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ABSTRACT
No–go theorems for quantum computing give a mathematical
proof that quantum dynamic should be linear as well unitary.
In this paper we analyze in a detailed way the role of linearity
and unitarity for no–cloning theorem; also we introduce a no–
go theorem for the square root of Not gate
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Not which

can never would work in the complete complex Hilbert space.
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1. INTRODUCTION
Classical information is encoded in bits which can interact through
various discrete operations, the classical logical gates. From a
physical point of view a bit behaves like a macroscopic classical
object stable in either of two physical states mathematically
represented by the values 0 and 1. In the Quantum Computation
and Information theory information is encoded by qubits whose
mathematical description is based on the two-dimensional com-
plex Hilbert space C2: in this framework the Boolean states 0
and 1 are represented by a fixed pair of normalized and mutually
orthogonal quantum states, usually |0〉 and |1〉, that form the stan-
dard computational basis B = {|0〉 , |1〉} of this space. Unlike a bit,
a qubit can be in a state other than |0〉 or |1〉, precisely a qubit can
be in a superposition represented as complex linear combination of
the basis states

|ψ〉 = α |0〉+ β |1〉 (1)

where α, β ∈ C such that |α|2 + |β|2 = 1. Classical
and quantum information differ in many ways. In particular,
there are no theoretical limitations on manipulation of classical
information, conversely there are fundamental limitations on the
basic operations that one can perform on information encoded in
quantum states. In a sense, genuine quantum information seems
to have something to do with the information needed to specify a
particular state vector from an ensemble of non-orthogonal states,
to be more more precise: given two non-orthogonal states |ψ1〉 and

|ψ2〉 of a quantum system, it is possible to decompose |ψ2〉 as a
superposition of components parallel and perpendicular to |ψ1〉

|ψ2〉 = α |ψ1〉+ β
∣∣ψ⊥1 〉 (2)

where 〈ψ⊥1 |ψ1〉 = 0, |α|2 + |β|2 = 1 and |β| ≤ 1. Since fully
quantum dynamic is unitary, the states

∣∣ψ⊥1 〉 and |ψ1〉 will evolve
as thought independent, remaining orthogonal in a such a way that
the decomposition in (2) is preserved. Now, although |ψ1〉 and |ψ2〉
are two mathematically distinct states, there is no physical process
that can distinguish them with certainty. From the perspective of
quantum information theory, two non–orthogonal vectors form the
smallest set of states for which no–go theorems are already active:
information encoded in two non–orthogonal quantum states cannot
be leaked out or shared while keeping the original information
content intact (the no–cloning theorem of Wootters and Zurek
[10]), it cannot be deleted (the Pati and Baurnstein no–deleting
theorem [3]), it is an inseparable entity (no–splitting theorem [7]),
it cannot be partially erased ([2]).
Differently, no–go theorems involving quantum logical gates have
a strong dissimilarity with these general no–go theorem: the
impossibility to manipulate arbitrary qubits by global operations
which correspond to quantum logic gates does not depend on the
orthogonality of quantum states. Both for no–flipping theorem ([9])
and no–universal Hadamard gate ([1]) the linearity of quantum
theory and the superposition principle forbid global operations on
unknown quantum states.
In this paper we present a deeper understanding of the role of
linearity and unitarity of quantum dynamic for the no–cloning the-
orem and we introduce a no–go theorem for the quantum square of
root not gate

√
Not.

2. THE ROLE OF UNITARY AND ANTI–UNITARY
OPERATORS IN QUANTUM COMPUTING

A linear operator on a Hilbert space H is a map L : H 7→ H such
that for all α, β ∈ C and |ψ〉 , |φ〉 ∈ H

L(α |0〉+ β |1〉) = αL |0〉+ βL |1〉 (3)

The operator is anti–linear if L(α |0〉+β |1〉) = α∗L |0〉+β∗L |1〉.
Unitarity of quantum evolution imposes stricter conditions than just
linearity; an operator on a Hilbert space U : H 7→ H is an unitary
operator if:

(1) it is a bijection;
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(2) it preserves the inner product: 〈Uφ|Uψ〉 = 〈φ|ψ〉,
∀ |ψ〉 , |φ〉 ∈ H.

