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ABSTRACT 
Real time OLAP , or RTOLAP, is the capability to quickly 

retrieve, aggregate, analyze and present multidimensional data 

for cubes whenever there are changes to the data in the 

relational data sources, without having to run heavy 

processing on the cube. A big advantage of real time OLAP is 

that it calculates all relevant data and provides immediate 

output. One of the main roles of an RTOLAP system is that 

data is stored directly in main memory, or in an in memory 

database, enabling quicker access to the data. Another factor 

affecting the speed of calculation is compression data is 

compressed, in such a way that it can be accessed must faster 

in its compressed form. Additionally, pre-calculated values 

are not stored, therefore avoiding “data explosion”. In contrast 

to queries for online transaction processing (OLTP) system 

that typically access only a small portion of a database, OLAP 

queries may need to aggregate large portion of a database 

which often leads to performance issues. In this paper  

introduced CR-OLAP, a cloud based Real Time OLAP 

system based on a new distributed index structure for OLAP, 

the distributed PDCR tree, that utilizes a cloud infrastructure 

consisting of (m+1) multicore processors. With increasing 

database size, CROLAP dynamically increases m to maintain 

performance. The distributed PDCR tree data structure 

supports multiple dimension hierarchies and efficient query 

processing on the sophisticated dimension hierarchies which 

are so central to OLAP system. It is particularly efficient for 

complex OLAP queries that need to aggregate large portions 

of the data warehouses. The static data cube approach 

proposed by Gray et.al. and materialize all or a subset of the 

cuboids of the data cube in order to ensure adequate query 

performance. Practitioners have called for some time for a 

real-time OLAP approach where the OLAP system gets 

updated instantaneously as new data arrives and always 

provides an up-to-date data warehouse for the decision 

support process. However, a major problem for real-time 

OLAP is the significant performance issues with large scale 

data warehouses. The main aim of our research is to address 

these problems through the use of efficient parallel computing 

methods. In this paper proposed a distributed data structure 

for real time OLAP. To our knowledge, the real-time OLAP 

system that has been parallelized and optimized for 

contemporary multi-core architectures allows for multiple 

insert and multiple query transactions to be executed in 

parallel and in real-time. 

Keywords 
RTOLAP,CROLAP,OLTP,MOLAP, PDCR, performance 

latency 

 

1. INTRODUCTION 
Online analytical processing (OLAP) is typically defined as 

the processing and analysis of shared multidimensional data. 

In practice, OLAP systems analyze data drawn from large, 

low-transaction and high-latency relational databases, such as 

data warehouses. The purpose of such analysis is to aggregate 

and organize business information into a readily accessible, 

easy to use multidimensional structure. OLAP systems store 

some or all of this aggregated information either within tables 

in a relational database (also known as relational OLAP, or 

ROLAP, storage) or in specialized data structures in 

multidimensional databases (also known as multidimensional 

OLAP, or MOLAP, storage). OLAP queries can be answered 

much more quickly than similar relational queries because the 

aggregations and computations have already been completed 

and the resulting derived values are readily available from a 

ROLAP table or MOLAP storage.Retrieving, analyzing, and 

aggregating large amounts of historical data can consume 

extensive time and resources. OLAP systems do not usually 

run against online transaction processing (OLTP) or other 

high-transaction, low-latency databases because the time and 

resources required can affect the performance of the relational 

database. Instead, OLAP systems typically run against data 

warehouses, which are updated relatively infrequently, to 

support the requirements of most commercial and financial 

analysis. Most OLAP systems rely on a "snapshot" approach, 

periodically retrieving and aggregating data for later 

presentation and analysis. Because OLAP systems typically 

rely on stored, derived values to answer queries, the 

aggregation process must also reasonably match the update 

latency of the underlying relational data source to avoid 

presenting overly "stale" data.Products that can perform 

aggregations quickly enough to provide multidimensional data 

from low-latency data sources have challenged this traditional 

view of OLAP in recent years. This functionality, which is 

referred to as real-time OLAP, is most often used in financial 

or industrial scenarios where multidimensional analysis of 

low-latency data is crucial to the organization's business 

intelligence requirements.In contrast to queries for on-line 

transaction processing (OLTP) systems which typically access 

only a small portion of the database (e.g. update a customer 

record), OLAP queries may need to aggregate large portions 

of the database (e.g. calculate the total sales of a certain type 

of items during a certain time period) which may lead to 

performance issues. Therefore, most of the traditional OLAP 

research, and most of the commercial systems, follow the 

static data cube approach proposed by Gray et al. and 

materialize all or a subset of the cuboids of the data cube in 

order to ensure adequate query performance. However, the 

traditional static data cube approach has several 

disadvantages. The OLAP system can only be updated 
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periodically and in batches, e.g. once every week. Hence, 

latest information cannot be included in the decision support 

process. The static data cube also requires massive amounts of 

memory space and leads to a duplicate data repository that is 

separate from the on-line transaction processing (OLTP) 

system of the organization. Practitioners have therefore called 

for some time for an integrated OLAP/OLTP approach with a 

real-time OLAP system that gets updated instantaneously as 

new data arrives and always provides an up- to-date data 

warehouse for the decision support process. Some recent 

publications have begun to address this problem by providing 

“quasi real-time” incremental maintenance schemes and 

loading procedures for static data cubes). However, these 

approaches are not fully real- time. A major obstacle is 

significance performance issues with large scale data 

warehouses. 

The remainder of this paper is organized as follows. In 

Section 2describes the PDCR tree data structure and in 

Section 3describing CR-OLAP system for real-time OLAP on 

cloud architectures. Section 4 shows the results of an 

experimental evaluation of CR-OLAP, and Section 5 

concludes the paper. 

2. PDCR TREES 
The CR-OLAP runs on multiple nodes provided by cloud 

service providers. It containsseveral components including a 

distributed PDCR tree on m+1 nodes, a network 

communicator, a load balancer, a migration API and a 

message serialization API.The building of PDCR-tree starts 

on one node called master. When the tree grows bigenough, 

we start building the subtrees on other nodes called workers. 

After the initial load in  ,the whole PDCR-tree is distributed 

on multiple nodes. The master contains the top part ofthe tree 

and we call it hat. Each worker contains a number of subtrees 

and each subtreeis the same as a small PDCR-tree. After the 

initial built, the system is ready to take clientrequests such as 

new data insertions and range queries. The master node also 

maintainsthe information of distributed subtrees. It uses a 

lookup map to record which workers thesubtrees are stored. 

