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ABSTRACT 
In self-organization filed, Emergence Engineering is a new 

idea in software engineering scope which aims at setting up 

emergent phenomena in categories of individuals in order to 

extract those phenomena for engineering solutions. We inflict 

the needs of functional proportionate to a dynamic system and 

attend for it to assort. In this paper we analyze the effects of 

the clarification of the behavioral explanation in terms of 

trustiness of the solutions. 
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1. INTRODUCTION 
The last expansions in massively distributed systems show 

that common engineering approaches attain their restrictions 

when we have to tackle with a huge number of interacting, 

autonomous platforms. In this regards, swarms illustrate that 

huge collections of individuals may produce a useful group 

behavior whereas the individual behavior may be difficult to 

determine. On the other hand, the divide-and-conquer 

approach, realizing self-organization capabilities as found in 

nature have gained significant interest. Utilizing emergent 

phenomena into an engineering process is called Emergence 

Engineering, a new idea in software engineering scope.  

In this paper, we discuss the contribution of the base language 

to the evolution success, and we comment on the overall 

practicability of creating solutions by emergence. 

2. RELATED WORK 
For agent systems, Genetic Programming is also a well-

known approach in the context of foraging simulations [2] or 

rendezvous procedures [3]. Cramer was the first one to utilize 

genetic algorithms and tree-like structures to evolve programs 

[4]. These concepts all address either optimization problems 

or solutions for specific problem areas. There is currently only 

few related work concerning emergence engineering for agent 

societies. The most notable work here is ADELFE [5] which 

is an engineering approach explicitly exploiting emergence 

among a set of cooperative agents. We call ADELFE an 

online emergence engineering approach, due to the fact that 

the agents are situated in the real environment and need to 

self-organize to respond to changes in the environment. 

3. FRAMEWORK OVERVIEW 
In Genetic Programming, a crowd of individuals with a quite 

random genome is made. All individuals of the population are 

tested for compatibility according to the target functions. A 

latest election process filters out the individuals with low 

adaptability and allows those with ideal adaptability to enter 

the intercross pool with a higher probability. In the 

proliferation step, child is made by combining these solution 

candidates and integrated into the crowd. If the cancellation 

criterion is seen, the evolution stops here, otherwise the 

process is iterated, continuing by evaluating the new crowd. 

Our approach to Emergence Engineering is based on Genetic 

Programming which is a kind of evolutionary algorithms for 

breeding programs, algorithms, and same constructs. 

3.1 Data flow Process 
Data flow process consists of following steps. The story must 

be analyzed, resulting in a collection of needs. Appropriate 

target functions must be found which determine the 

compatibility of a solution. These functions should let for a 

piecemeal evaluation. The Genetic Algorithm repeatedly 

makes new versions of the individuals and elects the most 

appropriates ones. Sometimes, an individual is chosen out. If 

the Genetic algorithm converges, this individual will be most 

presumably better suited than any individual before. The 

individual is set in a component as its behavior and so 

deployed in the real environment.  

 

Fig 1: Data Flow Process. 

To decrease complexity for the evolution process, we let only 

one kind of agent behavior evolve, which must be set in all 

participating agents. The suitable portion of the behavior may 

be elected by means of a state variable. As we have only one 

kind of individual, the election pressure on the individuals is 

distributed to the rule set of the individuals. As the set of rules 

apply some effect on the behavior of the agent, the individual 

behavior contributes to the totally behavior which can be 

measured by the compatibility function. Therefore, within our 
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framework, we can testify emergence in distinct levels. The 

behavior of the crowd someway emerges from the behavior of 

the individuals, and the behavior of the individuals emerges 

from the rule set. 

3.2 Expressiveness of the Behavioral 

Language 
Unlike [1] and [6], our approach uses a new behavioral 

description which indicates an unordered set of rules instead 

of conducted instructions that we’ll named this statute-based 

Genetic Programming (SBGP). SBGP is potent to declare 

many of the constructs known from high-level programming 

languages, but it lacks important capabilities similar indexed 

memory access. Therefore, to develop the clarity, we made 

new primitives for indirect memory access, using the notation 

[a(t)](s), which Implies for the value of the a(t)th  symbol (at 

time step s = t or s = t +1) in the ordered list of all symbols. It 

(new form of Statute-based Genetic Programming named e 

SBGP) allows the evolution of list-sorting algorithms and in 

addition, it lets for conditions with more than two expressions, 

which enables the process to make more complex rules 

without the need for intermediary variables.  

 

4. EXPRIMENTS 
We evaluated experiments to specify requisites for an ideal 

emergence engineering. We divided them in two procedure. 

4.1 Election Procedure 
In this challenge, one agent is elected as “commander” and all 

agents accordant to this choice is the distributed nature. It 

must be ensured that all agents get a steadfast viewpoint of the 

election. In here, an agent may send a message containing a 

single number stored in the variable “out” with the command 

“send”. If a message is received, its contents appear in the 

symbol “inbound” and the variable “inboundMsg” is set to 1. 

The agents have unique identifiers with variable of “ID” and 

two multi-purpose variables “a” and “b”. We expect that 

identifier of the elected agent to be stored in variable “a” after 

about 2500 simulated time slices. 

