
International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

1

Synchronous CR-OLAP Tool for Efficient Parallel

Computing

Mani Sarma Vittapu, Ph.D.
Assistant Professor, Dept. of. ITSC

Addis Ababa Institute of
Technology

Addis Ababa University, Addis,
Ethiopia

Venkateswarlu Sunkari,
Ph.D.

Assistant Professor,Dept. of. ITSC
Addis Ababa Institute of

Technology
Addis Ababa University, Addis,

Ethiopia

AtoYoseph Abate
HOD of ITSC

Addis Ababa Institute of
Technology,

Addis Ababa University, Addis,
Ethiopia

ABSTRACT
Real time OLAP , or RTOLAP, is the capability to quickly

retrieve, aggregate, analyze and present multidimensional data

for cubes whenever there are changes to the data in the

relational data sources, without having to run heavy

processing on the cube. A big advantage of real time OLAP is

that it calculates all relevant data and provides immediate

output. One of the main roles of an RTOLAP system is that

data is stored directly in main memory, or in an in memory

database, enabling quicker access to the data. Another factor

affecting the speed of calculation is compression data is

compressed, in such a way that it can be accessed must faster

in its compressed form. Additionally, pre-calculated values

are not stored, therefore avoiding “data explosion”. In contrast

to queries for online transaction processing (OLTP) system

that typically access only a small portion of a database, OLAP

queries may need to aggregate large portion of a database

which often leads to performance issues. In this paper

introduced CR-OLAP, a cloud based Real Time OLAP

system based on a new distributed index structure for OLAP,

the distributed PDCR tree, that utilizes a cloud infrastructure

consisting of (m+1) multicore processors. With increasing

database size, CROLAP dynamically increases m to maintain

performance. The distributed PDCR tree data structure

supports multiple dimension hierarchies and efficient query

processing on the sophisticated dimension hierarchies which

are so central to OLAP system. It is particularly efficient for

complex OLAP queries that need to aggregate large portions

of the data warehouses. The static data cube approach

proposed by Gray et.al. and materialize all or a subset of the

cuboids of the data cube in order to ensure adequate query

performance. Practitioners have called for some time for a

real-time OLAP approach where the OLAP system gets

updated instantaneously as new data arrives and always

provides an up-to-date data warehouse for the decision

support process. However, a major problem for real-time

OLAP is the significant performance issues with large scale

data warehouses. The main aim of our research is to address

these problems through the use of efficient parallel computing

methods. In this paper proposed a distributed data structure

for real time OLAP. To our knowledge, the real-time OLAP

system that has been parallelized and optimized for

contemporary multi-core architectures allows for multiple

insert and multiple query transactions to be executed in

parallel and in real-time.

Keywords
RTOLAP,CROLAP,OLTP,MOLAP, PDCR, performance

latency

1. INTRODUCTION
Online analytical processing (OLAP) is typically defined as

the processing and analysis of shared multidimensional data.

In practice, OLAP systems analyze data drawn from large,

low-transaction and high-latency relational databases, such as

data warehouses. The purpose of such analysis is to aggregate

and organize business information into a readily accessible,

easy to use multidimensional structure. OLAP systems store

some or all of this aggregated information either within tables

in a relational database (also known as relational OLAP, or

ROLAP, storage) or in specialized data structures in

multidimensional databases (also known as multidimensional

OLAP, or MOLAP, storage). OLAP queries can be answered

much more quickly than similar relational queries because the

aggregations and computations have already been completed

and the resulting derived values are readily available from a

ROLAP table or MOLAP storage.Retrieving, analyzing, and

aggregating large amounts of historical data can consume

extensive time and resources. OLAP systems do not usually

run against online transaction processing (OLTP) or other

high-transaction, low-latency databases because the time and

resources required can affect the performance of the relational

database. Instead, OLAP systems typically run against data

warehouses, which are updated relatively infrequently, to

support the requirements of most commercial and financial

analysis. Most OLAP systems rely on a "snapshot" approach,

periodically retrieving and aggregating data for later

presentation and analysis. Because OLAP systems typically

rely on stored, derived values to answer queries, the

aggregation process must also reasonably match the update

latency of the underlying relational data source to avoid

presenting overly "stale" data.Products that can perform

aggregations quickly enough to provide multidimensional data

from low-latency data sources have challenged this traditional

view of OLAP in recent years. This functionality, which is

referred to as real-time OLAP, is most often used in financial

or industrial scenarios where multidimensional analysis of

low-latency data is crucial to the organization's business

intelligence requirements.In contrast to queries for on-line

transaction processing (OLTP) systems which typically access

only a small portion of the database (e.g. update a customer

record), OLAP queries may need to aggregate large portions

of the database (e.g. calculate the total sales of a certain type

of items during a certain time period) which may lead to

performance issues. Therefore, most of the traditional OLAP

research, and most of the commercial systems, follow the

static data cube approach proposed by Gray et al. and

materialize all or a subset of the cuboids of the data cube in

order to ensure adequate query performance. However, the

traditional static data cube approach has several

disadvantages. The OLAP system can only be updated

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

2

periodically and in batches, e.g. once every week. Hence,

latest information cannot be included in the decision support

process. The static data cube also requires massive amounts of

memory space and leads to a duplicate data repository that is

separate from the on-line transaction processing (OLTP)

system of the organization. Practitioners have therefore called

for some time for an integrated OLAP/OLTP approach with a

real-time OLAP system that gets updated instantaneously as

new data arrives and always provides an up- to-date data

warehouse for the decision support process. Some recent

publications have begun to address this problem by providing

“quasi real-time” incremental maintenance schemes and

loading procedures for static data cubes). However, these

approaches are not fully real- time. A major obstacle is

significance performance issues with large scale data

warehouses.

The remainder of this paper is organized as follows. In

Section 2describes the PDCR tree data structure and in

Section 3describing CR-OLAP system for real-time OLAP on

cloud architectures. Section 4 shows the results of an

experimental evaluation of CR-OLAP, and Section 5

concludes the paper.

2. PDCR TREES
The CR-OLAP runs on multiple nodes provided by cloud

service providers. It containsseveral components including a

distributed PDCR tree on m+1 nodes, a network

communicator, a load balancer, a migration API and a

message serialization API.The building of PDCR-tree starts

on one node called master. When the tree grows bigenough,

we start building the subtrees on other nodes called workers.

After the initial load in ,the whole PDCR-tree is distributed

on multiple nodes. The master contains the top part ofthe tree

and we call it hat. Each worker contains a number of subtrees

and each subtreeis the same as a small PDCR-tree. After the

initial built, the system is ready to take clientrequests such as

new data insertions and range queries. The master node also

maintainsthe information of distributed subtrees. It uses a

lookup map to record which workers thesubtrees are stored.