When the master receives requests, the requests will be 

executed inparallel in the hat. If the master needs to dispatch 

the tasks to workers, it will look up itsubtree-worker map to 

find the workers storing the relevant subtrees. Each worker 

whoreceives its tasks will complete the tasks in parallel 

locally and return the results back tothe master. When the 

master node gathers all results returned by the workers, it 

generatesa final result for the request. The final result is sent 

over to the client at the end.A load balancer runs periodically 

and moves subtrees from workers with heavy loads toworkers 

with lighter loads. All instructions to trigger tasks are 

represented as messages (forexample,migration request, 

sending subtree, query request and insertion request). 

Eachmessage carries its own data members such as a 

destination worker id, a source worker idand task instructions. 

Sending or receiving messages between nodes is handled by a 

network communicator. We implemented a communicator 

with ZeroMQ, a high-performanceasynchronous messaging 

library. Every message is serialized to a string by a message 

serializer and pushed to a message queue. Then, the network 

communicator is responsible forretrieving messages from the 

queue and sending them to their destination nodes. Once 

adestination node receives a message the message de-

serializer de-serializes the string andrecovers the original 

message. Then the worker performs the message task.  

 

Figure 1.System Architecture 

2.1 Distributed PDCR tree and it’s data 

structure 
The PDCR-tree is stored on cloud nodes. Each cloud node 

stores several subtrees of data. A distributed PDCR tree is a 

data structure containing a hat and a set of subtrees T, T={t1, 

t2, t3...ti}, where ti is a subtree. The hat is stored in the master 

node and the subtrees aredistributed between several worker 

nodes. A distributed PDCR-treewith a hat in the master and 

subtrees in several workers.Starting from the root directory 

node on the master, PDCR-tree is growing by insertingnew 

data one by one. A directory node has its node capacity, for 

example, maximum 15children nodes. When the number of 

children nodes exceeds the node capacity, a node splitwill be 

performed. There is two types of node split: vertical split (V-

Split) and horizontal split (H-Split).An H-Split is performed 

when the number of children nodes of a directory node isfull, 

but the parent node of this directory node can still contain 

more children nodes. Ahorizontal link will be added between 

the two split nodes. The directory node capacity is 2 and the 

Cut level is 1. R is the root. A is the directory0node with 

depth 1 and contains 2 children nodes. If a new data were 

inserted to the nodeA, A would contain 3 nodes which 

exceeds its children capacity, but A‟s parent node R hasnot 

reach its node capacity yet, therefore, An H-split can be 

performed and split A to twonodes A and B. A has the sibling 

node link pointing to B. The 3 childrennodes are distributed 

between A and B that leads to minimal MDS overlap between 

A andB.If a directory node reaches its node capacity and its 

parent node also contains childrenwith full capacity, both a V-

Split and an H-Split will be triggered. An H-split along with 

aV-split can make the two subtrees become independent. The 

directory node gets pushed 1level down in the tree. If a new 

data were added into node A, the numberof children nodes of 

A would exceed the capacity and the number of children 

nodes of R,the parent of A, also would exceed the capacity; 

hence, both the H-split and the V-split are called. The H-Split 

splits A to A and A0; The V-Split adds a new node C as the 
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parent of A and A0 and links C to the parent node R which A 

linked to before the split. The linkbetween A and B from 

previous H-Split can be removed. The subtrees C and B 

become independent. A and A0 is at the depth level of 2 of the 

hat on the master.Once the depth of directory node exceeds 

the Cut level, the directory node with itschildren nodes will be 

moved to the worker node. The depth of A and A0 exceeds 

the Cut level, so A and A0 with their data nodes are moved to 

a worker node is showing the continuously growing of the 

PDCR-tree. A new datais added to A on a worker and both the 

V-split and the H-split is executed. A gets split to A and A00, 

D is the result of the V-split. The link from A to A0 is 

removed and the subtree D and A0 is now independent. We 

also move one of the subtree (e.g. the subtree of A0)to another 

worker so the work load is spread out between workers.  

2.2 Migration process and load balancer 
Migration is a mechanism to reduce the load of a worker that 

is experiencing a high loadsuch as high memory usage or 

CPU usage. When the performance is slow due to the 

highload on a worker, a migration process is triggered to 

move one of subtrees to another workerhaving a lower load in 

the system. In the previous proof of independent subtrees, we 

know a subtree whose root is created from a V-split has no 

links with its neighbor subtrees. Theindependent subtrees can 

be the candidates to be moved between nodes and only 

parentlinks of the root of a migration subtree need to be 

maintained. 

The load balancer runs periodically (e.g. every few minutes) 

to check the memoryusage on each node. Once the load 

balancer detects a worker having memory usage exceeda 

threshold, it will trigger the migration. The process choses a 

subtree (called migrationsubtree) and moves it from one 

worker (called source worker) to another worker 

(calleddestination worker). The migration process can also be 

triggered when the initial subtreeson a worker become 

independent. By doing that, the subtrees are distributed to 

multipleworkers so that the work load can be potentially 

spread out between workers. Building distributed PDCR-tree 

from master to worker the migration process sends a 

migration subtree to a destination worker. The 

migrationsubtree is a snapshot of the subtree at the time point 

when migration starts. To achieve this, we could choose to 

lock the whole subtree to perform migration. However, when 

a subtreeis very large, the insertions can be interrupted by the 

lock for a long period of time tillthe migration is completed. 

Instead, our method allows insertions to be still performedon 

the migration subtree in the source worker during a migration 

and all the queries that traverse the migration subtree can still 

include the most recent new data. Once a migrationstarted, if a 

directory node A needs to be updated, a copy of the node A 

will be storedto “Links to backup” before any update is made. 

The details are showed in Algorithm1 Node Backup. The 

node update can be any type of updates including MDSR 

update,measure update, node split and inserting a new data 

node under a directory node. If adirectory node has never 

been updated during a migration, the copy is not necessary to 

bemade. Creation of the backup for a directory node is done at 

the first update and is onlyperformed once since we only need 

one backup of a node to preserve its old structure beforethe 

migration. 