An anti–unitary operator K is defined to be a map from an Hilbert
spaceH to itself K : H 7→ H such that:

(1) it is anti–linear;
(2) it preserves the complex conjugate of the inner product:
〈Kψ|Kφ〉 = 〈ψ|φ〉∗.

Unitary operators appear naturally in quantum mechanics
whenever there is a symmetry of a physical system. Let us
now recall the well known Wigner’s theorem about symmetry
operations [8] (in the version proposed by Bargmann [5]), which
for the scope of the present paper is restricted to the case of sym-
metries internal to a fixed Hilbert space. A symmetry operation T
(called also invariance principle, or simply symmetry) internal to a
Hilbert space H is an onto correspondence which yields for each
pure state Φ = [φ] of the Hilbert space H, another pure state
Φ′ = [φ′] of the same Hilbert space, such that all the transition
probabilities are preserved. In terms of rays, T defines a mapping
Φ 7→ Φ′ = T (Φ) of rays onto rays such that

Φ′1 ·Φ′2 = Φ1 ·Φ2 if Φ′i = T (Φi) (4)

(Note that this condition of preservation of transition probabilities
implies that the mapping T is one-to-one).In terms of representa-
tives of states this condition can be expressed as follows:

|〈φ′1|φ′2〉|
2
= |〈φ1|φ2〉|2 if φi ∈ Φi and φ′i ∈ Φ′i (5)

The Wigner’s theorem says that every such ray mapping T can be
replaced by a vector mapping T of H which is either unitary or
anti–unitary. Precisely, there exists a mapping T : H 7→ H, either
unitary or anti–unitary, such that φ ∈ Φ implies T (φ) ∈ T (Φ).
Trivially, this implies that

|〈T (φ1)|T (φ2)〉|2 = |〈φ1|φ2〉|2 (6)

Adopting Bargmann’s terminology, the operator T is said to
be compatible with T, and T is said to be generated by (or
an extension of) the mapping T . It is clear that any unitary or
anti–unitary operator T induces a symmetry T associating to any
ray [φ] the corresponding ray T[φ] := [T (φ)]. Wigner’s theorem
asserts that any symmetry is generated only by operators of this
kind.
It is known that in ordinary quantum mechanics symmetry
transformations and unitary transformations are virtually
synonymous, only some discrete symmetries, such as time reversal,
are implemented by anti–unitary operators. In mathematical model
of quantum information processes, a quantum device acting on
the states of a small numbers of qubits is any unitary operator on
the associated Hilbert space. The reason is that the anti–unitarily
implemented symmetries are non completely positive, i.e. they
cannot be applied to a small system living the rest of the world
alone and a quantum device is exactly a device which acts on a
selected numbers of qubits: as consequence, all quantum processes
and computational tasks which can be possibly executed must be
represented by unitary operators.
It is interesting to note that in this context (with the exception
of no–cloning principle) the non–unitary implementability of
symmetries allows to identify no–go theorems which establish
that it is impossible to design some important universal one–qubit
gates as unitary operators. Let us explain this fact.
Let u = (ux;uy;uz) be a fixed vector on the unit
surface S1(R

3) (radius one surface of Euclidean space

R3, centered in the zero vector) with polar representation
u = (sinϑ cosφ, sinϑ sinφ, cosϑ) ≡ (ϑ, φ) whose antipodal
on S1(R

3) is the unit vector u⊥ = (ϑ + π, φ). Suppose we are
given a qubit pointed in a fixed direction u; the usual conceptual
approach to the realizations of the basic manipulations of quantum
states corresponding to the logical quantum gates is based on
finding a suitable unitary operator which, generally, depends from
the polar angles ϑ;φ. In other words, this procedure responds to
the following condition:

—for any fixed direction (∀u), there exists an operator, in general
depending from u, (∃Tu) such that (...)