When the master receives requests, the requests will be

executed inparallel in the hat. If the master needs to dispatch

the tasks to workers, it will look up itsubtree-worker map to

find the workers storing the relevant subtrees. Each worker

whoreceives its tasks will complete the tasks in parallel

locally and return the results back tothe master. When the

master node gathers all results returned by the workers, it

generatesa final result for the request. The final result is sent

over to the client at the end.A load balancer runs periodically

and moves subtrees from workers with heavy loads toworkers

with lighter loads. All instructions to trigger tasks are

represented as messages (forexample,migration request,

sending subtree, query request and insertion request).

Eachmessage carries its own data members such as a

destination worker id, a source worker idand task instructions.

Sending or receiving messages between nodes is handled by a

network communicator. We implemented a communicator

with ZeroMQ, a high-performanceasynchronous messaging

library. Every message is serialized to a string by a message

serializer and pushed to a message queue. Then, the network

communicator is responsible forretrieving messages from the

queue and sending them to their destination nodes. Once

adestination node receives a message the message de-

serializer de-serializes the string andrecovers the original

message. Then the worker performs the message task.

Figure 1.System Architecture

2.1 Distributed PDCR tree and it’s data

structure
The PDCR-tree is stored on cloud nodes. Each cloud node

stores several subtrees of data. A distributed PDCR tree is a

data structure containing a hat and a set of subtrees T, T={t1,

t2, t3...ti}, where ti is a subtree. The hat is stored in the master

node and the subtrees aredistributed between several worker

nodes. A distributed PDCR-treewith a hat in the master and

subtrees in several workers.Starting from the root directory

node on the master, PDCR-tree is growing by insertingnew

data one by one. A directory node has its node capacity, for

example, maximum 15children nodes. When the number of

children nodes exceeds the node capacity, a node splitwill be

performed. There is two types of node split: vertical split (V-

Split) and horizontal split (H-Split).An H-Split is performed

when the number of children nodes of a directory node isfull,

but the parent node of this directory node can still contain

more children nodes. Ahorizontal link will be added between

the two split nodes. The directory node capacity is 2 and the

Cut level is 1. R is the root. A is the directory0node with

depth 1 and contains 2 children nodes. If a new data were

inserted to the nodeA, A would contain 3 nodes which

exceeds its children capacity, but A‟s parent node R hasnot

reach its node capacity yet, therefore, An H-split can be

performed and split A to twonodes A and B. A has the sibling

node link pointing to B. The 3 childrennodes are distributed

between A and B that leads to minimal MDS overlap between

A andB.If a directory node reaches its node capacity and its

parent node also contains childrenwith full capacity, both a V-

Split and an H-Split will be triggered. An H-split along with

aV-split can make the two subtrees become independent. The

directory node gets pushed 1level down in the tree. If a new

data were added into node A, the numberof children nodes of

A would exceed the capacity and the number of children

nodes of R,the parent of A, also would exceed the capacity;

hence, both the H-split and the V-split are called. The H-Split

splits A to A and A0; The V-Split adds a new node C as the

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

3

parent of A and A0 and links C to the parent node R which A

linked to before the split. The linkbetween A and B from

previous H-Split can be removed. The subtrees C and B

become independent. A and A0 is at the depth level of 2 of the

hat on the master.Once the depth of directory node exceeds

the Cut level, the directory node with itschildren nodes will be

moved to the worker node. The depth of A and A0 exceeds

the Cut level, so A and A0 with their data nodes are moved to

a worker node is showing the continuously growing of the

PDCR-tree. A new datais added to A on a worker and both the

V-split and the H-split is executed. A gets split to A and A00,

D is the result of the V-split. The link from A to A0 is

removed and the subtree D and A0 is now independent. We

also move one of the subtree (e.g. the subtree of A0)to another

worker so the work load is spread out between workers.

2.2 Migration process and load balancer
Migration is a mechanism to reduce the load of a worker that

is experiencing a high loadsuch as high memory usage or

CPU usage. When the performance is slow due to the

highload on a worker, a migration process is triggered to

move one of subtrees to another workerhaving a lower load in

the system. In the previous proof of independent subtrees, we

know a subtree whose root is created from a V-split has no

links with its neighbor subtrees. Theindependent subtrees can

be the candidates to be moved between nodes and only

parentlinks of the root of a migration subtree need to be

maintained.

The load balancer runs periodically (e.g. every few minutes)

to check the memoryusage on each node. Once the load

balancer detects a worker having memory usage exceeda

threshold, it will trigger the migration. The process choses a

subtree (called migrationsubtree) and moves it from one

worker (called source worker) to another worker

(calleddestination worker). The migration process can also be

triggered when the initial subtreeson a worker become

independent. By doing that, the subtrees are distributed to

multipleworkers so that the work load can be potentially

spread out between workers. Building distributed PDCR-tree

from master to worker the migration process sends a

migration subtree to a destination worker. The

migrationsubtree is a snapshot of the subtree at the time point

when migration starts. To achieve this, we could choose to

lock the whole subtree to perform migration. However, when

a subtreeis very large, the insertions can be interrupted by the

lock for a long period of time tillthe migration is completed.

Instead, our method allows insertions to be still performedon

the migration subtree in the source worker during a migration

and all the queries that traverse the migration subtree can still

include the most recent new data. Once a migrationstarted, if a

directory node A needs to be updated, a copy of the node A

will be storedto “Links to backup” before any update is made.

The details are showed in Algorithm1 Node Backup. The

node update can be any type of updates including MDSR

update,measure update, node split and inserting a new data

node under a directory node. If adirectory node has never

been updated during a migration, the copy is not necessary to

bemade. Creation of the backup for a directory node is done at

the first update and is onlyperformed once since we only need

one backup of a node to preserve its old structure beforethe

migration.

Algorithm 1 Node Backup //Receive directory node

Ptr and creates a backup of it ifneeded

1: FOR each directory node Ptr, before it gets

updated (MDS update, Measure update, Split, or

Insertion) DO

2: If Creation-TS(Ptr) < TS(migration) Then

If (Link to backup(Ptr)==Null) Then

LOCK (Ptr).

Make a backup of Ptr.

Update Link to backup.

If (children of Ptr are data nodes) Then

Make a backup of them, and update their backup

links.

Release the LOCK for Ptr.

When migrating the subtree from one worker to another, for

those directory nodes/datanodes having no update, they are

directly copied over to the destination worker; for thosenodes

having been updated, their copies stored in the “Links to

backup” shall be transferred to the destination worker. After

the migration of a subtree is completed, in thedestination

worker we apply the same insertions that were sent to the

subtree in the sourceworker during the time of migration,

therefore, the migrated subtree in the destination caninclude

the new data coming into the system during a migration and

be ready for taking

3. CR_OLAP: CLOUD BASED REAL-

TIME OLAP
The CR-OLAP is a parallel real-time OLAP system designed

for cloud based distributedsystems. The key component is the

distributed PDCR-tree which is an extension of thePDC-tree.