 

Algorithm 1 Node Backup //Receive directory node 

Ptr and creates a backup of it ifneeded  

1: FOR each directory node Ptr, before it gets 

updated (MDS update, Measure update, Split, or 

Insertion) DO 

2: If Creation-TS(Ptr) < TS(migration) Then 

If ( Link to backup(Ptr)==Null ) Then 

LOCK (Ptr). 

Make a backup of Ptr. 

Update Link to backup. 

If ( children of Ptr are data nodes ) Then 

Make a backup of them, and update their backup 

links. 

Release the LOCK for Ptr. 

When migrating the subtree from one worker to another, for 

those directory nodes/datanodes having no update, they are 

directly copied over to the destination worker; for thosenodes 

having been updated, their copies stored in the “Links to 

backup” shall be transferred to the destination worker. After 

the migration of a subtree is completed, in thedestination 

worker we apply the same insertions that were sent to the 

subtree in the sourceworker during the time of migration, 

therefore, the migrated subtree in the destination caninclude 

the new data coming into the system during a migration and 

be ready for taking 

3. CR_OLAP: CLOUD BASED REAL-

TIME OLAP 
The CR-OLAP is a parallel real-time OLAP system designed 

for cloud based distributedsystems. The key component is the 

distributed PDCR-tree which is an extension of thePDC-tree. 

Using the hierarchy of dimensions, the PDCR-tree can group 

the data at different hierarchy levels. The data set is 

partitioned and distributed on multiple cloud machines so that 

any insertions and aggregations operations can be executed in 

parallel. The algorithms are given to illustrate the parallel 

operations. The MDS ids are modified to bitrepresentation in 

order to improve the system performance. A MDSR (the 

range of MDSids) is used for describing directory nodes so 

that unordered dimensions can also be expressed in an ordered 

manner. This helps to reduce the system response time. 

Meanwhile, the CR-OLAP can handle range queries at any 

hierarchy level as well as point queries.The distributed PDCR 

tree is able to handle operations like Insertions and 

Aggregations.An insertion operation is to add a new data into 

the system; An aggregation operation includes SUM, MAX, 

MIN, MEAN, AVG etc. For an aggregation operation, the 

systemreports the results to the client. When clients send any 

requests to the system, these operations are queued in the 

shared input queue on the master node. The Task 

Assignment(Algorithm 2) is invoked to dispatch the requests 

to different processes. The correspondingprocesses all start 

from the master node and then the tasks are distributed to the 

relatedworker nodes. When each worker completes its task 

and sends back the results, the masternode will add each 

worker‟s result together and reply it to the client. 
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3.1 CR-OLAP Operations and Algorithms 

Algorithm 2 Task Assignment //Picks the next task 

in the client queue 

Repeat 

1: Pick the next query q from client queue 

2: Case“q type”== “Insertion Query”, assign a 

thread for q, and run “Insertion Algorithm” 

3: Case “q type”== “Aggregation Query”, assign 

a thread for q, and run “Aggregation Algorithm” 

Until (there is a query in Q) 

Algorithm 3 Insertion Algorithm on the master 

//insertion of data node d in distributed 

PDC-tree X 1: Start from R (the root of the hat), 

and set Ptr point to R. 

Repeat 

2: If MDS(d) is contained in the MDSR of only one 

of the children of Ptr Then set Ptr equal to 

the directory node for that child. 

3: If MDS(d) is contained in the MDSR of more than 

one of the entries of Ptr Then set Ptr equal 

to the root of the child sub-tree with minimum 

number of data nodes. 

4: If MDS(d) is not contained in any MDSR of a 

child of Ptr Then 

a. Make a copy Ptr’ of node Ptr. 

b. For each child C of Ptr’: Add the new data item d 

to C and calculate the MDS enlargement 

and overlap caused. 

c. Set Ptr = the child which causes minimal overlap. 

UNTIL Ptr is a leaf node in the hat 

5: If (Ptr is pointing to a data node) Then 

a. Set Ptr=parent of Ptr. 

b. Acquire a LOCK for Ptr. 

c. Insert data item d into Ptr and update the 

measure(s), MDS(Ptr), and time stamp of Ptr 

i.e. TS(Ptr). 

d. If capacity of Ptr is exceeded Then 

1. WHILE (Ptr ! = R) && (capacity of Ptr>= Cap) 

set Ptr=Parent of Ptr. 

2. If (Ptr==Root) Then 

a. Call V Split for the parent of d, and create a new 

node Y. 

b. If (Depth of Y == Cut) Then 

1. (Counter++, assign counter to the new sub-tree) 

2. select next worker using load balancing strategy 

3. Send children of Y to the chosen worker to 

initiate a sub-tree in it. 

Else Call Algorithm 5 (Split Bubbleup) Until 

(capacity of Ptr<=Cap) 

6: If (Ptr is pointing to a Sub-tree’s number) Then 

a. In worker-subtree map, find the worker, w, which 

stores t 

b. If t is migrating, send the insert query to 

migrating destination worker 

c. Send the insert query to w 

Algorithm 4 Insertion Algorithm on Worker 
//insertion of data node d in sub-tree t with 

root r 1: Start from r (the root of t), and set Ptr 

point to r. 

2: If MDS(d) is contained in the MDSR of only one 

of the children of Ptr Then set Ptr equal to 

the directory node for that child. 

3: If MDS(d) is contained in the MDSR of more than 

one of the entries of Ptr Then set Ptr equal 

to the the root of the child sub-tree with minimum 

number of data nodes. 

4: If MDS(d) is not contained in any MDSR of a 

child of Ptr Then 

a. Make a copy Ptr’ of node Ptr. 

b. For each child C of Pt’: Add the new data item d 

to C and calculate the MDS enlargement 

and overlap caused. 

c. Set Ptr = the child which causes minimal overlap. 

UNTIL Ptr is a data node 

5: Set Ptr=parent of Ptr. 

6: If TS(migration) is set Then Call Algorithm Node 

Backup(Ptr) 

7: Acquire a LOCK for Ptr. 

8: Insert data item d into Ptr and update the 

measure(s), MDS(Ptr), and time stamp of Ptr i.e. 

TS(Ptr). 

