
International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 13, April 2015

34

Intelligent Task Allocation in Multi Core Environment

Jayanth H
Department of Computer

Science and Engineering, BMS
College of Engineering,

Bangalore, India

 Umadevi V
Department of Computer

Science and Engineering, BMS
College of Engineering

Bangalore, India

Gurudath A S
Robert Bosch Engineering and

Business Solutions Ltd
Bangalore. India

ABSTRACT

The architectural advancements in desktop computing have

made embedded devices in real time applications to adopt

multi core architectures. Constrained power availability but

ever increasing performance requirements are the main reason

for this migration. Failure to allocate tasks to specific cores

would result in some tasks running while other tasks in other

cores remaining idle. The efficiency of the entire system

would decrease and the tasks with higher priority could cause

bottlenecks. In this work, we propose a model which could

analyze, split and allocate the tasks to cores. The results of the

proposed model for a real time automobile application were

observed to be effective on multi core architecture.

General Terms

Task Scheduling, Resource Allocation.

Keywords

Cores, Symbolic Model Verifier, Scheduler.

1. INTRODUCTION
The architectural advancements in desktop computing have

made embedded devices in real time applications to adopt

multi core architectures. The main reason is the ever

increasing performance requirements but constrained power

dissipation. Automotive embedded multi core real time

systems have specific characteristics and differ strongly to

other embedded multi core systems. Car manufactures have

introduced multi core Electronic Control Units (ECU). These

ECU‟s offer greater levels of performance improvements in

automobile applications. Multi core architectures in the ECU

reduce the complexity of previous system which had several

ECU‟s and a lot of interconnection between them. Multi core

ECU‟s should provide predictability and must ensure that all

responses will be met [1].

At present, task allocation is done manually which may result

in core overloading and performance bottlenecks. Some of the

tasks might not get an opportunity to execute. Automatic

allocation of tasks based on functionality will increase the

utilization and performance of the multi core system. Hence in

this work we propose a model to analyze, split and allocate

tasks to cores automatically.

2. BACKGROUND
Automobiles have become the machines of the world. They

are becoming software oriented and more user friendly

software features are being introduced in automobiles. To

incorporate all these features, multi core architecture is being

introduced. Analysis of multi core architectures in

automobiles has been described by the authors of [2].

These automotive embedded multi core real time systems

have specific characteristics and differ strongly from other

embedded multi core systems. Their main requirement is to

complete the execution of a task before its deadline. A lot of

research in static scheduling and parallelization of

applications are being carried out for a long time [3]. Not all

of those are intended for real-time systems such as those used

in the automotive sector. As the possibility of multi core

architectures being used in all future automobile systems are

very high, evaluation of the current loading pattern and

possible improvements has to be checked. Some of the load

balancing algorithms is described in [4], [5]. But, most studies

investigate on small problems and do not use realistic data. In

contrast, an entire real time project has been considered in this

paper and analysis has been carried out.

3. MODEL PROPOSED FOR

AUTOMATIC TASK ALLOCATION
In this section we describe our proposed model which

automatically allocates the tasks to the cores based on

functionality. Following are the common terms used in this

research paper

Core: Processor is a component which reads instructions and

executes them. They could be reading or writing data. The

processor consists of several execution units, cache, busses etc

in a single chip. This execution unit is generically defined as

core. Multi core processors have several execution units. The

number of cores generally depends upon the application

concerned.

Task: Smallest part of any program that can be managed by

the scheduler of the operating system is called task. Scheduler

is responsible for allocating these tasks to different cores.

Functionality of a task: Each task has its own set of properties.

These properties could be dependent or independent of each

other. These properties are collectively called functionality of

a task.

We have considered tri core architecture for our analysis.

Example: Task1 has three functionalities F1, F2 & F3.

Similarly the functionalities of task 2 and task 3 are shown in

figure 1.

 Fig 1: Relation between tasks and its functions

In the manual method, tasks are allocated across several cores

without considering the functionalities. The task to core

assignment in manual method is shown in figure 2.

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 13, April 2015

35

 Fig 2: Task to core assignment in manual method

In our proposed model, the functionalities of the tasks are

analyzed and then task assignment to core is done based on

the functionalities. Figure 3 illustrates the task assignment to

core based on the functionality.

 Fig 3: Task assignment in automated method

Following in this section we discuss in detail the sub modules

of our proposed model which allocates tasks to cores based on

the functionalities. In the sub modules labeled as (a) and (b) in

figure 4, all information related to the hardware and the

software descriptions are statically analyzed and the extracted

information is provided as an input to the model. The software

component description contains the information of the

operating system used in the vehicle ECU. The resource

requirements of the ECU and constraints of the system are

identified. Parts of the software description which affect the

scheduling scheme are identified and the information is

extracted. Sub modules labeled as (c) in figure 4 shows our

proposed model, which is discussed in detail in the further sub

sections.