A very different question is the following: is it possible to find a
unique operator that realizes a certain quantum logical gate for any
arbitrary direction w 6= u of the unit sphere S1(R3)? Formally,
we ask

—there exist a operator (∃T ), such that for every direction (∀w)
(...).

In this case the requirement is very strong and it expresses an
universality condition (with respect to all the possible directions
w) which has to be satisfied in order to ensure that all input
states are transformed with the same quantum efficiency. In the
framework of unitary operators, there are cases in which the latter
question has a negative answer. Conversely, these processes can be
mathematically described in their exact forms by universal anti–
unitary transformations. Because the universal operators are re-
alized by anti-unitary operators, as consequence these universal
transformations are examples of impossible operations: Werner’s
no–universal Not gate theorem ([9]), and Pati’s no–universal
Hadamard gate theorem ([1]) are the most important examples.

3. NO–CLONING THEOREM
Classical information can be copied by standard fan-out gate
FO:{0, 1} 7→ {0, 1}2 expressed by the mapping x → (x, x) for
x ∈ {0, 1}.
A well known limitation suffered by quantum information in com-
parison to classical information is that quantum mechanics does
not allow all quantum states to be copied exactly and imposes strict
restrictions on the possibility to make approximate copies.
The quantum universal process of replicating a C2 state can be for-
malized in its essential version by some operator WQC : C2 ⊗
C2 7→ C2 ⊗ C2 on the Hilbert space of the original qubit and the
copy which should perform the transformation:

|ψ〉 |b〉 → WQC |ψ〉 |ψ〉 (7)

where |b〉 is the blank state of the copy. If the input original qubit is
in an unknown quantum state |ψ〉 = α |0〉+β |1〉 we should obtain
the following result:

|ψ〉 |b〉 → |ψ〉 |ψ〉 = α2 |00〉+ αβ |01〉+ βα |10〉+ β2 |11〉 (8)

It is not difficult to show that such a machine cannot exist.
Let us now analyze in a detailed way the role of linearity and
unitarity conditions for the no–cloning principle: let us consider
what result actually corresponds to the transition (7) when the
original input is an arbitrary quantum state; firstly, we take into
account the role of linearity. If the linearity condition is required to
hold then the operator WQC must satisfy the correspondence:

((|ψ〉 |b〉)→ WQC αWQC |0b〉+ βWQC |1b〉 (9)
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which leads to the transition:

(|ψ〉 |b〉)→ WQC |ψ〉 |ψ〉 = α2 |00〉+ β2 |11〉 (10)

that corresponds to what we actually obtain by linearity; it is
evident it is incompatible with the ideal result of cloning machine
in (9).
Let us now consider the consequences of a minimal requirement
of partial unitary behavior of the operator WQC (without any
requirement of linearity).
This minimal requirement of unitary can be formalized by the rule
which must hold for an arbitrary pair of vectors |ψ〉 , |φ〉:

〈WQC(ψ ⊗ b)|WQC(φ⊗ b)〉 = 〈ψ ⊗ b|φ⊗ b〉 (11)

This condition leads to

〈WQC(ψ ⊗ b)|WQC(φ⊗ b)〉 = 〈ψ|φ〉 · ‖b‖2 (12)

On the other hand the application of the operator WQC defined in
(7) to this inner product leads to

〈WQC(ψ ⊗ b)|WQC(φ⊗ b)〉 = 〈ψ ⊗ ψ|ϕ⊗ φ〉 = 〈ψ|φ〉2 (13)