9: If capacity of Ptr is exceeded Then 

a. WHILE (Ptr ! = r) && (capacity of Ptr>= Cap) 

set Ptr=Parent of Ptr. 

b. If (Ptr==r) Then 

1. sends a request to the master to check up to 

which level in the hat, ancestors of Ptr 

are full 

2. If capacity of all directory nodes up to root in hat 

is full, Then Call Algorithm 6 

V Split for the parent of d. 

3. If capacity is not full up to root in hat, Then Call 

Algorithm 5 (Split Bubbleup) 

UNTIL (Ptr==Parent of r (leaf of the hat)) 

4. Send a request to the worker queue to call 

Algorithm 5 (Split-bubbleup) UNTIL 



International Journal of Computer Applications (0975 – 8887)  

Volume 115 – No. 17, April 2015 

5 

(capacity of Ptr<=Cap) in the master for Ptr. 

Else Call Algorithm 5 (Split Bubbleup) Until 

(capacity of Ptr<=Cap) 

Algorithm 5 Split Bubbleup //Bubbles up the split 

of directory nodes starting from the 

directory node Ptr Until a given condition is met. 

Repeat 

1: Acquire a LOCK for the parent of Ptr. 

2: If capacity of Ptr is exceeded Then 

a. MakePtr’ the right sibling of Ptr and update the 

right sibling links accordingly. 

b. Set the time stamp TS of Ptr’ equal to the old TS 

value for Ptr and assign Ptr a new time 

stamp TS representing the current update. 

c. If TS(migration) is set Then Call Algorithm Node 

Backup(Parent of Ptr). 

3: Insert a new link for Ptr’ in the parent of Ptr. 

4: Update the Measure and MDSR fields for the 

parent of Ptr. 

5: Release the LOCK for Ptr. 

6: Set Ptr = parent of PtrUNTIL(the given condition 

is true) 

7: Release the lock on Ptr 

Algorithm 6 V Split //Receives directory node Ptr, 

performs a H Split on Ptr, and creates 

a new parent for Ptr, Ptr’ 

1. If TS(migration) is set Then 

a. Call Algorithm 1 Node Backup(Ptr) 

b. Call Algorithm 1Node Backup(Parent of Ptr) 

2. Acquire a LOCK for Ptr and the parent of Ptr. 

3. Split Ptr into two directory nodes Ptr and 

Ptr’(DC-tree split algorithm, sections 4.2 and 4.3). 

4. Make Ptr’ the right sibling of Ptr and update the 

right sibling links accordingly. 

5. Set the time stamp TS of Ptr’ equal to the old TS 

value for Ptr and assign Ptr a new time stamp 

TS representing the current update. 

6. Update MDSR of Ptr and Ptr’, and their 

measures. 

7. Create a new directory node D with a new TS, 

Add two entries for Ptr,Ptr’ in D as its children, 

and update MDSR(D) covers MDSR(Ptr) and 

MDSR(Ptr’). 

8. Replace the entry of Ptr in the old parent of Ptr 

with an entry for D. 

9. Remove the Link from left sibling of Ptr to Ptr. 

10. Release the LOCK for Ptr and the old parent of 

Ptr. 

Algorithm 7 Aggregation Query Algorithm on the 

Master //Compute the aggregate value 

for query q in partitioned PDC-tree X 

1: Set Ptr=R, Push Ptr into a stack S for query q. 

Repeat 

2: Pop top item from stack S, call it Ptr’. 

3: If the time stamp (TS) of Ptr’ is smaller (earlier) 

than the time stamp (TS) of Ptr Then 

3.1: Using the “Link to Sibling” field in directory 

nodes, traverse the list of siblings of Ptr. 

Push all sibling nodes up to a node with its TS equal 

to TS of Ptr’ (Push from right). 

3.2: Push Ptr again into stack S. 

Else 

3.3: FOR each child C of Ptr DO 

3.3.1: For each dimension of C where MDSR(C) 

and range MDS(q) are at different levels in 

the dimension hierarchy, convert the lower level 

entry to the higher level. 

3.3.2: If MDSR(C) is contained in range MDS(q) 

Then add Measure(C) to the result value. 

3.3.3: If MDSR(C) overlaps range MDS(q) but is 

not contained in it, Then 

If (C is pointing to a sub-tree) Then Send the 

Aggregation Query to the worker 

Counter++ 

Else Push C into stack S UNTIL stack S is empty. 

4. IF query is distributed to workers Then 

Wait all queries are finished on workers 

Calculate the aggregated results. 

5. Report the aggregation value to client. 

Algorithm 8 Aggregation Query Algorithm on 

Worker //Compute the aggregate value for 

query q in sub-tree ton worker w 

1: Set Ptr=r, Set result value Total=0, Push Ptr into 

a stack S for query q. 

Repeat 

2: Pop top item Ptr’ from stack S. 

3: If the time stamp (TS) of Ptr’ is smaller (earlier) 

than the time stamp (TS) of Ptr Then 

3.1: Using the “Link to Sibling” field in directory 

nodes, traverse the list of siblings of Ptr. 

Push all sibling nodes up to a node with its TS equal 

to TS of Ptr’ (Push from right). 

3.2: Push Ptr again into stack S. 

Else 

3.3: FOR each child C of Ptr DO 
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3.3.1: For each dimension of C where MDSR(C) 

and range MDS(q) are at different 

levels in the dimension hierarchy, convert the lower 

level entry to the higher level. 

3.3.2: If MDSR(C) is contained in range MDS(q) 

Then 

add Measure(C) to Total. 

3.3.3: If MDSR(C) overlaps range MDS(q) but is 

not contained in it, Then 

Push C into stack S UNTIL stack S is empty. 

3.2 CR-OLAP query types 
The PDCR tree is designed to answer a set of queries in 

parallel. For a fact table with d dimensions in a data 

warehouse, the set of queries Q is defined as {q1, q2, q3,..qd} 

where 1 ≤ i ≤ d, and qi is a set of values to be searched in 

dimension i. The set of values in qi canbe represented in the 

following formats: 

1. Multiple ranges of values covering a contiguous range of 

values in a dimension i.This type of query value is used only 

for ordered dimensions such as date, time, etc. .For example, 

assume we have an ordered date dimension with the concept 

hierarchyYear-Month-Day, a query containing a set of values 

{[2011-*-*, 2013-*-*]} meansdate from 2011 to 2013. To use 

MDS ids to represent this query, it becomes {[2011-0-0, 

2013-0-0]}. The 0s in the ids can be interpreted as * that we 

usually have it inSQL queries and it means All. 