 Fig 4: Automated method of task allocation to cores

3.1 Critical Tasks and Interrupt Service

routine testing
Initially we identify all critical tasks of the system. The

criticality of the tasks can be based on their deadline or

priority. These tasks will be isolated and executed on a

separate core. For example the engine synchronous tasks

which control the functionalities of the engine and the

injection system in an automobile are considered critical in

automotive applications. These tasks begin execution after

engine reaches a particular rpm. Many critical applications

depend upon these tasks for execution and hence changing

their scheduling sequence during runtime should be avoided.

The operating system produces several interrupts which

trigger several tasks to execute based on a particular

condition. All interrupts could be isolated and executed along

with the engine synchronous tasks.

3.2 Task cluster creation and appending

load information
A set of tasks with similar priority is called as a task cluster.

Following procedure has been employed to create a task

cluster. Priority information of the tasks is extracted and

stored in a queue along with the task name. A threshold

priority is decided which separates the preemptive and the

cooperative task sets. The first element of the queue is

considered and is compared with all other elements. Sorting

techniques like Selection or Insertion sort as defined by the

author of [6] is used. Finally queues for both preemptive and

cooperative task cluster where the first element would be the

task with the highest priority would be present. A look up

table containing the load contributed by each task is created.

This information is appended to the respective tasks in the

queue. By creating specific task clusters, core allocation will

be done in a seamless manner and task clusters with higher

priority will be allocated to the core

3.3 Resource Allocation
After isolation of the critical tasks and appending the load

information, the resources associated with the tasks are

identified. All resources associated with these tasks are stored

in the global memory. When a task is executed on a particular

core, considerable amount of operating system overhead is

involved in accessing the resources in the global memory.

This overhead affects the performance of the core. To reduce

this overhead, the resources used by the cores are identified

and stored in the local memory of the core i.e. cache. Figure 5

gives a pictorial representation of the resource allocation

concept.

Fig 5: Resource allocation for the given multi core system

Consider a task T1. T1 utilizes global resources r1. If T1 is

executed on core 1, r1can be explicitly stored in the local

memory of core 1. If the concerned resources are dependent

on other resources for their usage or the value of the resources

gets updated after a particular task executes, a copy of the

resource could be created and this copy could be stored in the

cache. Updating the resources will be after a fixed number of

cycles. The access time of several processors to global

memory and the local memory comparison has been done in

[7].

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 13, April 2015

36

3.4 State Diagram Construction
State Diagrams are used to define and describe the system

under concern. The major criteria for state diagram

construction are the assumptions that the system concerned

has finite number of states. State transitions are done based on

the occurrence of events or any conditions. Several

approaches can be used to build a state diagram. One of them

has been described by the authors of [8]. Construction of state

diagram is beyond the scope of this paper.

The tasks which are resource ready are considered for the

construction of the state diagram. The construction of state

diagram plays a vital role in automatic task allocation.

 The system consists of three cores. Let n1, n2 and n3 be the

initial states. Let t1 (trying for core 1), t2 (trying for core 2)

and t3 (trying for core 3) represent the trying states. Let c1

(core 1), c2 (core 2) and c3 (core 3) represent the core

allocated states. During startup, all cores are in their initial

states. Each task set may try to check the core for execution
but only one task set at a time. After a particular task set has

tried and the core is allocated to it, a new task set may also try

for the core. Core allocation at this instant depends upon the

priority of the task set. The properties considered while

building the state diagram are

1. Safety: Only one task will be allocated to any core

and only one core can be executed at any instant.

2. Liveliness: Whenever a task set requests a core for

execution, it will eventually be permitted.

3. Non Blocking: A task set can always request to

execute on a particular core.

4. No strict sequencing: A task need not execute on a

core in a strict path.

The term t1n2n3 specifies that a particular task set has tried

for core1. Core2 and core3 are idle and can be allocated to any

other task set. The term c1n2n3 specifies that core1 has been

allocated and other cores are free. Various transitions from

S0 (State 0) to S18 (State 18) are shown in figure 6. Each task

set may follow any path for its core allocation. The core

returns back to the original state after task execution. The

transitions from one state to another will be after fixed cycle

of time and it is assumed that there are no transitions to the

same state.

