
International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 6, March 2015

34

Analyze Effects of the Genetic Programming-based

Emergence Engineering in Trustiness of Engineering

Solutions

Babak Farhadi
Computer Engineering Faculty, Qazvin Islamic

Azad University, Qazvin, Iran

Eslam Nazemi
Computer Engineering Faculty, Shahid Beheshti

University, Tehran, Iran

ABSTRACT
In self-organization filed, Emergence Engineering is a new

idea in software engineering scope which aims at setting up

emergent phenomena in categories of individuals in order to

extract those phenomena for engineering solutions. We inflict

the needs of functional proportionate to a dynamic system and

attend for it to assort. In this paper we analyze the effects of

the clarification of the behavioral explanation in terms of

trustiness of the solutions.

Keywords
Emergence engineering, genetic algorithm, self-organization,

statute-based genetic programming.

1. INTRODUCTION
The last expansions in massively distributed systems show

that common engineering approaches attain their restrictions

when we have to tackle with a huge number of interacting,

autonomous platforms. In this regards, swarms illustrate that

huge collections of individuals may produce a useful group

behavior whereas the individual behavior may be difficult to

determine. On the other hand, the divide-and-conquer

approach, realizing self-organization capabilities as found in

nature have gained significant interest. Utilizing emergent

phenomena into an engineering process is called Emergence

Engineering, a new idea in software engineering scope.

In this paper, we discuss the contribution of the base language

to the evolution success, and we comment on the overall

practicability of creating solutions by emergence.

2. RELATED WORK
For agent systems, Genetic Programming is also a well-

known approach in the context of foraging simulations [2] or

rendezvous procedures [3]. Cramer was the first one to utilize

genetic algorithms and tree-like structures to evolve programs

[4]. These concepts all address either optimization problems

or solutions for specific problem areas. There is currently only

few related work concerning emergence engineering for agent

societies. The most notable work here is ADELFE [5] which

is an engineering approach explicitly exploiting emergence

among a set of cooperative agents. We call ADELFE an

online emergence engineering approach, due to the fact that

the agents are situated in the real environment and need to

self-organize to respond to changes in the environment.

3. FRAMEWORK OVERVIEW
In Genetic Programming, a crowd of individuals with a quite

random genome is made. All individuals of the population are

tested for compatibility according to the target functions. A

latest election process filters out the individuals with low

adaptability and allows those with ideal adaptability to enter

the intercross pool with a higher probability. In the

proliferation step, child is made by combining these solution

candidates and integrated into the crowd. If the cancellation

criterion is seen, the evolution stops here, otherwise the

process is iterated, continuing by evaluating the new crowd.

Our approach to Emergence Engineering is based on Genetic

Programming which is a kind of evolutionary algorithms for

breeding programs, algorithms, and same constructs.

3.1 Data flow Process
Data flow process consists of following steps. The story must

be analyzed, resulting in a collection of needs. Appropriate

target functions must be found which determine the

compatibility of a solution. These functions should let for a

piecemeal evaluation. The Genetic Algorithm repeatedly

makes new versions of the individuals and elects the most

appropriates ones. Sometimes, an individual is chosen out. If

the Genetic algorithm converges, this individual will be most

presumably better suited than any individual before. The

individual is set in a component as its behavior and so

deployed in the real environment.

Fig 1: Data Flow Process.

To decrease complexity for the evolution process, we let only

one kind of agent behavior evolve, which must be set in all

participating agents. The suitable portion of the behavior may

be elected by means of a state variable. As we have only one

kind of individual, the election pressure on the individuals is

distributed to the rule set of the individuals. As the set of rules

apply some effect on the behavior of the agent, the individual

behavior contributes to the totally behavior which can be

measured by the compatibility function. Therefore, within our

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 6, March 2015

35

framework, we can testify emergence in distinct levels. The

behavior of the crowd someway emerges from the behavior of

the individuals, and the behavior of the individuals emerges

from the rule set.