2. Multiple MDS Ids at any level of the hierarchy of a 

dimension i.Each MDS Id in a hierarchy level l in dimension i 

covers many distinct MDS Ids inthe level l+1 of the 

dimension. This type of query values is used for both ordered 

andunordered dimensions such as Location, Product, Date, 

etc. For example, assume wehave a store dimension having 

the hierarchy Counry-Province-City-StoreId, a 

querycontaining a set of values {Alberta, Ontario} means all 

stores located in the provincesof Alberta and Ontario. The 

MDS Ids that represent the query is {Canada-Alberta-0-0, 

Canada-Ontario-0-0}. In the implementation, „Canada‟, 

„Alberta‟, „Ontario‟ and„0‟ is presented in total 64-bits 

integer. There are two types queries that the CR-OLAP 

system can support to answer. One is arrange query and the 

other one is a point query. 

1. Range queries for a dimension i: 

qi={ [low IDi1 , high IDi1] , [low IDi2 , high IDi2], ... , [low 

IDin , high IDin] } , where low IDij represents the lower 

bound of the jth given range in dimension i, andhigh IDij 

represents the upper bound of the jth given range in a 

dimension i. 

2. Point queries for dimension i: 

qi={ IDi1 , IDi2 ,... , IDin } , where IDij represents the jth 

given MDS ID in dimension i. Note that IDs can be in 

different levels of dimension i. 

4. EXPERIMENT AND TESTING OF 

CR-OLAP 

4.1 Introduction 
The network communicator, the message serializer and the 

PDCR-tree is developed as separate APIs. The ZeroMQ 

library is used for thenetwork communicator and the boost 

serialization library is used for the message serializer.We 

conducted a large amount of tests to measure the system 

response time and throughput.The tests are performed on the 

Amazon cloud environment and astream OLAP system using 

One-Dimensional Index which is a linear array structure to 

handledata insertions and search queries in parallel. We 

explained that the CR-OLAP systemis efficient by comparing 

it against the Stream-OLAP system.  

4.2 Experimental environment 
On the Amazon cloud, there are various types of instances 

available. We selected theinstance of m2.4xlarge for the 

master node and the M3.2xlarge instance for the worker 

_nodes. The M2.4xlarge is an optimized instance for memory-

intensive applications. Itcontains 68G memory and 8 virtual 

CPUs which has total 26 elastic computing units(ECU).Each 

ECU provides the equivalent CPU capacity of a 1.0 - 1.2 GHz 

2007 Opteron or2007 Xeon processor. The M3.2xlarge 

instance also has 8 virtual CPUs but it only has30G memory 

size. The CC2.8xlarge instance and the CR1.8xlarge instance 

are claimedas cluster instances. The cluster instances can be 

built in one network which could have10G network speed. 

They are 32 cores with hyper threading enabled and also have 

highmemory storages. The details are listed in the Table 

4.1.We also performed experiments on the Ontario Research 

and Education VCL cloud. Instance Family Instance Type 

CPU Arch vCPU ECU Memory (GiB) Network Memory 

optimized m2.4xlarge 64-bit 8 26 68.4 High General purpose 

m3.2xlarge 64-bit 8 26 30 High Compute optimized 

cc2.8xlarge 64-bit 32 88 60.5 10 Gigabit.  Memory optimized 

cr1.8xlarge 64-bit 32 88 244 10 Gigabit. The instance we 

choose has 16 cores, 32G memory, 2199 MHZ cpu. A Linux 

operating system CentOS 6.3 is installed on each instance 

with the GNU GCC4.7 compiler. It supports Open MP to 

handle multi-threading to parallelize processes. A ZeroMQ 

3.2 is installed as message passing middleware to transfer the 

data or transaction instructions between machines. 

Table 4.1: Specifications of Amazon cloud instances used in our experiments 
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4.2.1 Experimental data 
In all experiments of the CR-OLAP, we still use the TPC-DC 

benchmark which was used inthe experiments of the PDC-tree 

for multi-core processors. The underlying business modelof 

the TPC-DS is a retail product supplier. We select the “Store 

Sales” fact table which isthe largest fact table among all seven 

fact tables. The store sales fact table contains 8 dimensions 

and several measures such as quantity, net paid, net profit, etc. 

The graph 4.1 liststhe dimensions and the hierarchy schema of 

each dimension that was used in the system.The 8 dimensions 

include item, store, customer, date dim, time dim, promotion, 

house-hold demographics, customer address. In the graph, the 

dimensions in left side contain ordered data and the 

dimensions in right side contain unordered data.Multiple tests 

were conducted to evaluate the time of completing insertions 

and querytransactions using distributed PDCR-tree index. The 

following scenarios are selected forour experiments. 

(1) Increasing number of dimension 

(2) Increasing number of workers 

(3) Increasing data size 

(4) Increasing data coverage for queries 

(5) Using combination of star (*) at different 

hierarchy levels for queries 

(6) Running on different types of cloud instances 

(7) Increasing number of cut level 

(8) Increasing number of directory node capacity in 

master/workers 

HammedZaboli performed the experiments of the CR-OLAP 

for item 1 to 5, I performedthe experiments of the CR-OLAP 

for item 6 to 8. 

 

Figure 4.1: Store Sales Fact table and 8 dimensions and each with its hierarchy scheme 

4.2.2 Comparison baseline 
In addition, a Stream-OLAP system with a 1-dimensional 

array index (1D-Index) is implemented and used to be 

compared with the CR-OLAP system with a PDCR-tree 

index.Data nodes in the 1D-Index structure are as the same as 

they are in the PDCT-Tree index. The Stream-OLAP system 

creates an array for every value in the highest hierarchylevel 

of a dimension and data nodes are stored in the related arrays 

according to the values in the highest hierarchy level of a 

dimension. For example, the 1D-Index builds anarray 

containing all data nodes who have the value of “2012” in the 

highest hierarchy level“Birth Year” of the “customer” 

dimension. If there are 10 different values for 

“BithrYear”level, the Stream-OLAP creates 10 arrays for the 

value of each year. Data nodes in eacharray are not sorted and 

are inserted at the end of the array as they arrive. Arrays are 

evenlydistributed between the workers to assure parallel 

processing of insertions and queries. Ineach array, multiple 

queries may search the arrays in parallel. The 1D-index 

structures issued to compare its performance with the PDCR-

tree‟s performance and to evaluate the impact of a single-

dimensional index versus a multi-dimensional index for 

Hierarchical multidimensional databases. The 1D-index and 

the PDCR-tree are different from a B-tree andan R-tree since 

the later indices do not designed for the data having hierarchy 

structures. Mr. Kong performed the experiments of the 

Stream-OLAP for item 1 to 5. 

