture related information of the

room model.

4.1.2 Loading the Room Model’s .obj and .mtl files
The third step involves importing the room model obtained

from previous stages in Wavefront.obj, into the application.

This is facilitated by the use of model importing libraries such

as Assimp(OpenGL Asset Import Library). Assimp is able to

import dozens of different model file formats (and export to

some as well) by loading all the model's data into Assimp's

generalized data structures. As soon as Assimp has loaded the

model, we can retrieve all the data we need from Assimp's

data structures. Because the data structure of Assimp stays the

same, regardless of the type of file format we imported, it

abstracts us from all the different file formats out

there.[11]The Assimp libraries are hence configured to

process the imported .obj file and its.mtl file that describes the

room model and it‘s textures. In order for OpenGL to be able

to process and render textures however requires a library such

as SOIL. SOIL stands for Simple OpenGL Image Library and

supports the most popular image formats

4.1.3Setting up a First Person Camera
Finally, a first person camera is configured to navigate within

the loaded room model. In OpenGL, the illusion of a first

person camera is created by moving the scene dynamically as

per user input, giving the impression of constant free-flow

movement. This is made possible by dynamically

transforming the co-ordinates of the loaded room model by

multiplying them with Model, View and Projection matrices.

A model matrix transforms coordinates from local object

coordinate space to World Space (The coordinate space of our

application). The View Matrix is responsible for transforming

world space coordinates as per the ‗camera‘s view space.

Finally, the Projection matrix transforms the coordinates into

Clip Space, which basically clips objects that lie outside the

screen. Each of these transformations need to be performed on

each coordinate that enters the Vertex Shader. To allow for

dynamicity, each of these matrices are computed at runtime

based on user input and camera position.

The application is programmed to accept user input via the

arrow keys and mouse through the use of specific callback

functions. These functions determine the camera‘s changing

positions which in turn affect the transformation matrices

applied to the room model‘s coordinates. At the end of this

stage, the user should be able to see the complete rendered

model (Figure 4.1.3) within the application window and also

navigate within it using designated keys and the mouse. User

movement however is confined to the interior of the model.

Figure 4.1.3 – Navigating the Rendered Model

4.1.4 Populating the scene with objects
Should the user wish to populate the scene with objects such

as furniture, each of these would have to be designed on

Blender by the designer of the application and exported in

Wavefront .obj file format, as done for the room model.

However, each mesh within this complex scene will have to

be processed separately by Assimp before they can be

rendered. The transformations that result from the movement

of the camera would also have to take into account the

existence of other mesh objects.

Therefore, the application should be designed with special

regard for scalability allowing the user to import a pre-created

set of object models into the scene.

5. ROLE OF THE END USER
The final build of the application thus enables the user to

create a three dimensional, virtual representation of an interior

scene by carrying out the following steps-

1. Procuring the images of each of the faces of the

room, two for each face.

2. Stitching the images using the Image Stitching

Algorithms provided.

3. Placing the stitched images of each wall on the

corresponding faces of the ‗T‘ that corresponds to

the 3D model of the room

4. Building the OpenGL application that loads and

processes the model, to allow for simulation using a

suitable compiler.

6. CONCLUSION
It is safe to assume that the visual accuracy of the rendered

room depends solely on the quality of the images obtained in

the first stage. It is preferable to mount the digital camera on a

tripod, to attain minimum shift in angle while capturing each

of the halves of the faces. Moreover, the two images of a

single wall should have as many common visual features as

possible. This in turn increases the number of inlier matches

obtained as a result of the RANSAC algorithm. Images with a

very low number of common features lead to fewer inlier

matches although the number of key-points detected might be

significantly high. It is observed that a minimum of 50% of

the total number of matches detected by SIFT should lead to

successful inlier matches to attain higher resolution, stitched

images of significant accuracy. The accuracy pertaining to the

relative placement of the stitched images with respect to the

faces of the cube model however can only be judged first

hand by the human eye and is not measurable.

The concept proposed in this paper can be extended to more

complex room designs. Moreover, transparency within the

system can be achieved by hiding from the user the entire

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

49

image stitching process and code, as well as that of OpenGL.

This can be facilitated by the development of a GUI which

would guide the user through the four steps of modeling

mentioned in Section 5 of this paper and simply display the

output of each stage.

The ease with which 3D Models are created via the proposed

system, allows the cost-effective creation of 3D Models of

interior scenes which can be used for low budget Virtual

Reality training of law enforcement officers and the like. It

can also be used by real estate brokers to provide customers

with rough virtual models of home interiors. Moreover,

several educational institutions can create virtual

representations of their campuses to be hosted on online

portals. The system however is not limited to these

applications and can be used in various other scenarios that

require three dimensional virtual representation of interior

scenes.

7. ACKNOWLEDGMENTS
Our thanks to the authors of VLFeat, for their detailed

tutorials and open source library that aided us in our

implementation of SIFT and RANSAC. We are also grateful

to Mr. Joey De Vriesand Mr. Arnaud Masserann, whose

highly elaborate tutorials on OpenGL and constantsupport

made this project possible. Equally appreciated is Mrs.

Grishma Sharma, faculty member of the Computer

Department at K.J Somaiya College of Engineering Mumbai,

India, who mentored us along the way.

8. REFERENCES
[1] WIKIPEDIA

http://en.wikipedia.org/wiki/Image_stitching

[2] WIKIPEDIA http://en.wikipedia.org/wiki/Scale-

invariant_feature_transform

[3] Guerrero, Maridalia, "A Comparative Study of Three

Image Matcing Algorithms: Sift, Surf, and Fast" (2011).

All Graduate Theses and Dissertations. Paper 1040.

http://digitalcommons.usu.edu/etd/1040

[4] Lowe, D. G. (2004). Distinctive Image Features from

Scale-Invariant Keypoints. International Journal of

Computer Vision, 60, 91-110.

[5] Dubrofsky, Elan (2007). Homography Estimation.

https://www.cs.ubc.ca/grads/resources/thesis/May09/Dub

rofsky_Elan.pdf

[6] J. J. Lee and G. Y. Kim. Robust estimation of camera

homography using fuzzy RANSAC. In ICCSA ‘07:

International Conference on Computational Science and

Its Applications, 2007.

[7] R. Hartley and A. Zisserman. Multiple View Geomerty

in Computer Vision. Cambridge University Press, second

edition, 2003.

[8] WIKIPEDIA

http://en.wikipedia.org/wiki/Blender_%28software%29

[9] WIKIPEDIA http://en.wikipedia.org/wiki/UV_mapping

[10] WIKIPEDIA

http://wiki.blender.org/index.php/Doc:2.6/Manual/Textur

es/Mapping/UV/Unwrapping

[11] De Vries, Joey ―Assimp.‖ ‗learnopengl.’

http://learnopengl.com/#!Model-Loading/Assimp

[12] WIKIPEDIA

http://en.wikipedia.org/wiki/Wavefront.obj_file

[13] De Vries, Joey ―Creating a window.‖

‗learnopengl.’http://learnopengl.com/#!Getting-

started/Creating-a-window

[14] De Vries, Joey ―Hello Triangle.‖

‗learnopengl.’http://www.learnopengl.com/#!Getting-

started/Hello-Triangle

[15] De Vries, Joey ―Textures.‖ ‘learnopengl.’

http://www.learnopengl.com/#!Getting-started/Textures

IJCATM : www.ijcaonline.org