3.2 Expressiveness of the Behavioral

Language
Unlike [1] and [6], our approach uses a new behavioral

description which indicates an unordered set of rules instead

of conducted instructions that we’ll named this statute-based

Genetic Programming (SBGP). SBGP is potent to declare

many of the constructs known from high-level programming

languages, but it lacks important capabilities similar indexed

memory access. Therefore, to develop the clarity, we made

new primitives for indirect memory access, using the notation

[a(t)](s), which Implies for the value of the a(t)th symbol (at

time step s = t or s = t +1) in the ordered list of all symbols. It

(new form of Statute-based Genetic Programming named e

SBGP) allows the evolution of list-sorting algorithms and in

addition, it lets for conditions with more than two expressions,

which enables the process to make more complex rules

without the need for intermediary variables.

4. EXPRIMENTS
We evaluated experiments to specify requisites for an ideal

emergence engineering. We divided them in two procedure.

4.1 Election Procedure
In this challenge, one agent is elected as “commander” and all

agents accordant to this choice is the distributed nature. It

must be ensured that all agents get a steadfast viewpoint of the

election. In here, an agent may send a message containing a

single number stored in the variable “out” with the command

“send”. If a message is received, its contents appear in the

symbol “inbound” and the variable “inboundMsg” is set to 1.

The agents have unique identifiers with variable of “ID” and

two multi-purpose variables “a” and “b”. We expect that

identifier of the elected agent to be stored in variable “a” after

about 2500 simulated time slices.

The target functions are determined as follows: f1 counts the

number of different IDs found when comparing all the values

stored in the “a” variables of the agents after the simulation

and fines values that don’t mark valid IDs. f2 defined the

behavior size in terms of the number of rules, f3 counts the

time units used for active computations (penalizing useless

computation when the node could sleep instead), and f4

counts the number of messages exchanged. For the best

overall compatibility, all four functions must yield minimal

values.

Some of the outcomes such as Message Extinction are well-

known algorithms and other are incomprehensible. We

evaluated the reliability of multiple solutions delivered by

these two approaches by the fraction of procedures where the

election process proceeds correctly. Programs generated with

SBGP are reliable in 53% of the procedures and those from

eSBGP achieve correct behavior in 97% of the network

simulations. This seems to be a mention that the clarity of the

language can help to find better solutions.

4.2 Critical Procedure
Code that accesses a shared resource is called critical

procedure (CP). Processes running simultaneously on

different nodes have to decide whether they are allowed to

access the CP or whether they have to wait, using message

exchange to coordinate themselves.

The first target function f1 evaluates the number of

contraventions of them mutual exclusion criterion. To

increase pressure, we sum up the square of the number of

nodes inside the CP for each time step. The second target

function f2 represents the number of times each process could

enter the CP at least in the constant time range of the

simulation. We add a value commensurate to the total number

of accesses of the CP. Finally, f3 counts the number of rules

and exerts pressure to drop dispensable rules. The target

function f1 and f3 are subject to minimization, f2 is to be

maximized.

The SBGP process didn’t converge to a special set of

proportional solutions, even after more than 3200 generations.

We evaluated the behavior of the best individuals in 170

random network configurations. For SBGP, we found a

solution avoiding collisions in 94.2% of all given

environments. In 48.4% of the environments, the solution was

also fair, allowing more than one process to enter the CP. Our

tests also demonstrated that lower rates of collisions correlate

with lower compatibility. Involving more agents obviously

increases the chances of triggering violations.

Fig 2: SBGP and eSBGP in solutions.

5. EVALUATION
In some procedures like election, the engineering process may

benefit from the higher expressiveness, while in others, it fails

to create better solutions. An important key to a productive

usage of this engineering process is to find out early which

procedure is well suited, and which is not. Analyzing our

experiments, we found special cases for the result of the

evolution as any-agent and all-agent behaviors. The former

one refers to the observation that eventually, one of the agent

instances has got some property or expresses some behavior.