Using the hierarchy of dimensions, the PDCR-tree can group

the data at different hierarchy levels. The data set is

partitioned and distributed on multiple cloud machines so that

any insertions and aggregations operations can be executed in

parallel. The algorithms are given to illustrate the parallel

operations. The MDS ids are modified to bitrepresentation in

order to improve the system performance. A MDSR (the

range of MDSids) is used for describing directory nodes so

that unordered dimensions can also be expressed in an ordered

manner. This helps to reduce the system response time.

Meanwhile, the CR-OLAP can handle range queries at any

hierarchy level as well as point queries.The distributed PDCR

tree is able to handle operations like Insertions and

Aggregations.An insertion operation is to add a new data into

the system; An aggregation operation includes SUM, MAX,

MIN, MEAN, AVG etc. For an aggregation operation, the

systemreports the results to the client. When clients send any

requests to the system, these operations are queued in the

shared input queue on the master node. The Task

Assignment(Algorithm 2) is invoked to dispatch the requests

to different processes. The correspondingprocesses all start

from the master node and then the tasks are distributed to the

relatedworker nodes. When each worker completes its task

and sends back the results, the masternode will add each

worker‟s result together and reply it to the client.

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

4

3.1 CR-OLAP Operations and Algorithms

Algorithm 2 Task Assignment //Picks the next task

in the client queue

Repeat

1: Pick the next query q from client queue

2: Case“q type”== “Insertion Query”, assign a

thread for q, and run “Insertion Algorithm”

3: Case “q type”== “Aggregation Query”, assign

a thread for q, and run “Aggregation Algorithm”

Until (there is a query in Q)

Algorithm 3 Insertion Algorithm on the master

//insertion of data node d in distributed

PDC-tree X 1: Start from R (the root of the hat),

and set Ptr point to R.

Repeat

2: If MDS(d) is contained in the MDSR of only one

of the children of Ptr Then set Ptr equal to

the directory node for that child.

3: If MDS(d) is contained in the MDSR of more than

one of the entries of Ptr Then set Ptr equal

to the root of the child sub-tree with minimum

number of data nodes.

4: If MDS(d) is not contained in any MDSR of a

child of Ptr Then

a. Make a copy Ptr’ of node Ptr.

b. For each child C of Ptr’: Add the new data item d

to C and calculate the MDS enlargement

and overlap caused.

c. Set Ptr = the child which causes minimal overlap.

UNTIL Ptr is a leaf node in the hat

5: If (Ptr is pointing to a data node) Then

a. Set Ptr=parent of Ptr.

b. Acquire a LOCK for Ptr.

c. Insert data item d into Ptr and update the

measure(s), MDS(Ptr), and time stamp of Ptr

i.e. TS(Ptr).

d. If capacity of Ptr is exceeded Then

1. WHILE (Ptr ! = R) && (capacity of Ptr>= Cap)

set Ptr=Parent of Ptr.

2. If (Ptr==Root) Then

a. Call V Split for the parent of d, and create a new

node Y.

b. If (Depth of Y == Cut) Then

1. (Counter++, assign counter to the new sub-tree)

2. select next worker using load balancing strategy

3. Send children of Y to the chosen worker to

initiate a sub-tree in it.

Else Call Algorithm 5 (Split Bubbleup) Until

(capacity of Ptr<=Cap)

6: If (Ptr is pointing to a Sub-tree’s number) Then

a. In worker-subtree map, find the worker, w, which

stores t

b. If t is migrating, send the insert query to

migrating destination worker

c. Send the insert query to w

Algorithm 4 Insertion Algorithm on Worker
//insertion of data node d in sub-tree t with

root r 1: Start from r (the root of t), and set Ptr

point to r.

2: If MDS(d) is contained in the MDSR of only one

of the children of Ptr Then set Ptr equal to

the directory node for that child.

3: If MDS(d) is contained in the MDSR of more than

one of the entries of Ptr Then set Ptr equal

to the the root of the child sub-tree with minimum

number of data nodes.

4: If MDS(d) is not contained in any MDSR of a

child of Ptr Then

a. Make a copy Ptr’ of node Ptr.

b. For each child C of Pt’: Add the new data item d

to C and calculate the MDS enlargement

and overlap caused.

c. Set Ptr = the child which causes minimal overlap.

UNTIL Ptr is a data node

5: Set Ptr=parent of Ptr.

6: If TS(migration) is set Then Call Algorithm Node

Backup(Ptr)

7: Acquire a LOCK for Ptr.

8: Insert data item d into Ptr and update the

measure(s), MDS(Ptr), and time stamp of Ptr i.e.

TS(Ptr).

9: If capacity of Ptr is exceeded Then

a. WHILE (Ptr ! = r) && (capacity of Ptr>= Cap)

set Ptr=Parent of Ptr.

b. If (Ptr==r) Then

1. sends a request to the master to check up to

which level in the hat, ancestors of Ptr

are full

2. If capacity of all directory nodes up to root in hat

is full, Then Call Algorithm 6

V Split for the parent of d.

3. If capacity is not full up to root in hat, Then Call

Algorithm 5 (Split Bubbleup)

UNTIL (Ptr==Parent of r (leaf of the hat))

4. Send a request to the worker queue to call

Algorithm 5 (Split-bubbleup) UNTIL

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

5

(capacity of Ptr<=Cap) in the master for Ptr.

Else Call Algorithm 5 (Split Bubbleup) Until

(capacity of Ptr<=Cap)

Algorithm 5 Split Bubbleup //Bubbles up the split

of directory nodes starting from the

directory node Ptr Until a given condition is met.

Repeat

1: Acquire a LOCK for the parent of Ptr.

2: If capacity of Ptr is exceeded Then

a. MakePtr’ the right sibling of Ptr and update the

right sibling links accordingly.

b. Set the time stamp TS of Ptr’ equal to the old TS

value for Ptr and assign Ptr a new time

stamp TS representing the current update.

c. If TS(migration) is set Then Call Algorithm Node

Backup(Parent of Ptr).

3: Insert a new link for Ptr’ in the parent of Ptr.

4: Update the Measure and MDSR fields for the

parent of Ptr.

5: Release the LOCK for Ptr.

6: Set Ptr = parent of PtrUNTIL(the given condition

is true)

7: Release the lock on Ptr

Algorithm 6 V Split //Receives directory node Ptr,

performs a H Split on Ptr, and creates

a new parent for Ptr, Ptr’

1. If TS(migration) is set Then

a. Call Algorithm 1 Node Backup(Ptr)

b. Call Algorithm 1Node Backup(Parent of Ptr)

2. Acquire a LOCK for Ptr and the parent of Ptr.

3. Split Ptr into two directory nodes Ptr and

Ptr’(DC-tree split algorithm, sections 4.2 and 4.3).