3.5 Symbolic Model Verifier (SMV)
SMV provides a language for describing the state diagrams

and its specifications. The inputs to this model are the state

diagram and all the pre conditions that a program should

follow while executing. One such condition will be the user

specifying the priority of the tasks and the intended core on

which a task should execute. The state diagram constructed in

the previous section is inputted to SMV. SMV provides

readability to our application. SMV analyses the state diagram

and verifies the correctness of the given input. If all

preconditions are satisfied, a „True‟ output will be produced.

Failure in satisfying the pre conditions results in a „False‟

output and its trace will also be produced. To verify that our

system satisfies our properties, we

1. Model the system using description language and

arrive at a model µ.

2. Code the property using specific language of the

model resulting in ᵠ.

3. Run the model with µ and ᵠ.

SMV is executed in batch mode in Linux or in the command

prompt in windows. All models defined here work with

satisfaction notation i.e. the satisfactory relationship between

the model and the formula.

 µ ╞ ᵠ, where ╞ represents semantic entailment.

Fig 6: State diagram of the multi core system

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 13, April 2015

37

State diagram verification

1. Safety: This property is generally expressed in

linear time temporal logic. G¬ (c1ʌc2ʌc3) is

satisfied in the initial state.

2. Liveliness: This property is generally expressed in

branching time temporal logic. This is expressible

as G (t1->Fc1) ˅ G (t2->Fc2) ˅ G (t3->Fc3).

3. Non Blocking: For every state satisfying n1, there is

always a successor satisfying t1. The same concept

can be applied for states n2 and n3.

4. No strict sequencing: This property is satisfied by

the pre conditions assigned to the model.

„G‟ signifies all future states and „F‟ signifies some future

state in logic. The state diagram is common to all tri core

architecture but the path for each core allocation can vary.

Modules in SMV can be constructed synchronously i.e.

modules are executed with each global clock tick and

asynchronously i.e. modules can be chosen

non-deterministically and executed. Usage of SMV prevents

the rigorous manual testing involved in determining the task

allocation to each core. SMV automatically finds the path

which satisfies all our constraints and provides this

information to the scheduler.

3.6 Alternating bit protocol
The connection between the scheduler and SMV is assumed

to be „lossy‟ i.e. messages might be lost during connection

but the messages will not be corrupted. Alternating bit

protocol is used to transmit the information from SMV to the

scheduler. ABP guarantee‟s that infinite losses will not occur

between the sender and receiver and the sender sends the

message until it receives the acknowledgement from the

receiver. Four agents namely sender, receiver, message

channel, acknowledgement channels are present. The sender

transmits the message with a control bit. The authors of [9]

have described several ways of implementing this protocol.

If the expected control bit is received, acknowledgement is

sent and message transmission begins. If the sender/receiver

does not receive the control bits, the previous message will

be resent. If the connection between the scheduler and SMV

are not lossy, the core allocation information can be directly

passed on to the scheduler. ABP is similar to Stop and

Wait ARQ in computer networks [10] except that it keeps

sending the messages. The sender i.e. SMV is partially

independent of the receiver. The scheduler allocates the tasks

to cores during runtime. When SMV sends the task allocation

information to the scheduler, the scheduler might be busy in

executing the tasks on some cores. This might lead to loss of

task allocation information. Usage of ABP prevents this loss

of this information as it continuously transmits this

information to the scheduler.

3.7 Scheduler
The scheduler performs the task to core assignment as

suggested by the Symbolic Model Verifier. Sub module (d)

contains the final task distribution pattern which can be

finalized as per the project requirements. The generalized

algorithm of our proposed model for task allocation to cores is

as shown in figure 7.

Fig 7: Generalized algorithm for automatic task allocation

4. RESULTS
In this section we discuss the results obtained for our

proposed method of task allocation. An automobile system

with tri core architecture is considered. Let T1, T2 and T3 be

the tasks executing in the system. Details of the tasks and its

functionality are shown in figure 8.

 Fig 8: Sample task details of an automobile system

In the manual method, tasks are directly allocated to the cores

without considering the functionality. In our proposed model,

all engine system and interrupt related tasks are combined

together on core 1 as they cause high loading. Functionalities

related to entertainment system and injection system is

combined on core 2. Safety related functionalities and power

train system is executed on core 3. Now T1 executes for 40ms

and T2 for 30ms and T3 for 35ms.

The result for the task distribution in manual method is shown

in figure 9. The utilization of each core is also shown in the

figure. The results for the task distribution in automated

method are shown in figure 10. Task allocations to respective

cores are performed by the scheduler after verification by

SMV. The loading of core 1 and core 2 has decreased and that

of core 3 has increased by a large amount. Clearly load

balancing has been achieved in the automated method. The

overall utilization of the multi core processor has also

improved.