Putting together these two identities, under condition ‖b‖ = 1, we
obtain

〈ψ|φ〉 = 〈ψ|φ〉2 (14)

i.e., 〈ψ|φ〉(1 − 〈ψ|φ〉) = 0, which leads to the two alternatives:
either 〈ψ|φ〉 = 0 or 〈ψ|φ〉 = 1. In this second case the further
conditions ‖φ‖ = ‖ψ‖ = 1 imply that 〈ψ|φ〉 = ‖ψ‖ · ‖φ‖ and it is
well known that the Schwarz equality holds iff ψ = eiθφ, i.e., the
two unit vectors are representative of the same state.
More generally, given a nonzero vector ψ any vector |φ〉 = |ψ〉

‖|ψ〉‖2

satisfies the condition 〈ψ|φ〉 = 1 which assures the (partial) unitary
behavior of operator WQC . In the particular case of |ψ〉 = |φ〉 the
now stated alternative reduces the the single case ‖ψ‖ = 1 in which
the vector cloning is allowed, whereas this cloning is forbidden for
any vector for which ‖|ψ〉‖ 6= 1.Therefore, the cloner process is
not possible under quantum mechanical evolution when |ψ〉 and
|φ〉 are non-orthogonal, i.e., 〈ψ|φ〉 6= 0. However known quantum
states or orthogonal quantum states can always be perfectly copied.
Let us stress that there is no universal anti–unitary cloning process.

4. NO–UNIVERSAL SQUARE ROOT OF NOT
GATE

No–go theorems involving quantum logic gates have a strong
dissimilarity with respect to the no–cloning theorem: not only
they don’t depend on the orthogonality of quantum states, but
it is possible to define universal anti–unitary operators that
perfectly realize quantum gates. Also, these theorems admit some
exceptions: unitary quantum gates work perfectly when their action
is restricted to special sets of quantum input states. For example,
the non–existence of an universal Hadamard gate was demonstrated
by Pati in [1] and subsequently Maitra and Pashar [4] defined the
most general set of qubits for which an universal Hadamard gate
exists. In this section we extend the lack of universality to the
quantum square root of not gate

√
Not.

Quantum HadamardH and quantum square root of not
√
Not gates

have no classical counterpart: both these gates implement nontriv-
ial superpositions of basis states, so they play a very important role
for the realization of quantum algorithms. At the same time they
are two distinct gates: from a physical point of view, they represent
two different ways to implement quantum interference, in fact
that square root of not and Hadamard quantum gates correspond

respectively to a spatially symmetric and a spatially asymmetric
beam splitter; also they realize two different logical operations.
Let us remember that the Hadamard quantum gate is defined to be
the unitary operator H : C2 7→ C2 whose action on qubits basis
states is

H |0〉 = 1√
2
(|0〉+ |1〉) (15)

H |1〉 = 1√
2
(|0〉 − |1〉)

The Hadamard quantum gate squares the identity: when it is
followed by another identical gate, the output is always the identity
of the input, i.e. for any vector |ψ〉 ∈ C2,H(H) |ψ〉) = I .
The square root of not is the single qubit gate mathematically
represented by the unitary operator

√
Not : C2 7→ C2 whose action

on the qubit states is defined by:
√
Not |0〉 = 1

2
(1 + i) |0〉+ 1

2
(1− i) |1〉 (16)

√
Not |1〉 = 1

2
(1− i) |0〉+ 1

2
(1 + i) |1〉

The square root of not squares the quantum Not gate, when twice
applied it gives the Not gate: for any input vector |ψ〉 ∈ C2 the
output

√
Not(
√
Not |ψ〉) =Not|ψ〉) is always the negation of the

input. The physical models of this gate have suggested [6] the
logical interpretation of

√
Not in terms of a tentative negation: by

applying twice the attempt to negate, a full negation is obtained.
Let us now introduce our analysis of the

√
Not gate starting from

the following question: given an unknown qubit |ψ〉 ∈ C2 is it
possible to design a quantum logic gate which perfectly transforms
the input qubit according to the following rules?:

|ψ〉 7→ 1

2

(
(i+ 1) |ψ〉+ (1− i)

∣∣ψ⊥〉) (17)

∣∣ψ⊥〉 7→ 1

2

(
(i− 1) |ψ〉+ (1 + i)

∣∣ψ⊥〉)
This transformation should realize an equal superposition of the
input qubit |ψ〉 and its orthogonal complement

∣∣ψ⊥〉 and, generally,
corresponds to the action of the square root of not gate

√
Not.

