
International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 14, April 2015

30

Reducing Size and Deployment Time of Android

Application Update using DELTA++

Shweta Kale
Siddhant College of Engineering,

Sudumbare

Abhaya Bulbule
Siddhant College of Engineering,

Sudumbare

ABSTRACT
In this paper, we describe how to reduce size of android

application as well as reduce the deployment time in

installation of android application update using DELTA++.

We are executing this by using the basic DELTA encoding

algorithm .for this we need to pack and unpack the APKs that

is the executable file of google smart application .To modify

and update the patches DELTA++ modifying technique is

used. Patches provided by google smart application are firstly

constructed and then deployed. In this size reducing technique

we are taking the application update in consideration hence

we update the patches called files using deltas the advance

feature of this is to decode the compressed patches into the

delta again. Because of this we are able to reduce the

deployment time And user need not to be decode the latest

version every time. And can install faster.

General Terms
In this paper we used some algorithm as differential algorithm

and SHA-I algorithm.

1. INTRODUCTION
In late 2014 more than 114 million people owned a

smartphone whichis approximately half of all mobile device

users. The existence of a sole application market for each

operating system and the availability of low-cost high-speed

wireless networks provided an opportunity to update mobile

applications more frequently than desktop softwarea

systemlevel view of application updating for smartphones

showing an application market with its data centers that serve

application updates, wireless networks that

transportinformation between data center and end-user, and

user smartphones.The opportunity todeliver updates easily to

all the application users is used by developers to introduce

newfeatures, add new content, or fix bugs and security

vulnerabilities.Frequentapplication updates increase

smartphone users download traffic, which is usually limited

by the mobile operator. These updates also increase traffic in

wireless networks, andoutgoing traffic in data centers that

serve app updates.

The current amount of network bandwidth and require more

deployment time is a big challenge for data centers and

mobile operators,Smartphone applications are mostly updated

incrementally – by extending functionality, adding new

content, fixing existing problems, etc. Thus, the significant

part of then application remains unaffected during an

update.Delta encoding is a technique that is used to compute

the difference, or patch, between two files.

This patchis then can be used to construct the newer file

version from the old one. Delta encodingcan be used to shrink

the size of an application update by transmitting only the

changesbetween the old application version and the new

one.Two delta encoding based methods – called DELTA and

DELTA++ – are presented. They significantly decrease the

traffic generated by application updates and enable savings for

mobile operators, data centers, andsmartphone users.

The primary purpose of developing a better method to update

mobile applicationsis to reduce the bandwidth generated by

updates and reduce the deployment time require for

installation of updates.it is not enough to shrink the update

size as much as possible. Any savings achieved by reduction

of traffic can become negligible due to the costly changes that

need to be made in the current infrastructure or the software

used to distribute application updates. Thus, it is very

important to develop new updating methods that can be easily

implemented on top of the existing infrastructure and with

minimum changes in the software used.The Android

application package file (APK) is the file format used to

distribute and install applications in Google's Android

operating system. APK files are based on the JAR file format

used in Java applications. An APK is essentially a ZIP archive

that contains all parts of an Android application such as

program byte code, resources, assets, certificates, and

manifest file. The APK file is created by compiling the

application’s code and resources and compressing all of its

files into one package

The primary purpose of developing a better method to update

mobile applications is to reduce the traffic generated by

updates. However, it is not enough to shrink the update size as

much as possible. Any savings achieved by reduction of

traffic can become negligible due to the costly changes that

need to be made in the current infrastructure or the software

used to distribute application updates. Thus, it is very

important to develop new updating methods that can be easily

implemented on top of the existing infrastructure and with

minimum changes in the software used.

Along with low implementation costs, a better updating

method should not exacerbate user experience both for

smartphone users and application developers as it can cause

their transition to another application market or mobile

operating system. Thus, any new method to update

smartphone applications should not require any additional

effort from application developers or affect the way users

update applications installed on their smartphones.

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 14, April 2015

31

Fig 1.1: this figure shows Growth of applications in Google Play from 2010 to June 2014. Updates add a considerable

percentage to number of application downloads. Data fromhttp://en.wikipedia.org/wiki/Google_Play

Figure 1.1 shows the growth of the number of applications in

Google Play storein just five years. To reduce application

update traffic, GoogleSmart Application Update got

developed, which uses a compression method transparent

toapplication developers and Android users. Modifications to

the Google Playapplication and the server software enable

Google Play to construct new versionsof updated applications

by applying a patch to the application versioninstalled on the

user’s Android device. Although this solution has made

inroads into traffic reduction, its compression methods are not

optimal. Notably, deltaencoding is at the Android Application

Package (APK) level only, which limitsthe possible reduction

in patch size.