Fig 9: Performance utilization of cores in manual method

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 13, April 2015

38

Fig 10: Performance utilization of cores in automatic

method

 Figure 11 illustrates the comparison of utilization in manual

and automated methods. In the automated method, the

utilization of all the cores is almost same.

Fig 11: Utilization comparison between manual and

automatic method

A desktop computer with installed memory of 3GB, a tri core

processor, 32 bit operating system was chosen for our second

example. Fig 12 illustrates the functionalities chosen for our

testing and the core utilization in the manual method.

 Fig 12: Sample task details in a desktop computer

The results of the automated method are shown in figure 13.

 Fig 13: Core Utilization in automated method

5. CONCLUSION
In automotive sector, an automated tool for task allocation has

never been proposed and implemented. For the real time

applications like automobile, designing a model to

automatically allocate the tasks to multi core systems is

required for better utilization of cores and to avoid bottlenecks

in task allocation to cores. In this work, we have proposed a

model which allocates the tasks to the cores in the runtime.

This model will solve the problem of bottlenecks during task

execution as resource requirements and criticality of the tasks

are considered while allocating these tasks to the cores. The

model was subjected to verification for a real time

automobile application. The results of verification showed

approximately equal utilization of all the cores.

Currently AUTOSAR has imposed limitations on the use of

dynamic scheduling in automobiles. It is widely predicted that

this limitation will be removed in a very short time. Our

model can be realized in automobiles after that. The idea of

constructing an adaptive state diagram can be one of the

future scopes of the project.

The entire process from extracting the resource information,

task clustering to final task distribution can be developed as a

tool. This tool would require the user to only input the

required files at the beginning and it would give the final task

distribution.

6. ACKNOWLEDGEMENTS
The work reported in this paper is supported by the college

through the Technical Education Quality Improvement

Program [TEQIP-II] of the MHRD, Government of India. We

would like to thank Dr. S.R.Krishnamurthy, former principal

and HOD of Computer Science and Engineering, BMS

College of Engineering for his support and guidance. We also

express our gratitude to entire faculty of BMS College of

Engineering for their support in completing this paper. We

also express our indebted gratitude towards Robert Bosch

Engineering and Business Solutions Ltd for providing all the

necessary support.

7. REFERENCES
[1] Santosh Kumar Jena and Prof. M. B Srinivas , “On The

Suitability of Multi-Core Processing for Embedded

Automotive Systems”, International Conference on

Cyber-Enabled Distributed Computing and Knowledge

Discover, pp. 315-322, 2012.

[2] Abhinesh S, Kathiresh M, Neelaveni R,”Analysis of

Multi Core Architecture for Automotive Applications”,

International Conference on Embedded Systems – (ICES

2014),pp.76-79,2014.

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 13, April 2015

39

[3] Andersson B, “Static-priority scheduling on

multiprocessors”, Real-Time Systems Symposium, 2001.

(RTSS 2001). Proceedings. 22nd IEEE, pp.193-202,

2001

[4] Kun-Ming Yu, Shu-Hao Wu, “An Efficient Load

Balancing Multi-core Frequent Patterns Mining

Algorithm”, 2011 International Joint Conference of IEEE

TrustCom, pp. 1408-1412, 2011.

[5] La´ercioL.Pilla, Philippe O.A.Navaux, Grande do

Sul,Porto Alegre, Christiane P Ribeiro, PierreCoucheney,

FrancoisBroquedis, BrunoGaujal, Jean-Franc¸

oisM´ehaut, ”Asymptotically Optimal Load Balancing

for Hierarchical Multi-Core Systems”, 2012 IEEE 18th

International Conference on Parallel and Distributed

Systems, pp. 236-243, 2012.

[6] Yashavant P. Kanetkar, Data Structures Through C, BPB

Publications,pp. 351-394, 2011.

[7] Memory Comparison specifications , URL:

http://www.sisoftware.net/?d=qa&f=gpu_mem_latency&

l=en&a= [Online accessed in June 2014].

[8] Jung Ho Bae, Heung Seok Chae, “An automatic

Approach to generating State Diagram from Contract-

Based Class”, Engineering of Computer Based Systems,

2009. ECBS 2009. 16th Annual IEEE International

Conference and Workshop on the, pp. 323-331,2009.

[9] Michael Huth and Mark Ryan, Logic in Computer

Science Modelling and Reasoning about Systems,pp.172-

203 2011.

[10] Andrew S Tanenbaum, Wetherall, Computer Networks,

Prentice Hall,pp. 211-228, 4th edition.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jung%20Ho%20Bae.QT.&searchWithin=p_Author_Ids:37896782700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Heung%20Seok%20Chae.QT.&searchWithin=p_Author_Ids:37275545900&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4839214
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4839214
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4839214
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4839214