THEOREM 1. (No–universal square root of not gate). There is
no unitary square root of not gate

√
Not which acts on an unknown

quantum state creating an equal superposition of the original state
|ψ〉 and its orthogonal complement

∣∣ψ⊥〉.
PROOF. The proof of the theorem is based on the unitarity of

quantum dynamic. We proceed by contradiction; let us suppose that
a universal square root of not gate exists, so for any two distinct
qubits {|ψ1〉 , |ψ2〉} and their complement states {

∣∣ψ⊥1 〉 , ∣∣ψ⊥2 〉}
such that |ψi〉 = αi |0〉 + βi |1〉 and

∣∣ψ⊥i 〉 = α∗i |1〉 − β∗i |0〉 with
i = 1, 2, we should obtain

{|ψ1〉 7→
1

2
[(1 + i) |ψ1〉+ (1− i)

∣∣ψ⊥1 〉)] (18)

∣∣ψ⊥1 〉 7→ 1

2
[(1− i) |ψ1〉+ (1 + i)

∣∣ψ⊥1 〉)]
and

{|ψ2〉 7→
1

2
[(1 + i) |ψ2〉+ (1− i)

∣∣ψ⊥2 〉)] (19)
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2
[(1− i) |ψ2〉+ (1 + i)

∣∣ψ⊥2 〉)]
The inner product is:

〈ψ1|ψ2〉 7→
1

4
(〈ψ1|ψ2〉(1 + i)2 + 〈ψ1|ψ⊥2 〉(1 + i)(1− i) +

+〈ψ⊥1 |ψ2〉(1− i)(1 + i) + 〈ψ⊥1 |ψ⊥2 〉(1− i)2 (20)

and

〈ψ⊥1 |ψ⊥2 〉 7→
1

4
(〈ψ1|ψ2〉(1− i)2 + 〈ψ1|ψ⊥2 〉(1− i)(1 + i) +

+〈ψ⊥1 |ψ2〉(1 + i)(1− i) + 〈ψ⊥1 |ψ⊥2 〉(1 + i)2)(21)

For two arbitrary qubits the following conjugations rules are
always satisfied:

〈ψi|ψ⊥j 〉 = −〈ψ⊥i |ψi〉∗ = 〈ψ⊥i |ψi〉 (22)

and

〈ψi|ψj〉 = 〈ψ⊥i |ψ⊥j 〉∗ (23)

When we replace these conditions in the above inner product
relations it is straightforward to check that the inner product is not
preserved. Hence, a universal unitary

√
Not doesn’t exist.

On the other hand, there exists an universal square root of not gate
define by the anti–unitary operator U-

√
Not : C2 7→ C2 such that

for any qubit |ψ〉 = α |0〉+ β |1〉 of C2 produces the transition

( U−
√
Not(|ψ〉) = 1

2
((1 + i) |ψ〉) + (1− i)

∣∣ψ⊥〉
=

1

2
(1 + i)(α |0〉+ β |1〉) + (1− i)(β∗ |0〉 − α∗ |1〉)

=
1

2
[(1 + i)α |0〉+ (1 + i)β |1〉+ (1− i)β∗ |0〉 − (1− i)α∗ |1〉]

=
1

2
[(1 + i)α+ (1− i)β∗] |0〉 − [(1− i)α∗ − (1 + i)β] |1〉 (24)

The universal anti-unitary operator U-
√
Not takes a completely

unknown quantum state |ψ〉 and generates the equal superposition
with its orthogonal complement according to (17). Let us now con-
sider a completely unknown qubit |ψ〉 = α |0〉+β |1〉 and calculate
the linear extension of square root gate

√
Not to this vector:

√
Not(|ψ〉) =

√
Not(α |0〉+ β |1〉)

= α
√
Not |0〉+ β

√
Not |1〉

= α
(1 + i) |0〉+ (1− i) |1〉]

2
+ β

[(1− i) |0〉+ (1 + i) |1〉]
2

=
(1 + i)α+ (1− i)β

2
|0〉+ (1− i)α+ (1 + i)β

2
|1〉 (25)

The actual output state is very different with respect to the ideal
output obtained via the action of U-

√
Not.