1.1 Patch Generation
The size of the patch that the delta differencing algorithm

computes depends primarily on the extent to which the old

and new file versions differ, but compression can also affect

that size. If two files have only a few differences, the

Compressed file versions might differ considerably on a

binary level because of how they were processed during

compression. The same is true of the APK, which, as the

sidebar ―Inside an Android Application Package File‖ makes

clear, is basically a compressed archive of all the files

comprising an Android application. DELTA++ aims to

determine the difference between the applicationfileswithin an

APK, as opposed to the APKs themselves. DELTA generated

a patch as a delta difference between the application’s old and

new APK versions. The bsdiff delta encoding tool produces

this delta patch in the server, and the bspatchtool deploys the

patch in the smartphone. DELTA works generally like Google

Smart Application

Update in that both use delta encoding and neither unpacks

the APK. DELTA++ improves on both methods by

decompressing the APK and exploiting its specific structure.

The result is a much smaller patch. The method underlying

DELTA++ has two main parts: patch construction and patch

deployment. Patch construction takes place on the server side

in the data center and is done only once for each application

patch version. Patch deployment, which takes place on the

user’s smartphone, is done each time an application updates.

1.2 Construction
DELTA++ patch constructionconsists of eight steps: _

DELTA++ _rstdcompresses the old and new APKversions

and_ traverses the manifest files to get the names,paths, and

SHA-1 hash digests for all the files intwo APKs. It then

marks the les in the newversion. If the le is in the new version

but notin the old one, it is marked NEW. If the le isin both

versions but its SHA-1 sums differ, it ismarked UPDATED. If

the le is in both versions,and the SHA-1 digests are the same,

it is markedSAME. Finally, if the le is in the old version

butdeleted in the new one, it is marked DELETED.After

marking is complete,DELTA++ copies the les marked NEW

into the constructed patch.To compute differences between

the old andnew APK versions, DELTA++ inputs the

remarked as UPDATEDto the bsdiff delta encodingalgorithm

and copies this difference intothe constructed patch. Because

of the overheadin creating the delta le, the difference

betweensmall les can sometimes exceed the size of theAPK

les themselves. In these cases, DELTA++re-marks the

updated le as NEW and copiesit into the patch. The les

marked SAMEremain untouched.After marking the les and

computing versiondifferences, DELTA++ creates the Patch-

Manifest.xml le and includes it in the patch.

The le is essentially a patch description,comprising

information about which applicationversion can be updated

using the patch, what NEW les and delta differences

betweenUPDATED les are in the patch, and informationabout

les marked DELETED.Computation concludes with patch

compressioninto a zip archive using bzip2. Thecompressed

patch is then ready to be sent to anAndroid device for

deployment.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

2010

2011

2012

2013

2014

Year

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 14, April 2015

32

1.3 Deployment
Figure 3 shows the seven steps in DELTA++patch

deployment to the user’s Android smartphone. Deployment

begins by decompressing the received patch into a temporary

directory. DELTA++ then uses the Application Info class to

load the APK of the current application version and uses the

PatchManifest.xml file inthe patch to delete all the files that

are no longer required. By applying all the differences in the

patch to the proper files, DELTA++ updates them. It then

copies all the NEW files from the patch to the old application

version. At this point, the old and new application versions

contain exactly the same files. The next step is to constructthe

APK by compressing all the files into a zip archive with a

.apk extension. Finally, DELTA++ uses the Android Package

Installer built into the application to install the resulting APK.

1.4 Patch Size
Figure 4 shows relative patch size ordered by total number of

application downloads and evaluated relative to the size of the

application’s latest version. In some cases, both methods

produced patches that were only slightly smaller than the

application’s full version — typically when the developer had

added numerous resource files (images, video files, third-

party libraries, and so on) in the updated application.

Differences in application code between versions significantly

affect patch size in part because tools such as ProGuard

obfuscate byte code, deliberately making it harder to

decompile. Such obfuscation introduces file differences on the

binary level, causing the delta encoding algorithm to produce

larger patches. Figure 4 shows that DELTA++ outperforms

Google Smart Application Update in reducing patch size,

which correlates directly to less transmitted data. The average

measured savings was 50 percent, the minimum was –

75¦percent (the patch size increased relative to the application

size), and the maximum was 97 percent. DELTA++

significantly reduced application update size and increased

data savings: 77 percent reduction for DELTA++ versus 55

percent for Google Smart Application Update.

Figure 4 :This figure shows the size and the deployment

time of the application in the smartphone before using the

delta++ techniques.

1.5 Deployment Time
DELTA++ decreases transmission time by reducing the

transferred file size but requires more time to deploy a patch.

Figure 5 shows the time to apply a DELTA++ patch and

install the updated application compared to the same time for

Google Smart Application Update. The average patch

deployment and application installation time for Google

Smart Application Update is consistent with our assumption

that Google’s method doesn’t compress or decompress APK

files, which often takes tens of seconds in a smartphone (for

an APK of 6.2 Mbytes) because of its limited resources.

Figure 5 :This figure shows the reduced size of application

and deployment time while installation after using

DELTA++ techniques.