4. Make Ptr’ the right sibling of Ptr and update the

right sibling links accordingly.

5. Set the time stamp TS of Ptr’ equal to the old TS

value for Ptr and assign Ptr a new time stamp

TS representing the current update.

6. Update MDSR of Ptr and Ptr’, and their

measures.

7. Create a new directory node D with a new TS,

Add two entries for Ptr,Ptr’ in D as its children,

and update MDSR(D) covers MDSR(Ptr) and

MDSR(Ptr’).

8. Replace the entry of Ptr in the old parent of Ptr

with an entry for D.

9. Remove the Link from left sibling of Ptr to Ptr.

10. Release the LOCK for Ptr and the old parent of

Ptr.

Algorithm 7 Aggregation Query Algorithm on the

Master //Compute the aggregate value

for query q in partitioned PDC-tree X

1: Set Ptr=R, Push Ptr into a stack S for query q.

Repeat

2: Pop top item from stack S, call it Ptr’.

3: If the time stamp (TS) of Ptr’ is smaller (earlier)

than the time stamp (TS) of Ptr Then

3.1: Using the “Link to Sibling” field in directory

nodes, traverse the list of siblings of Ptr.

Push all sibling nodes up to a node with its TS equal

to TS of Ptr’ (Push from right).

3.2: Push Ptr again into stack S.

Else

3.3: FOR each child C of Ptr DO

3.3.1: For each dimension of C where MDSR(C)

and range MDS(q) are at different levels in

the dimension hierarchy, convert the lower level

entry to the higher level.

3.3.2: If MDSR(C) is contained in range MDS(q)

Then add Measure(C) to the result value.

3.3.3: If MDSR(C) overlaps range MDS(q) but is

not contained in it, Then

If (C is pointing to a sub-tree) Then Send the

Aggregation Query to the worker

Counter++

Else Push C into stack S UNTIL stack S is empty.

4. IF query is distributed to workers Then

Wait all queries are finished on workers

Calculate the aggregated results.

5. Report the aggregation value to client.

Algorithm 8 Aggregation Query Algorithm on

Worker //Compute the aggregate value for

query q in sub-tree ton worker w

1: Set Ptr=r, Set result value Total=0, Push Ptr into

a stack S for query q.

Repeat

2: Pop top item Ptr’ from stack S.

3: If the time stamp (TS) of Ptr’ is smaller (earlier)

than the time stamp (TS) of Ptr Then

3.1: Using the “Link to Sibling” field in directory

nodes, traverse the list of siblings of Ptr.

Push all sibling nodes up to a node with its TS equal

to TS of Ptr’ (Push from right).

3.2: Push Ptr again into stack S.

Else

3.3: FOR each child C of Ptr DO

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

6

3.3.1: For each dimension of C where MDSR(C)

and range MDS(q) are at different

levels in the dimension hierarchy, convert the lower

level entry to the higher level.

3.3.2: If MDSR(C) is contained in range MDS(q)

Then

add Measure(C) to Total.

3.3.3: If MDSR(C) overlaps range MDS(q) but is

not contained in it, Then

Push C into stack S UNTIL stack S is empty.

3.2 CR-OLAP query types
The PDCR tree is designed to answer a set of queries in

parallel. For a fact table with d dimensions in a data

warehouse, the set of queries Q is defined as {q1, q2, q3,..qd}

where 1 ≤ i ≤ d, and qi is a set of values to be searched in

dimension i. The set of values in qi canbe represented in the

following formats:

1. Multiple ranges of values covering a contiguous range of

values in a dimension i.This type of query value is used only

for ordered dimensions such as date, time, etc. .For example,

assume we have an ordered date dimension with the concept

hierarchyYear-Month-Day, a query containing a set of values

{[2011-*-*, 2013-*-*]} meansdate from 2011 to 2013. To use

MDS ids to represent this query, it becomes {[2011-0-0,

2013-0-0]}. The 0s in the ids can be interpreted as * that we

usually have it inSQL queries and it means All.

2. Multiple MDS Ids at any level of the hierarchy of a

dimension i.Each MDS Id in a hierarchy level l in dimension i

covers many distinct MDS Ids inthe level l+1 of the

dimension. This type of query values is used for both ordered

andunordered dimensions such as Location, Product, Date,

etc. For example, assume wehave a store dimension having

the hierarchy Counry-Province-City-StoreId, a

querycontaining a set of values {Alberta, Ontario} means all

stores located in the provincesof Alberta and Ontario. The

MDS Ids that represent the query is {Canada-Alberta-0-0,

Canada-Ontario-0-0}. In the implementation, „Canada‟,

„Alberta‟, „Ontario‟ and„0‟ is presented in total 64-bits

integer. There are two types queries that the CR-OLAP

system can support to answer. One is arrange query and the

other one is a point query.

1. Range queries for a dimension i:

qi={ [low IDi1 , high IDi1] , [low IDi2 , high IDi2], ... , [low

IDin , high IDin] } , where low IDij represents the lower

bound of the jth given range in dimension i, andhigh IDij

represents the upper bound of the jth given range in a

dimension i.

2. Point queries for dimension i:

qi={ IDi1 , IDi2 ,... , IDin } , where IDij represents the jth

given MDS ID in dimension i. Note that IDs can be in

different levels of dimension i.

4. EXPERIMENT AND TESTING OF

CR-OLAP

4.1 Introduction
The network communicator, the message serializer and the

PDCR-tree is developed as separate APIs. The ZeroMQ

library is used for thenetwork communicator and the boost

serialization library is used for the message serializer.We

conducted a large amount of tests to measure the system

response time and throughput.The tests are performed on the

Amazon cloud environment and astream OLAP system using

One-Dimensional Index which is a linear array structure to

handledata insertions and search queries in parallel. We

explained that the CR-OLAP systemis efficient by comparing

it against the Stream-OLAP system.

4.2 Experimental environment
On the Amazon cloud, there are various types of instances

available. We selected theinstance of m2.4xlarge for the

master node and the M3.2xlarge instance for the worker

_nodes. The M2.4xlarge is an optimized instance for memory-

intensive applications. Itcontains 68G memory and 8 virtual

CPUs which has total 26 elastic computing units(ECU).Each

ECU provides the equivalent CPU capacity of a 1.0 - 1.2 GHz

2007 Opteron or2007 Xeon processor. The M3.2xlarge

instance also has 8 virtual CPUs but it only has30G memory

size. The CC2.8xlarge instance and the CR1.8xlarge instance

are claimedas cluster instances. The cluster instances can be

built in one network which could have10G network speed.