Let us now approach the following problem: we want to find the
most general class of qubits for which it is possible realize the
transformation (17) by the action of the standard unitary square
root of not

√
Not. By a comparison between the ideal output of

U −
√
Not and the actual output obtain by

√
Not it is possible to

state that the two expressions:

(1 + i)α+ (1− i)β∗ = (1 + i)α+ (1− i)β (26)

−[(1i)α∗ − (1 + i)β = (1− i)α+ (1 + i)β

should be equal, i.e. β∗ = β, so β is real and α∗ + α = 0, as
consequence α is imaginary. If we set α = ia and β = b the form
of the state |ψ〉 = α |0〉+ β |1〉 is restricted to

|ψ〉 = ia |0〉+ b |1〉 (27)

Following the same procedure it is possible to determine the form
of orthogonal complement

∣∣ψ⊥〉 that is restricted to the vector∣∣ψ⊥〉 = b |0〉+ ia |1〉 (28)

THEOREM 2. The most general qubit states for which it is
possible to design an universal square root of not gate that satisfies
the conditions in (17) are given by {|ψ〉 ,

∣∣ψ⊥〉 : |ψ〉 = ia |0〉 +
+b |1〉 ;

∣∣ψ⊥〉 = b |0〉 + ia |1〉} where a and b are real numbers
such that a2 + b2 = 1, (−1 ≤ a ≤ 1).

PROOF.

√
Not(|ψ〉) = 1

2

(
1 + i 1− i
1− i 1 + i

)(
ia
b

)
=

1

2

(
(1 + i)ia (1− i)b
(1− i)ia (1 + i)b

)
=

1

2
[(1 + i) |ψ〉+ (1− i)

∣∣ψ⊥〉 (29)

If we take the vector
∣∣ψ⊥〉:

√
Not(

∣∣ψ⊥〉) = 1

2

(
1 + i 1− i
1− i 1 + i

)(
b
ia

)
=

1

2

(
(1 + i)ia (1− i)b
(1− i)ia (1 + i)b

)
=

1

2
[(1 + i) |ψ〉+ (1− i)

∣∣ψ⊥〉 (30)

Let us now try the largest set of qubits which can be realized as a
perfect superposition by the action of a unitary operator, i.e. we
relax the universality requirement and consider state dependent√
Not quantum gates. Let us start by considering qubits from

the polar great circle; ideally we should obtain the following
transformations:

|ψ(θ)〉 = cos
θ

2
|0〉+ sin

θ

2
|1〉 7→

7→ 1

2
[(1 + i)(cos

θ

2
|0〉+ (1 + i) sin

θ

2
|1〉] +

+[(1− i) cos θ
2
|1〉 − (1− i) sin θ

2
|0〉]

=
1

2
[(1 + i)(cos

θ

2
− (1− i) sin θ

2
] |0〉+

+[(1− i) cos θ
2
+ (1 + i) sin

θ

2
] |1〉 (31)

In this context there is no-state dependent square root of not: we
can prove it by considering the most general unitary matrix in the
form: (

cosβ sinβ
− sinβ cosβ

)(
cos θ

2

sin θ
2

)

4
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=

(
1
2
(1 + i) cos θ

2
− 1

2
(1− i) sin θ

2
1
2
(1− i) cos θ

2
+ 1

2
(1 + i) sin θ

2

)
(32)