4.3 Analysis of Results 
In the following section, we will demonstrate the experiments 

results. All tests are performed on m+1 machine (a single 

master node plus m worker nodes) with 16 threads oneach 

node to concurrently process tasks. 

Test 1: Increasing the number of 

dimensions 
The test is to evaluate the impact on the number of 

dimensions. The master node isusing an m2.4xlarge instance 

and all the worker nodes are using the m3.2xlarge 

instances.The test is performed on 8 workers (m = 8) with 40 

million tuples from the fact table (N =40M) as initial 

insertions followed by three sets of 1000 queries (q = 1000). 

The numberof dimensions d is increased from 4 to 8 (4 ≤ d ≤ 

8). The three sets of queries includenon-star regular queries, 

with the coverage 10%,60%, and 95% respectively. The 

coverage is measured by the percentage of the number 

ofquery values over the cardinality of the values of an 

attribute in a certain hierarchy levelof a dimension. For 

example, an unordered dimension Customer Address has 50 

differentvalues of the states in US. When the values of all 

queries cover 48 states, we say thecoverage is 95%.Figures 

4.2 and 4.3 demonstrate the results of the test.  

Test 2: Increasing number of workers 
The test is used to evaluate the impact by the increasing 

number of workers. The master node is using a m2.4xlarge 
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instance and all worker nodes are using the 

m3.2xlargeinstances. The test is performed on 10 million 

tuples from the fact table (N = 10M) with8 dimensions (d=8) 

as initial insertions followed by three sets of 1000 queries (q = 

1000).The number of workers m is increased from 1 to 8 (1 ≤ 

m ≤ 8). The three sets of queriesare no-star regular queries 

with coverage 10% (low), 60% (medium) and 95% (high) 

respectively. We choose 10 million data size as the fixed data 

size so that it does not exceedthe memory size of a single 

worker machine.Figure 4.4: Time for 1000 insertions as a 

function of the number of workers.(N = 10M,k = 16,d = 

8)Figure 4.5: Time for 1000 queries with different query 

coverage‟s as a function of the number of workers.(N = 

10M,k = 16,d = 8)Figure 4.6: Speedup for 1000 queries with 

different query coverage as a function of the number of 

workers.(N = 10M,k = 16,d = 8)Figure 4.4 shows the Stream-

OLAP outperforms the CR-OLAP. The 1D-Index does not get 

speedup on insertion time. We did a test to break down the 

execution time of everyoperation involved in the Stream-

OLAP and found it spent most time on data serializationand 

network communication. The actual data appending operation 

only took very littletime. Each insertion requires serialization 

and data transportation from the master to theworkers. 

Therefore, no matter how many workers are used, the total 

time on completing1000 insertions is very close. The PDCR-

tree is slower in insertions since it has overheadlike node 

splits during insertions. But while increasing the number of 

workers, the PDCR-tree insertion time is speedup since the 

distributed data structure allows multiple workers toprocess 

insertions concurrently. Figure 4.5 illustrates that the time for 

queries is decreasingby increasing the number of workers (m). 

Figure 4.6 demonstrates that both the PDCR-treeand the 1D-

Index achieve close to a linear speedup by increasing the 

number of workers.However, the PDCR-tree takes a much 

smaller absolute time to run queries for all cases ofquery 

coverage. 

Figure 4.4: Time for 1000 insertions as a different query coverage’s as a function of the number of workers.(N = 

10M;k =  16; d = 8) 

Figure 4.5: Time for 1000 queries with function of the number of workers.(N =10M;k = 16;d = 8) 

 

Figure 4.6: Speedup for 1000 queries with different query coverage as a function of thenumber of workers.(N = 10M;k = 16;d 

= 8) 

Test 3: Increasing data size 
The third test is used to evaluate the performance by scaling 

up the size of systems . Thenumber of worker nodes is 

increased from 1 to 8 (1≤m≤8) to handle the increasing 

datasize from 10 million to 80 million tuples (10M≤ N≤80M) 

respectively. The master nodeis using a m2.4xlarge instance 

and all the worker nodes are using the m3.2xlarge 

instances.The data set processed has 8 dimensions (d=8) and 

three sets of 1000 queries (q = 1000)are executed after data 

insertions.Figure 4.7: Time for 1000 insertions as a function 

of the data size (number of items currently stored).(k = 16,d = 

8)Figure 4.8: Time for 1000 queries with different query 

coverage as a function of the data size (number of items 

currently stored).(k=16,d=8).From figure 4.7and 4.8, we 

observe that by increasing the number of workers to process 

the increasing size of data the insertion time is decreased and 

the query performanceof the system stays stable. The 

execution of insertions in the CR-OLAP is slower thanthe 

execution of insertions in the Stream-OLAP. However when 

the number of workers isincreased to 8, the total time of 

insertions in both systems is close. Conversely, the querytime 

of the PDCR-tree is significantly faster than the query time of 

the 1D-index is. Thistest shows the system can be scaled up 

and process much larger data size with more numberof 

workers without slowing down overall performance. 
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Figure 4.7: Time for 1000 insertions as a function of the data size (number of items currently stored).(k = 16;d = 8) 

Figure 4.8: Time for 1000 queries with different query coverage as a function of the data size (number of items 

currently stored).(k = 16;d = 8) 

Test 4: Increasing query coverage 
This test is used to evaluate the impact of every individual 

dimension on queries performance with different coverage. It 

was performed on 40 million tuples from the fact 

table(N=40M) with 8 dimensions (d=8) as an initial data set. 