They are 32 cores with hyper threading enabled and also have

highmemory storages. The details are listed in the Table

4.1.We also performed experiments on the Ontario Research

and Education VCL cloud. Instance Family Instance Type

CPU Arch vCPU ECU Memory (GiB) Network Memory

optimized m2.4xlarge 64-bit 8 26 68.4 High General purpose

m3.2xlarge 64-bit 8 26 30 High Compute optimized

cc2.8xlarge 64-bit 32 88 60.5 10 Gigabit. Memory optimized

cr1.8xlarge 64-bit 32 88 244 10 Gigabit. The instance we

choose has 16 cores, 32G memory, 2199 MHZ cpu. A Linux

operating system CentOS 6.3 is installed on each instance

with the GNU GCC4.7 compiler. It supports Open MP to

handle multi-threading to parallelize processes. A ZeroMQ

3.2 is installed as message passing middleware to transfer the

data or transaction instructions between machines.

Table 4.1: Specifications of Amazon cloud instances used in our experiments

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

7

4.2.1 Experimental data
In all experiments of the CR-OLAP, we still use the TPC-DC

benchmark which was used inthe experiments of the PDC-tree

for multi-core processors. The underlying business modelof

the TPC-DS is a retail product supplier. We select the “Store

Sales” fact table which isthe largest fact table among all seven

fact tables. The store sales fact table contains 8 dimensions

and several measures such as quantity, net paid, net profit, etc.

The graph 4.1 liststhe dimensions and the hierarchy schema of

each dimension that was used in the system.The 8 dimensions

include item, store, customer, date dim, time dim, promotion,

house-hold demographics, customer address. In the graph, the

dimensions in left side contain ordered data and the

dimensions in right side contain unordered data.Multiple tests

were conducted to evaluate the time of completing insertions

and querytransactions using distributed PDCR-tree index. The

following scenarios are selected forour experiments.

(1) Increasing number of dimension

(2) Increasing number of workers

(3) Increasing data size

(4) Increasing data coverage for queries

(5) Using combination of star (*) at different

hierarchy levels for queries

(6) Running on different types of cloud instances

(7) Increasing number of cut level

(8) Increasing number of directory node capacity in

master/workers

HammedZaboli performed the experiments of the CR-OLAP

for item 1 to 5, I performedthe experiments of the CR-OLAP

for item 6 to 8.

Figure 4.1: Store Sales Fact table and 8 dimensions and each with its hierarchy scheme

4.2.2 Comparison baseline
In addition, a Stream-OLAP system with a 1-dimensional

array index (1D-Index) is implemented and used to be

compared with the CR-OLAP system with a PDCR-tree

index.Data nodes in the 1D-Index structure are as the same as

they are in the PDCT-Tree index. The Stream-OLAP system

creates an array for every value in the highest hierarchylevel

of a dimension and data nodes are stored in the related arrays

according to the values in the highest hierarchy level of a

dimension. For example, the 1D-Index builds anarray

containing all data nodes who have the value of “2012” in the

highest hierarchy level“Birth Year” of the “customer”

dimension. If there are 10 different values for

“BithrYear”level, the Stream-OLAP creates 10 arrays for the

value of each year. Data nodes in eacharray are not sorted and

are inserted at the end of the array as they arrive. Arrays are

evenlydistributed between the workers to assure parallel

processing of insertions and queries. Ineach array, multiple

queries may search the arrays in parallel. The 1D-index

structures issued to compare its performance with the PDCR-

tree‟s performance and to evaluate the impact of a single-

dimensional index versus a multi-dimensional index for

Hierarchical multidimensional databases. The 1D-index and

the PDCR-tree are different from a B-tree andan R-tree since

the later indices do not designed for the data having hierarchy

structures. Mr. Kong performed the experiments of the

Stream-OLAP for item 1 to 5.

4.3 Analysis of Results
In the following section, we will demonstrate the experiments

results. All tests are performed on m+1 machine (a single

master node plus m worker nodes) with 16 threads oneach

node to concurrently process tasks.

Test 1: Increasing the number of

dimensions
The test is to evaluate the impact on the number of

dimensions. The master node isusing an m2.4xlarge instance

and all the worker nodes are using the m3.2xlarge

instances.The test is performed on 8 workers (m = 8) with 40

million tuples from the fact table (N =40M) as initial

insertions followed by three sets of 1000 queries (q = 1000).

The numberof dimensions d is increased from 4 to 8 (4 ≤ d ≤

8). The three sets of queries includenon-star regular queries,

with the coverage 10%,60%, and 95% respectively. The

coverage is measured by the percentage of the number

ofquery values over the cardinality of the values of an

attribute in a certain hierarchy levelof a dimension. For

example, an unordered dimension Customer Address has 50

differentvalues of the states in US. When the values of all

queries cover 48 states, we say thecoverage is 95%.Figures

4.2 and 4.3 demonstrate the results of the test.

Test 2: Increasing number of workers
The test is used to evaluate the impact by the increasing

number of workers. The master node is using a m2.4xlarge

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

8

instance and all worker nodes are using the

m3.2xlargeinstances. The test is performed on 10 million

tuples from the fact table (N = 10M) with8 dimensions (d=8)

as initial insertions followed by three sets of 1000 queries (q =

1000).The number of workers m is increased from 1 to 8 (1 ≤

m ≤ 8). The three sets of queriesare no-star regular queries

with coverage 10% (low), 60% (medium) and 95% (high)

respectively. We choose 10 million data size as the fixed data

size so that it does not exceedthe memory size of a single

worker machine.Figure 4.4: Time for 1000 insertions as a

function of the number of workers.(N = 10M,k = 16,d =

8)Figure 4.5: Time for 1000 queries with different query

coverage‟s as a function of the number of workers.(N =

10M,k = 16,d = 8)Figure 4.6: Speedup for 1000 queries with

different query coverage as a function of the number of

workers.(N = 10M,k = 16,d = 8)Figure 4.4 shows the Stream-

OLAP outperforms the CR-OLAP. The 1D-Index does not get

speedup on insertion time. We did a test to break down the

execution time of everyoperation involved in the Stream-

OLAP and found it spent most time on data serializationand

network communication. The actual data appending operation

only took very littletime. Each insertion requires serialization

and data transportation from the master to theworkers.

Therefore, no matter how many workers are used, the total

time on completing1000 insertions is very close. The PDCR-

tree is slower in insertions since it has overheadlike node

splits during insertions. But while increasing the number of

workers, the PDCR-tree insertion time is speedup since the

distributed data structure allows multiple workers toprocess

insertions concurrently. Figure 4.5 illustrates that the time for

queries is decreasingby increasing the number of workers (m).

Figure 4.6 demonstrates that both the PDCR-treeand the 1D-

Index achieve close to a linear speedup by increasing the

number of workers.However, the PDCR-tree takes a much

smaller absolute time to run queries for all cases ofquery

coverage.