1.6 ALGORITHM:

1.6.1 DELTA++ Patch Construction Algorithm:
1. The APK packages of the old and the new versions

of an application are decompressed. During

decompression APK files are treated like ZIP

archives.

2. The manifest files of both versions are traversed to

get the names, relative paths, and SHA-1 hash

digests of all the files (in the APK) included in both

versions.

3. The files contained in the new version are marked as

NEW (if the file is present in the new version but

not present in the old one), UPDATED (if the file is

present in both versions but its SHA-1 sums differ)

or SAME (if the file is present in both versions and

the SHA-1 digests are the same). It is worth noting

that the application’s metafiles (contained in

0

10

20

30

40

50

0

10

20

30

40

50

Time In
seconds

Size In MB

0
5
10
15
20
25
30
35
40

0
5

10
15
20
25
30
35
40

Time In
seconds

Size In MB

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 14, April 2015

33

META-INF directory inside APK package) are not

presented in manifest, but are also marked as

UPDATED.

4. The files contained in the old version are marked as

DELETED if the file is present in the old version

but was deleted in the new one.

5. The files from the latest version that are marked as

NEW are just copied into the constructed patch.

6. The files from the latest version that are marked as

UPDATED are given as input to the bsdiff delta

encoding algorithm to compute differences between

the old and new versions. This difference is then

copied into the constructed patch. Sometimes the

difference between small files can be greater than

size of the files themselves because of the overhead

associated with the delta file creation. In such cases,

the new file is re-marked as NEW and is copied into

the patch.

7. The files that are marked as SAME remain

untouched.

8. PatchManifest.xml file is created and included in the

patch. It serves as a patch description and comprises

information about which application version can be

updated using the patch and what NEW files and

delta differences between UPDATED files are

contained in the patch. Information about files

marked DELETED is also included in

PatchManifest.xml.

9. Finally, the constructed patch is compressed into a

ZIP archive using bzip2. The compressed patch is

then ready to be sent to an Android device for

deployment.

1.6.2 Delta Encoding Algorithms:
Delta encoding algorithms aim to compute a difference

between files and efficiently encode this difference in a way

that allows using the resulting patch to construct the target file

from the reference file. File differencing problem arises from

the string-to-string correction problem.

1.6.3 SHA-1 algorithm:
SHA1 stands for ―Secure Hashing Algorithm.160-bit hash

function. This was designed by the National Security Agency

(NSA) to be part of the Digital Signature Algorithm.

Cryptographic weaknesses were discovered in SHA-1, and the

standard was no longer approved for most cryptographic uses

after 2010.

2. ACKNOLEDGEMENT
We would also like to take this opportunity to express my

profound gratitude to express my profound gratitude and deep

regard to my project guide Mr. Deepak Gupta , for her

exemplary guidance, valuable feedback and constant

encouragement throughout the duration of the project. His

valuable suggestions were of immense help throughout my

project work. His perceptive criticism kept me working to

make this project in a much better way. Working under him

was an extremely knowledgeable experience for me.

I would also like to give my sincere gratitude to all the friends

and colleagues who filled in the survey, without which this

research would be incomplete.

3. REFFERNCES
[1] Nikolai Samteladze, ―Delta Encoding Based Methods to

Reduce the Sizeof Smartphone Application

Updates―,January 2013. URL: University of South

Florida, nikolay.samteladze@gmail.comFollow this and

additional works at: http://scholarcommons.usf.edu/etd.

[2] TorstenSuelNasirMemon,”Algorithms for Delta

Compression and Remote Files Synchronization”CIS

DepartmentPolytechnic UniversityBrooklyn, NY 11201.

[3] J. Wortham, ―Customers Angered as iPhones Overload

AT&T,‖ 26 Sept. 2009; www.nytimes.com/2009/09/03/

technology/companies/03att.html.

[4] S. Musil, ―Google Play Enables Smart App Updates,

Conserving Batteries,‖ CNET News, 16 Aug. 2012;

http://news.cnet.com/8301-1023_3-57495096-93/google

playenables- smart-app-updates-conserving- batteries/.

[5] C. Percival, ―Naive Differences of Executable Code,‖

draft, 2003; www.daemonology.net/bsdiff.

[6] N. Samteladze and K. Christensen, ―DELTA: Delta

Encoding for Less Trafic for Apps,‖ Proc. IEEE Conf.

Local Computer Networks, 2012, pp. 212–215.

[7] ―State of the Media: Mobile Media Report Q3 2011,‖

Nielsen, 15 Dec. 2011;

www.nielsen.com/us/en/reports/2011/stateof-the-media--

mobile-media-report-q3-2011.html.

[8] ―Cisco Visual Networking Index: Global Mobile Data

Trafic Forecast Update, 2012–2017,‖ Cisco, 6 Feb. 2013;

[9] www.cisco.com/en/US/solutions/collateral/ns341/ns525/

ns537/ns705/ns827/white_paper_c11-520862.html.

IJCATM : www.ijcaonline.org