The number of workers is 8 (m=8).We executed 9 sets of 

queries with the query coverage from 10% to 90% and from 

91%to 99%. Among the 9 sets, 8 sets have a “*” in one of the 

dimensions in each and one query set contains no-star regular 

queries.Figure 4.9: Time for 1000 queries as a function of 

query coverages in PDCR- tree Impact of queries having 

value “*” for different dimensions.(N = 40M,m = 8,k = 16,d = 

8,10% <= Coverage <= 90%)Figure 4.10: Time for 1000 

queries as the query coverage in PDCR-tree Impact of queries 

having value “*” for different dimensions.(N = 40M,m = 8,k 

= 16,d = 8,91% <=Coverage <= 99%)Figure 4.9 and 4.10 

show the CR-OLAP is efficient with either very low or very 

high query coverage. When the query with a low coverage 

like 10%, 20% or 30%, there are nottoo many directory nodes 

whose MDSRs intersect the MDSs of a query, so the PDCR-

treeonly traverses a small amount of subtrees; When the query 

has a very large coverage like95% to 99%, the results should 

be containing a large portion of the data in the database.When 

traversing the PDCR-tree, the MDS of a query covers the 

MDSRs of many directorynodes in the top part of tree and the 

aggregation value stored in those directory nodes canFigure 

4.11: Time for 1000 queries as a function of query cover ages 

in 1D- Index Impact of queries having value “*” for different 

dimensions.(N = 40M,m = 8,k = 16,d = 8,10% <= Coverage 

<= 90%)Figure 4.12: Time for 1000 queries as the query 

coverage in 1D-Index Impact of queries having value “*” for 

different dimensions.(N = 40M,m = 8,k = 16,d = 8,91% 

<=Coverage <= 99%)be reported as a part of results. The 

PDCR-tree doesn‟t need tracing down very deep inthe tree. 

However, the 1D-index does not have such advantage. The 

higher coverage thequery result has, the more data nodes in 

the arrays need to be scanned. As a result, theperformance is 

constantly decreased by increasing the query coverage. (see 

figure 4.11,and 4.12)Comparing the PDCR-index to the 1D-

tree, the performance of a PDCR-tree is at least 5to 20 times 

faster than the performance of a 1D-index is in most cases. 

The Figure 4.13 and 4.14 show the ration of the query time of 

1D-index over the query time of the PDCR-tree. Itproves that 

the performance of the CR-OLAP beats the performance of 

the Stream-OLAP.Figure 4.13: Ratio of 1D-index/PDCR- tree 

taken for 1000 queries as the query coverage increasesFigure 

4.14: Ratio of 1D-index/PDCR- tree taken for 1000 queries as 

the query coverage increases 

 

Figure 4.9: Time for 1000 queries as a function of query coverages in PDCR-tree impact of queries having value “*” for 

different dimensions (N = 40M;m =8;k = 16;d = 8;10% <= Coverage <=90%) 

Figure 4.10: Time for 1000 queries as the query coverage in PDCR-tree Impact of queries having value “*” for different 

dimensions. (N = 40M;m = 8; k =16;d = 8;91% <=Coverage <= 99%) 

 

Figure 4.11: Time for 1000 queries as a function of query coverages in 1D index impact of queries having value “*” for 

different dimensions.(N = 40M;m =8;k = 16;d = 8;10% <= Coverage <= 90%) 

Figure 4.12: Time for 1000 queries as the query coverage in 1D-Index Impact of queries having value “*” for Different 

dimensions. (N=40M;m=8,k=16;d=8;91% <=<=Coverage <= 99%) 
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Figure 4.13: Ratio of 1D-index/PDCR Tree taken for 1000 queries as the query coverage increases 

Figure 4.14: Ratio of 1D-index/PDCR- tree taken for 1000 queries as the query coverage increases 

Test 5: Varying query pattern with star at 

different hierarchy levels 
This test is used to evaluate the performance of selected query 

patterns. It is performedon 40 million tuples from the fact 

table (N = 40M) with 8 dimensions (d=8) as initialinsertions. 

The number of workers is 8 (m=8). The query sets include 

queries havingone or more “*” at different hierarchy levels in 

the “Date Dim” dimension. We selected7 combinations of “*” 

and values in the hierarchy levels “Year”, “Month” and “Day” 

asthe query patterns for our test. They are *-*-*, year-*-*, 

year-month-*, year-month-day, *-month-*, *-month-day and 

*-*-day. Those query patterns cover many OLAP queries 

suchas “Total sales in stores located in Ontario and Alberta 

from February to May of all years”or “Total sales in all stores 

in Ottawa in May 2012” etc. We generated 3 sets of queries 

foreach pattern with the coverage 10%, 60% and 95% 

respectively.Figure 4.15: Time for 1000 queries as a function 

of query coverage for queries with multiple “*” values for 

PDC-tree.(N = 40M,m = 8,k = 16,d = 8)Figure 4.16: Time for 

1000 queries as a function of query coverage‟s for queries 

with multiple “*” values for both PDCR- tree and 1D-

index.(N = 40M,m = 8,k = 16,d = 8)From figure 4.15, we 

observe that when the query has value in a higher hierarchy 

level,the CR-OLAP performs better. Figure 4.16 also 

demonstrates thatthe PDCR-tree consistently outperforms the 

1D-index no matter what query coverage andquery patterns 

are. Therefore, the CR-OLAP system has the advantage to 

support all kindsof OLAP queries and operations. 

 

Figure 4.15: Time for 1000 queries as a function of query coverage for queries with multiple “*” values for PDC-

tree.(N = 40M;m = 8;k = 16;d =16;d = 8) 

Figure 4.16: Time for 1000 queries as a function of query coverages for queries with multiple “*” values for both 

PDCR- tree and 1D-index.(N = 40M;m = 8;k =8) 

Test 6: Changing the type of cloud instance 
This test is used to evaluate the CR-OLAP performance on 

different types of cloud instances. Five types of instances are 

selected and they are the VCL HPC instance, the Amazon 

cc2.8xlarge, cr1.8xlarge, m3.2xlarge and m2.4xlarge. The 

experiments are performedwith initial 10 million data 

(N=10M) with 8 dimensions (d=8) as insertions followed 

bythree sets of 1000 queries (q=1000) with 10%, 60% and 

95% coverage respectively. Webuilt the system on 5 different 

instances and each time created 5 nodes including one 

masterand 4 workers.Figure 4.17: Time for 1000 queries on 

different type cloud instances.(N = 10M,m = 4,k = 16)Figure 

4.18: Time for 1000 insertions on different type cloud 

instances.(N = 10M,m = 4,k = 16)Figure 4.17 and 7.18 show 

that the CR-OLAP is running faster on the Amazon cloudthan 

it is on the VCL cloud. Amazon describes an EC2 computing 

unit (ECU) to measure itsCPU capacity. We expectwhen the 

number of threads is increased in the system or the data size is 

increased, thecluster instances can outperform the regular 

instances. 