Figure 4.4: Time for 1000 insertions as a different query coverage’s as a function of the number of workers.(N =

10M;k = 16; d = 8)

Figure 4.5: Time for 1000 queries with function of the number of workers.(N =10M;k = 16;d = 8)

Figure 4.6: Speedup for 1000 queries with different query coverage as a function of thenumber of workers.(N = 10M;k = 16;d

= 8)

Test 3: Increasing data size
The third test is used to evaluate the performance by scaling

up the size of systems . Thenumber of worker nodes is

increased from 1 to 8 (1≤m≤8) to handle the increasing

datasize from 10 million to 80 million tuples (10M≤ N≤80M)

respectively. The master nodeis using a m2.4xlarge instance

and all the worker nodes are using the m3.2xlarge

instances.The data set processed has 8 dimensions (d=8) and

three sets of 1000 queries (q = 1000)are executed after data

insertions.Figure 4.7: Time for 1000 insertions as a function

of the data size (number of items currently stored).(k = 16,d =

8)Figure 4.8: Time for 1000 queries with different query

coverage as a function of the data size (number of items

currently stored).(k=16,d=8).From figure 4.7and 4.8, we

observe that by increasing the number of workers to process

the increasing size of data the insertion time is decreased and

the query performanceof the system stays stable. The

execution of insertions in the CR-OLAP is slower thanthe

execution of insertions in the Stream-OLAP. However when

the number of workers isincreased to 8, the total time of

insertions in both systems is close. Conversely, the querytime

of the PDCR-tree is significantly faster than the query time of

the 1D-index is. Thistest shows the system can be scaled up

and process much larger data size with more numberof

workers without slowing down overall performance.

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

9

Figure 4.7: Time for 1000 insertions as a function of the data size (number of items currently stored).(k = 16;d = 8)

Figure 4.8: Time for 1000 queries with different query coverage as a function of the data size (number of items

currently stored).(k = 16;d = 8)

Test 4: Increasing query coverage
This test is used to evaluate the impact of every individual

dimension on queries performance with different coverage. It

was performed on 40 million tuples from the fact

table(N=40M) with 8 dimensions (d=8) as an initial data set.

The number of workers is 8 (m=8).We executed 9 sets of

queries with the query coverage from 10% to 90% and from

91%to 99%. Among the 9 sets, 8 sets have a “*” in one of the

dimensions in each and one query set contains no-star regular

queries.Figure 4.9: Time for 1000 queries as a function of

query coverages in PDCR- tree Impact of queries having

value “*” for different dimensions.(N = 40M,m = 8,k = 16,d =

8,10% <= Coverage <= 90%)Figure 4.10: Time for 1000

queries as the query coverage in PDCR-tree Impact of queries

having value “*” for different dimensions.(N = 40M,m = 8,k

= 16,d = 8,91% <=Coverage <= 99%)Figure 4.9 and 4.10

show the CR-OLAP is efficient with either very low or very

high query coverage. When the query with a low coverage

like 10%, 20% or 30%, there are nottoo many directory nodes

whose MDSRs intersect the MDSs of a query, so the PDCR-

treeonly traverses a small amount of subtrees; When the query

has a very large coverage like95% to 99%, the results should

be containing a large portion of the data in the database.When

traversing the PDCR-tree, the MDS of a query covers the

MDSRs of many directorynodes in the top part of tree and the

aggregation value stored in those directory nodes canFigure

4.11: Time for 1000 queries as a function of query cover ages

in 1D- Index Impact of queries having value “*” for different

dimensions.(N = 40M,m = 8,k = 16,d = 8,10% <= Coverage

<= 90%)Figure 4.12: Time for 1000 queries as the query

coverage in 1D-Index Impact of queries having value “*” for

different dimensions.(N = 40M,m = 8,k = 16,d = 8,91%

<=Coverage <= 99%)be reported as a part of results. The

PDCR-tree doesn‟t need tracing down very deep inthe tree.

However, the 1D-index does not have such advantage. The

higher coverage thequery result has, the more data nodes in

the arrays need to be scanned. As a result, theperformance is

constantly decreased by increasing the query coverage. (see

figure 4.11,and 4.12)Comparing the PDCR-index to the 1D-

tree, the performance of a PDCR-tree is at least 5to 20 times

faster than the performance of a 1D-index is in most cases.

The Figure 4.13 and 4.14 show the ration of the query time of

1D-index over the query time of the PDCR-tree. Itproves that

the performance of the CR-OLAP beats the performance of

the Stream-OLAP.Figure 4.13: Ratio of 1D-index/PDCR- tree

taken for 1000 queries as the query coverage increasesFigure

4.14: Ratio of 1D-index/PDCR- tree taken for 1000 queries as

the query coverage increases

Figure 4.9: Time for 1000 queries as a function of query coverages in PDCR-tree impact of queries having value “*” for

different dimensions (N = 40M;m =8;k = 16;d = 8;10% <= Coverage <=90%)

Figure 4.10: Time for 1000 queries as the query coverage in PDCR-tree Impact of queries having value “*” for different

dimensions. (N = 40M;m = 8; k =16;d = 8;91% <=Coverage <= 99%)

Figure 4.11: Time for 1000 queries as a function of query coverages in 1D index impact of queries having value “*” for

different dimensions.(N = 40M;m =8;k = 16;d = 8;10% <= Coverage <= 90%)

Figure 4.12: Time for 1000 queries as the query coverage in 1D-Index Impact of queries having value “*” for Different

dimensions. (N=40M;m=8,k=16;d=8;91% <=<=Coverage <= 99%)

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

10

Figure 4.13: Ratio of 1D-index/PDCR Tree taken for 1000 queries as the query coverage increases

Figure 4.14: Ratio of 1D-index/PDCR- tree taken for 1000 queries as the query coverage increases

Test 5: Varying query pattern with star at

different hierarchy levels
This test is used to evaluate the performance of selected query

patterns. It is performedon 40 million tuples from the fact

table (N = 40M) with 8 dimensions (d=8) as initialinsertions.

The number of workers is 8 (m=8). The query sets include

queries havingone or more “*” at different hierarchy levels in

the “Date Dim” dimension. We selected7 combinations of “*”

and values in the hierarchy levels “Year”, “Month” and “Day”

asthe query patterns for our test. They are *-*-*, year-*-*,

year-month-*, year-month-day, *-month-*, *-month-day and

--day. Those query patterns cover many OLAP queries

suchas “Total sales in stores located in Ontario and Alberta

from February to May of all years”or “Total sales in all stores

in Ottawa in May 2012” etc. We generated 3 sets of queries

foreach pattern with the coverage 10%, 60% and 95%

respectively.Figure 4.15: Time for 1000 queries as a function

of query coverage for queries with multiple “*” values for

PDC-tree.(N = 40M,m = 8,k = 16,d = 8)Figure 4.16: Time for

1000 queries as a function of query coverage‟s for queries

with multiple “*” values for both PDCR- tree and 1D-

index.(N = 40M,m = 8,k = 16,d = 8)From figure 4.15, we

observe that when the query has value in a higher hierarchy

level,the CR-OLAP performs better. Figure 4.16 also

demonstrates thatthe PDCR-tree consistently outperforms the

1D-index no matter what query coverage andquery patterns

are. Therefore, the CR-OLAP system has the advantage to

support all kindsof OLAP queries and operations.