The target functions are determined as follows: f1 counts the 

number of different IDs found when comparing all the values 

stored in the “a” variables of the agents after the simulation 

and fines values that don’t mark valid IDs. f2 defined the 

behavior size in terms of the number of rules, f3 counts the  

time units used for active computations (penalizing useless 

computation when the node could sleep instead), and f4 

counts the number of messages exchanged. For the best 

overall compatibility, all four functions must yield minimal 

values. 

Some of the outcomes such as Message Extinction are well-

known algorithms and other are incomprehensible. We 

evaluated the reliability of multiple solutions delivered by 

these two approaches by the fraction of procedures where the 

election process proceeds correctly. Programs generated with 

SBGP are reliable in 53% of the procedures and those from 

eSBGP achieve correct behavior in 97% of the network 

simulations. This seems to be a mention that the clarity of the 

language can help to find better solutions. 

4.2 Critical Procedure 
Code that accesses a shared resource is called critical 

procedure (CP). Processes running simultaneously on 

different nodes have to decide whether they are allowed to 

access the CP or whether they have to wait, using message 

exchange to coordinate themselves. 

The first target function f1 evaluates the number of 

contraventions of them mutual exclusion criterion. To 

increase pressure, we sum up the square of the number of 

nodes inside the CP for each time step. The second target 

function f2 represents the number of times each process could 

enter the CP at least in the constant time range of the 

simulation. We add a value commensurate to the total number 

of accesses of the CP. Finally, f3 counts the number of rules 

and exerts pressure to drop dispensable rules. The target 

function f1 and f3 are subject to minimization, f2 is to be 

maximized. 

The SBGP process didn’t converge to a special set of 

proportional solutions, even after more than 3200 generations. 

We evaluated the behavior of the best individuals in 170 

random network configurations. For SBGP, we found a 

solution avoiding collisions in 94.2% of all given 

environments. In 48.4% of the environments, the solution was 

also fair, allowing more than one process to enter the CP. Our 

tests also demonstrated that lower rates of collisions correlate 

with lower compatibility. Involving more agents obviously 

increases the chances of triggering violations. 

 

Fig 2: SBGP and eSBGP in solutions. 

5. EVALUATION 
In some procedures like election, the engineering process may 

benefit from the higher expressiveness, while in others, it fails 

to create better solutions. An important key to a productive 

usage of this engineering process is to find out early which 

procedure is well suited, and which is not. Analyzing our 

experiments, we found special cases for the result of the 

evolution as any-agent and all-agent behaviors. The former 

one refers to the observation that eventually, one of the agent 

instances has got some property or expresses some behavior. 

The latter case refers to the situation where eventually, the 

whole collective adopts the same properties and behaviors. 

In order to explore this approach, we have applied Genetic 

Programming to an interesting aspect of distributed systems, 

the load balancing problem. In load balancing scenarios, tasks 
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continuously enter a system consisting of multiple 

workstations. Each task needs a different amount of time to 

finish. The target is to reduce the overall waiting time by 

distributing the workload equally between the stations. 

Traditional forms of load balancing are performed by a central 

instance assigning the tasks to the different processors; 

modern methods rely on decentralized cooperation of the 

workstations. In our version of the load balancing scenario, 

we pack each task into a single agent who has to decide itself 

on which station it wants to run. The goal of this agent society 

is to evenly distribute its workload on all computers in a grid.  

Load balancing and election seem to be suitable problems for 

an emergence engineering approach. We believe that this is 

due to the fact that both problems require all-agent behaviors. 

For load balancing, each agent flights as soon as there is a 

host with lower load, while for election, all agents eventually 

share the same property at the end, namely knowing the ID of 

the winner. 

CP is more than an election problem, due to the fact that we 

also want to reach compatibility. More specifically, the CP 

problem requires an iterative election, and it requires the 

behavior of the group to change in order to achieve 

compatibility. This is neither an any-agent nor an all-agent 

behavior. The agents somehow need to learn that some agent 

was already allowed to enter the CP, and so it does not qualify 

to enter again for some time. While it is not impossible that 

agents develop learning behavior with the evolutionary 

process, it is obviously fairly unlikely. Hence, for the 

applicability of this approach, the analysis must take care 

whether the group behavior implies learning capabilities or 

not. 

6. CONCLUSION 
Emergence engineering may sound like a contradiction, but as 

we showed in this article, a viable approach exists that 

exploits emergent phenomena for the creation of agent 

behavior. Yet it is profoundly different from the classical idea 

of software engineering. For an emergent process to occur and 

to reach a reasonable result, the targets must be carefully 

formulated, and the capabilities of the agents must be defined, 

but specific expectations should be avoided. 

We’ve presented some simple criteria which may indicate 

whether our approach is likely to produce suitable solutions 

for a problem. If we have considered a problem to be suitable 

for our approach, we must find appropriate objective 

functions for the evolutionary algorithms to measure the 

fitness of individuals. Finally, we have to decide on the 

expressiveness of the behavioral language and the capabilities 

of the agents. We found that increasing the expressiveness of 

the implementation language of the agent behavior need not 

necessarily yield better solutions. Although we increased the 

scope of the possible agent behavior, some problems seem to 

trap the evolution in sub-optimal areas. We believe that 

defining some more procedures will provide us with more 

experience on the behavior of the evolution process and 

whether it may be required to introduce additional 

modifications. 

Our research is still in an early state where we need to conduct 

more experiments to find out characteristics of problems 

which may be suitably handled by this approach. However, 

we must face the fact that generating programs in this way is 

extremely time-consuming, literally taking days to weeks until 

a solution is found. 
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