When we develop this equation we obtain:{
cosβ cos θ

2
+ sinβ sin θ

2
= 1

2
(1 + i) cos θ

2
− 1

2
(1− i) sin θ

2

− sinβ cos θ
2
+ cosβ sin θ

2
= 1

2
(1− i) cos θ

2
+ 1

2
(1 + i) sin θ

2

and finally we obtain the two following results:
1
2
cos θ

2
− 1

2
sin θ

2
=

= cosβ cos θ
2
+ sinβ sin θ

2
+ 1

2
cos θ

2
+ 1

2
sin θ

2
= 0 (33)

and
1
2
cos θ

2
+ 1

2
sin θ

2
=

= − sinβ cos θ
2
+ cosβ sin θ

2
− 1

2
cos θ

2
+ 1

2
sin θ

2
= 0 (34)

and this is a contradiction.
On the contrary we can find a state-dependent square root of not for
great equatorial circle quantum states: let us consider the general
unitary matrix:(

cosβ sinβ
− sinβ cosβ

)(
1/
√
2

1/
√
2eiφ

)
=

=

(
1√
2
cosβ + 1√

2
sinβeiφ

− 1√
2
sinβ + 1√

2
cosβeiφ

)
=

(
1√
2
(cosβ + cosφ sinβ + i sinφ sinβ)

1√
2
(− sinβ + cosβ cosφ+ i cosβ sinφ)

)
(35)

The final state is
1

2
(1+i)

(
1√
2
|0〉+ 1√

2
eiφ |1〉

)
+
1

2
(1−i)

(
1√
2
|1〉− 1√

2
eiφ |0〉

)
(36)

which can be expressed in a more compact form as

|ψ〉 = α |0〉+ β |1〉

where

α =
1

2
√
2
(1− cosφ+ sinφ) + i

1

2
√
2
(1 + sinφ+ cosφ) (37)

and

β =
1

2
√
2
(1+cosφ− sinφ)+ i

1

2
√
2
(−1+ sinφ+cosφ) (38)

With the adequate calculi we find the following system of
equations: {

sinφ = − 1±i
2

cosφ = 1∓i
2

When we resolve this system we find two possible unitary matrices
that realizes two possible states dependent squares root of not:

√
NotE =

1

2

(
1 + i −(1 + i)
1 + i 1 + i

)
(39)

(
whose transpose is

√
Not

†
E = 1

2

(
1− i (1− i)
−(1− i) 1− i

))
and

√
NotE

1

2

(
1− i −(1− i)
(1− i) 1− i

)
(40)

(
whose transpose is

√
Not

†
E = 1

2

(
1 + i (1 + i)
−(1 + i) 1 + i

))
.

In order to state that these state dependent squares root of not gate
for equatorial great circle are exactly the operators we were looking
for it is sufficient to take in account the conjugations rules for the
following states, i.e.

〈ψ(φ1)|ψ(φ2)
⊥〉 = 〈ψ(θ1)⊥|ψ(φ2)〉 (41)

〈ψ(φ1)|ψ(φ2)〉 = 〈ψ(φ1)
⊥|ψ(φ2)

⊥〉 (42)

PROOF. Easy.

5. CONCLUSIONS
From a general point of view, no–go theorems are results
undoubted very relevant that give a profound insight about the role
of universality in quantum computing. In this paper we concentrate
on the role of unitary and anti–unitary operators in the context of
no–go theorems: with the exception of no–cloning principle, anti–
unitary realizations of quantum gates have the remarkable property
to be universal gates, in other words they give a positive answer
to the full information process. Also we have demonstrated that
when information is encoded in a pure unknown quantum state the
process to obtain an equal superposition of the original state and its
complement is generally impossible by a unique unitary operator.
Although an anti–unitary universal realization of quantum square
root of not exists, the different states dependent versions of this
gate we introduce have the positive aspect to be unitary, but with
the drawback of performing only a partial, also if sufficiently great,
number of superpositions.
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