 

Figure 4.17: Time for 1000 queries on different type cloud instances.(N =10M;m = 4;k = 16) 

Figure 4.18: Time for 1000 insertionson different type cloud instances.(N =10M;m = 4;k = 16) 
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Test 7: Increasing number of cut level 
The test is used to evaluate the impact of the cut level. The 

experiments are performedwith an initial 10 million data 

(N=10M) with 8 dimensions (d=8) as insertions followedby 

1000 queries (q=1000) with 10% coverage. The cut level is 

the depth of the hat in aPDCR-tree on a master node. We 

increase the cut level from 1 to 10.Figure 7.19: Time for 1000 

queries as a function of the number of cut level in hat.(N = 

10M,m = 4,k = 16)Figure 4.20: Time for 1000 insertions as a 

function of the number of cut level in hat.(N = 10M,m = 4,k = 

16)The Figure 4.19 and 4.20 show that the better performance 

can be achieved when thecut level is smaller. The system is 

designed to use multiple parallelisms including 

parallelcomputing by multiple workers and parallel multi-

threads on each worker. The CR-OLAPdistributes the data to 

multiple workers, therefore, insertions and queries can be 

dispatchedto multiple workers to be executed concurrently not 

only within a worker but also on multiple workers in order to 

improve computing speed.  

 

Figure 4.19: Time for 1000 queries as a function of the number of cut level in hat.(N = 10M;m = 4;k = 16) 

Figure 4.20: Time for 1000 insertions as a function of the number of cut level in hat.(N = 10M;m = 4;k = 16) 

Test 8: Increasing directory node capacity 
This test is used to evaluate the impact of the directory node 

capacity. The experiments are performed with an initial 10 

million data (N=10M) with 8 dimensions (d=8) asinsertions 

followed by four sets of 1000 queries (q=1000) with 10%, 

20%, 60% and 95%coverage respectively. We performed two 

experiments by varying the node capacity from10 to 35 in the 

hat only and in the workers only as well. When changing the 

capacity in thehat, the directory node capacity in the workers 

is fixed to 15, while changing the capacityin the workers, the 

node capacity in the hat is fixed to 10.Figure 4.21: Time for 

1000 queries as a function of the number of directory node 

capacity in hat.(N = 10M,m = 4,k = 16)Figure 4.22: Time for 

1000 insertions as a function of the number of directory node 

capacity in that. (N = 10M,m = 4,k = 16)We notice that when 

increasing the node capacity of directory nodes in the hat, 

thequery time is decreased in high data coverage but increased 

in a low coverage. Whenthe directory node capacity is 

increased, the tree increases its flatness and contains 

moredirectory/data nodes in the hat. Figure 4.21 demonstrates 

that for a low coverage, the querytraverses more nodes in the 

hat so it slows down the search process; for a high coverage, 

thequery can get results from certain directory nodes in the hat 

if the MDSRs is fully coveredwithin query‟s MDSs so it 

speeds up the performance. Figure 4.22 shows the 

insertiontime is improved when the node capacity is increased 

since less node splits happen duringinsertions.Figure 4.23: 

Time for 1000 queries as a function of the number of 

directory node capacity in workers.(N =10M,m= 4,k = 

16)Figure 4.24: Time for 1000 insertions as a function of the 

number of directory node capacity in workers.(N =10M,m= 

4,k = 16)From figure 4.23, for a fixed directory node capacity 

10 in the hat, we observe that thePDCR-tree reaches its 

optimal output when the directory node capacity in the 

workers isnear 10 for queries with a high coverage and is 

around 40 for queries with a low coverage.For insertions, the 

experiment shows the result reach the best at the capacity of 

15 (Figure 4.24).Furthermore, Figure 4.26: Time for 1000 

insertions as a function of the number of di- rectory node 

capacity in both hat and workers.(N = 10M,m = 4,k = 16)With 

the above tests, we know that when changing the value of 

parameters like a cutlevel and a directory node capacity, the 

CR-OLAP can have different behaviors. With afixed 10 

million data set, the system can reach the best output with the 

directory nodecapacity around 10-15 at the cut level 1 or 2.  

 

Figure 4.21: Time for 1000 queries as a function of the number of directory node (N =10M;m=4;k =16) 

Figure 4.22: Time for 1000 insertions as a function of the number of directorycapacity in hat. node capacity in hat.(N = 10M;m 

= 4;k = 16)  
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Figure 4.23: Time for 1000 queries asa function of the number of directory node capacity in workers.(N =10M;m=4;k = 16) 

Figure 4.24: Time for 1000 insertions as a function of the number of directory node capacity in workers.(N =10M;m=4;k = 16) 

 

Figure 4.25: Time for 1000 queries as afunction of the number of directory node capacity in both hat and workers.(N = 10M;m 

= 4;k = 16) 

Figure 4.26: Time for 1000 insertions as a function of the number of directory node capacity in both hat and workers.(N = 

10M;m = 4;k = 16) 

 

5. CONCLUSION 
Business Intelligence and its tools such as data warehouses, 

OLAP servers and report systems have their important roles in 

organizations to assist in making decision precisely 

andreacting to market changing quickly. With the increasing 

globalization of market and thegrowing complexity of 

businesses, there is an increasing demand on BI and OLAP 

systems. The current OLAP systems have been facing 

challenges such as storage spaces foran increasing data size, 

query responses for an efficient performance, or data 

freshness foranalysis in real-time. In many common practices, 

an OLAP server loads data periodicallyto its data cubes. The 

loading procedures usually can take hours to be completed 

sincemany extra data and calculations are added during 

loading. The cube contains mostly staticand pre-aggregated 

data but provides multi-dimensional views to users. Such a 

fashioncannot meet the needs of modern businesses. Many 

decision makers are seeking real-timeOLAP systems which 

can provide the analysis with integrated data source in real-

time suchthat the results are not based on outdated 

information. However, it is a challenge to providesuch a 

system which involves large portion data aggregation and 

responses user requestswith low latency and high throughput. 
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