Figure 4.15: Time for 1000 queries as a function of query coverage for queries with multiple “*” values for PDC-

tree.(N = 40M;m = 8;k = 16;d =16;d = 8)

Figure 4.16: Time for 1000 queries as a function of query coverages for queries with multiple “*” values for both

PDCR- tree and 1D-index.(N = 40M;m = 8;k =8)

Test 6: Changing the type of cloud instance
This test is used to evaluate the CR-OLAP performance on

different types of cloud instances. Five types of instances are

selected and they are the VCL HPC instance, the Amazon

cc2.8xlarge, cr1.8xlarge, m3.2xlarge and m2.4xlarge. The

experiments are performedwith initial 10 million data

(N=10M) with 8 dimensions (d=8) as insertions followed

bythree sets of 1000 queries (q=1000) with 10%, 60% and

95% coverage respectively. Webuilt the system on 5 different

instances and each time created 5 nodes including one

masterand 4 workers.Figure 4.17: Time for 1000 queries on

different type cloud instances.(N = 10M,m = 4,k = 16)Figure

4.18: Time for 1000 insertions on different type cloud

instances.(N = 10M,m = 4,k = 16)Figure 4.17 and 7.18 show

that the CR-OLAP is running faster on the Amazon cloudthan

it is on the VCL cloud. Amazon describes an EC2 computing

unit (ECU) to measure itsCPU capacity. We expectwhen the

number of threads is increased in the system or the data size is

increased, thecluster instances can outperform the regular

instances.

Figure 4.17: Time for 1000 queries on different type cloud instances.(N =10M;m = 4;k = 16)

Figure 4.18: Time for 1000 insertionson different type cloud instances.(N =10M;m = 4;k = 16)

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

11

Test 7: Increasing number of cut level
The test is used to evaluate the impact of the cut level. The

experiments are performedwith an initial 10 million data

(N=10M) with 8 dimensions (d=8) as insertions followedby

1000 queries (q=1000) with 10% coverage. The cut level is

the depth of the hat in aPDCR-tree on a master node. We

increase the cut level from 1 to 10.Figure 7.19: Time for 1000

queries as a function of the number of cut level in hat.(N =

10M,m = 4,k = 16)Figure 4.20: Time for 1000 insertions as a

function of the number of cut level in hat.(N = 10M,m = 4,k =

16)The Figure 4.19 and 4.20 show that the better performance

can be achieved when thecut level is smaller. The system is

designed to use multiple parallelisms including

parallelcomputing by multiple workers and parallel multi-

threads on each worker. The CR-OLAPdistributes the data to

multiple workers, therefore, insertions and queries can be

dispatchedto multiple workers to be executed concurrently not

only within a worker but also on multiple workers in order to

improve computing speed.

Figure 4.19: Time for 1000 queries as a function of the number of cut level in hat.(N = 10M;m = 4;k = 16)

Figure 4.20: Time for 1000 insertions as a function of the number of cut level in hat.(N = 10M;m = 4;k = 16)

Test 8: Increasing directory node capacity
This test is used to evaluate the impact of the directory node

capacity. The experiments are performed with an initial 10

million data (N=10M) with 8 dimensions (d=8) asinsertions

followed by four sets of 1000 queries (q=1000) with 10%,

20%, 60% and 95%coverage respectively. We performed two

experiments by varying the node capacity from10 to 35 in the

hat only and in the workers only as well. When changing the

capacity in thehat, the directory node capacity in the workers

is fixed to 15, while changing the capacityin the workers, the

node capacity in the hat is fixed to 10.Figure 4.21: Time for

1000 queries as a function of the number of directory node

capacity in hat.(N = 10M,m = 4,k = 16)Figure 4.22: Time for

1000 insertions as a function of the number of directory node

capacity in that. (N = 10M,m = 4,k = 16)We notice that when

increasing the node capacity of directory nodes in the hat,

thequery time is decreased in high data coverage but increased

in a low coverage. Whenthe directory node capacity is

increased, the tree increases its flatness and contains

moredirectory/data nodes in the hat. Figure 4.21 demonstrates

that for a low coverage, the querytraverses more nodes in the

hat so it slows down the search process; for a high coverage,

thequery can get results from certain directory nodes in the hat

if the MDSRs is fully coveredwithin query‟s MDSs so it

speeds up the performance. Figure 4.22 shows the

insertiontime is improved when the node capacity is increased

since less node splits happen duringinsertions.Figure 4.23:

Time for 1000 queries as a function of the number of

directory node capacity in workers.(N =10M,m= 4,k =

16)Figure 4.24: Time for 1000 insertions as a function of the

number of directory node capacity in workers.(N =10M,m=

4,k = 16)From figure 4.23, for a fixed directory node capacity

10 in the hat, we observe that thePDCR-tree reaches its

optimal output when the directory node capacity in the

workers isnear 10 for queries with a high coverage and is

around 40 for queries with a low coverage.For insertions, the

experiment shows the result reach the best at the capacity of

15 (Figure 4.24).Furthermore, Figure 4.26: Time for 1000

insertions as a function of the number of di- rectory node

capacity in both hat and workers.(N = 10M,m = 4,k = 16)With

the above tests, we know that when changing the value of

parameters like a cutlevel and a directory node capacity, the

CR-OLAP can have different behaviors. With afixed 10

million data set, the system can reach the best output with the

directory nodecapacity around 10-15 at the cut level 1 or 2.

Figure 4.21: Time for 1000 queries as a function of the number of directory node (N =10M;m=4;k =16)

Figure 4.22: Time for 1000 insertions as a function of the number of directorycapacity in hat. node capacity in hat.(N = 10M;m

= 4;k = 16)

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

12

Figure 4.23: Time for 1000 queries asa function of the number of directory node capacity in workers.(N =10M;m=4;k = 16)

Figure 4.24: Time for 1000 insertions as a function of the number of directory node capacity in workers.(N =10M;m=4;k = 16)

Figure 4.25: Time for 1000 queries as afunction of the number of directory node capacity in both hat and workers.(N = 10M;m

= 4;k = 16)

Figure 4.26: Time for 1000 insertions as a function of the number of directory node capacity in both hat and workers.(N =

10M;m = 4;k = 16)

5. CONCLUSION
Business Intelligence and its tools such as data warehouses,

OLAP servers and report systems have their important roles in

organizations to assist in making decision precisely

andreacting to market changing quickly. With the increasing

globalization of market and thegrowing complexity of

businesses, there is an increasing demand on BI and OLAP

systems. The current OLAP systems have been facing

challenges such as storage spaces foran increasing data size,

query responses for an efficient performance, or data

freshness foranalysis in real-time. In many common practices,

an OLAP server loads data periodicallyto its data cubes. The

loading procedures usually can take hours to be completed

sincemany extra data and calculations are added during

loading. The cube contains mostly staticand pre-aggregated

data but provides multi-dimensional views to users. Such a

fashioncannot meet the needs of modern businesses. Many

decision makers are seeking real-timeOLAP systems which

can provide the analysis with integrated data source in real-

time suchthat the results are not based on outdated

information. However, it is a challenge to providesuch a

system which involves large portion data aggregation and

responses user requestswith low latency and high throughput.

6. REFERENCES
[1] M. C. Kurt and G. Agrawal, “A fault-tolerant

environment for large- scale query processing,” in High

Performance Computing (HiPC), 2012 19th International

Conference on, 2012, pp. 1–10.

[2] H. Al-Aqrabi, L. Liu, R. Hill, and N. Antonopoulos.

Taking the business intelligence to the clouds. In High

Performance Computing and Communication & 2012

IEEE 9th International Conference on Embedded

Software and Systems (HPCC-ICESS), 2012 IEEE 14th

International Conference on, pages 953–958. IEEE,

2012.

[3] D. Jin and T. Tsuji. Parallel data cube construction based

on an extendible multidimensional array. In Trust,

Security and Privacy in Computing and Communications

(TrustCom), 2011 IEEE 10th International Conference

on, pages 1139–1145. IEEE, 2011.

[4] K. Doka, D. Tsoumakos, and N. Koziris, “Brown dwarf:

A fully- distributed, fault-tolerant data warehousing

system,” J. Parallel Distrib. Comput., vol. 71, no. 11, pp.

1434–1446, Nov. 2011.

[5] Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen. Cloud

versus in-house cluster: evalu- ating amazon cluster

compute instances for running mpi applications. In State

of the Practice Reports, page 11. ACM, 2011.

[6] P. Brezany, Y. Zhang, I. Janciak, P. Chen, and S. Ye. An

elastic olap cloud plat- form. In Dependable, Autonomic

and Secure Computing (DASC), 2011 IEEE Ninth

International Conference on, pages 356–363. IEEE,

2011.

[7] Y. Cao, C. Chen, F. Guo, D. Jiang, Y. Lin, B. C. Ooi, H.

T. Vo, S. Wu, and Q. Xu. Es¡ sup¿ 2¡/sup¿: A cloud data

storage system for supporting both oltp and olap. In Data

Engineering (ICDE), 2011 IEEE 27th International

Conference on, pages 291–302. IEEE, 2011.

[8] Asiki, D. Tsoumakos, and N. Koziris, “Distributing and

searching concept hierarchies: an adaptive dht-based

system,” Cluster Computing, vol. 13, no. 3, pp. 257–276,

Sep. 2010.

[9] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S.

Shivakumar, M. Tolton, and T. Vassilakis, “Dremel:

interactive analysis of web-scale datasets,” Proc. VLDB

Endow., vol. 3, no. 1-2, pp. 330–339, Sep. 2010.

[10] Y. Zhang, S. Wang, and W. Huang. Paracube: A scalable

olap model based on dis- tributed aggregate computing

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 17, April 2015

13

with sibling cubes. In Web Conference (APWEB), 2010

12th International Asia-Pacific, pages 323–329. IEEE,

2010.

[11] Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N.

Zhang, S. Antony, H. Liu, and R. Murthy. Hive-a

petabyte scale data warehouse using hadoop. In Data

Engineering (ICDE), 2010 IEEE 26th International

Conference on, pages 996–1005. IEEE, 2010.

[12] Z. Guo-Liang, C. Hong, L. Cui-Ping, W. Shan, and Z.

Tao, “Parallel Data Cube Computation on Graphic

Processing Units,” Chines Journal of Computers, vol. 33,

no. 10, pp. 1788–1798, 2010.

[13] X. Zhang, J. Ai, Z. Wang, J. Lu, and X. Meng. An

efficient multi-dimensional index for cloud data

management. In Proceedings of the first international

workshop on Cloud data management, pages 17–24.

ACM, 2009.

[14] R. J. Santos and J. Bernardino. Optimizing data

warehouse loading procedures for enabling useful-time

data warehousing. In Proceedings of the 2009

International Database Engineering & Applications

Symposium, pages 292–299. ACM, 2009.

[15] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A.

Tomkins. Pig latin: a not-so- foreign language for data

processing. In Proceedings of the 2008 ACM SIGMOD

international conference on Management of data, pages

1099–1110. ACM, 2008.

[16] R. J. Santos and J. Bernardino. Real-time data warehouse

loading methodology. pages 49–58, 2008.

[17] D. Power. A brief history of decision support systems,

version 4.0, march 10, 2007. Series A Brief History of

Decision Support Systems. Version, 4, 2007.

[18] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.

Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J.

Shalf, S. W. Williams, et al. The landscape of paral- lel

computing research: A view from berkeley. Technical

report, Technical Report UCB/EECS-2006-183, EECS

Department, University of California, Berkeley, 2006.

[19] S. S. Conn. Oltp and olap data integration: a review of

feasible implementation meth- ods and architectures for

real time data analysis. In SoutheastCon, 2005.

Proceedings. IEEE, pages 515–520. IEEE, 2005.

[20] Amazon elastic compute cloud (amazon ec2).

http://aws.amazon.com/ec2/.

[21] Amazon ec2 instance details.

http://aws.amazon.com/ec2/.

7. AUTHOR’S PROFILE
Mani Sarma Vittapu received a PhD in Computer Science

and Engineering in 2013 from AcharyaNagarjuna University,

Guntur, Andhra Pradesh, India. In February 2014,joined the

ITSC department at Addis Ababa Institute of Technology

(AAIT), Addis Ababa University, Ethiopia as an assistant

professor. My research interests are in machine-learning, a

subfield that lies at the intersection of statistics and computer

science. I am interested in three aspects of machine-learning --

unsupervised learning, online learning and privacy-preserving

machine learning. In unsupervised learning, the goal is to

extract information from unlabeled data to assist various

learning tasks. In online learning, data arrives one at a time,

and the challenge is to make good predictions on the face of

changing data and models. Privacy-preserving machine

learning addresses the problem of learning a good predictor

from the data, while ensuring the privacy of individuals in the

training data set. Topics in machine-learning, in particular,

Data Models Design and Implementation, clustering or

unsupervised learning, online learning and privacy-preserving

machine-learning, Cloud, Parallel and Distributed computing.

IJCATM : www.ijcaonline.org

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