The latter case refers to the situation where eventually, the

whole collective adopts the same properties and behaviors.

In order to explore this approach, we have applied Genetic

Programming to an interesting aspect of distributed systems,

the load balancing problem. In load balancing scenarios, tasks

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 6, March 2015

36

continuously enter a system consisting of multiple

workstations. Each task needs a different amount of time to

finish. The target is to reduce the overall waiting time by

distributing the workload equally between the stations.

Traditional forms of load balancing are performed by a central

instance assigning the tasks to the different processors;

modern methods rely on decentralized cooperation of the

workstations. In our version of the load balancing scenario,

we pack each task into a single agent who has to decide itself

on which station it wants to run. The goal of this agent society

is to evenly distribute its workload on all computers in a grid.

Load balancing and election seem to be suitable problems for

an emergence engineering approach. We believe that this is

due to the fact that both problems require all-agent behaviors.

For load balancing, each agent flights as soon as there is a

host with lower load, while for election, all agents eventually

share the same property at the end, namely knowing the ID of

the winner.

CP is more than an election problem, due to the fact that we

also want to reach compatibility. More specifically, the CP

problem requires an iterative election, and it requires the

behavior of the group to change in order to achieve

compatibility. This is neither an any-agent nor an all-agent

behavior. The agents somehow need to learn that some agent

was already allowed to enter the CP, and so it does not qualify

to enter again for some time. While it is not impossible that

agents develop learning behavior with the evolutionary

process, it is obviously fairly unlikely. Hence, for the

applicability of this approach, the analysis must take care

whether the group behavior implies learning capabilities or

not.

6. CONCLUSION
Emergence engineering may sound like a contradiction, but as

we showed in this article, a viable approach exists that

exploits emergent phenomena for the creation of agent

behavior. Yet it is profoundly different from the classical idea

of software engineering. For an emergent process to occur and

to reach a reasonable result, the targets must be carefully

formulated, and the capabilities of the agents must be defined,

but specific expectations should be avoided.

We’ve presented some simple criteria which may indicate

whether our approach is likely to produce suitable solutions

for a problem. If we have considered a problem to be suitable

for our approach, we must find appropriate objective

functions for the evolutionary algorithms to measure the

fitness of individuals. Finally, we have to decide on the

expressiveness of the behavioral language and the capabilities

of the agents. We found that increasing the expressiveness of

the implementation language of the agent behavior need not

necessarily yield better solutions. Although we increased the

scope of the possible agent behavior, some problems seem to

trap the evolution in sub-optimal areas. We believe that

defining some more procedures will provide us with more

experience on the behavior of the evolution process and

whether it may be required to introduce additional

modifications.

Our research is still in an early state where we need to conduct

more experiments to find out characteristics of problems

which may be suitably handled by this approach. However,

we must face the fact that generating programs in this way is

extremely time-consuming, literally taking days to weeks until

a solution is found.

7. REFERENCES
[1] R. I. Mckay, N. X. Hoai, P. A. Whigham, Y. Shan, and

M. O’Neill, "Grammar-based genetic programming: a

survey," Genetic Programming and Evolvable Machines,

vol. 11, pp. 365-396, 2010.

[2] F. H. Bennett III, "Emergence of a multi-agent

architecture and new tactics for the ant colony food

foraging problem using genetic programming," in

Proceedings of the Fourth International Conference on

Simulation of Adaptive Behavior, 1996, pp. 430-439.

[3] H. Iba, "Emergent cooperation for multiple agents using

genetic programming," in Parallel Problem Solving from

Nature—PPSN IV, ed: Springer, 1996, pp. 32-41.

[4] N. L. Cramer, "A representation for the adaptive

generation of simple sequential programs," in

Proceedings of the First International Conference on

Genetic Algorithms, 1985, pp. 183-187.

[5] C. Bernon, M.-P. Gleizes, S. Peyruqueou, and G. Picard,

"ADELFE: a methodology for adaptive multi-agent

systems engineering," in Engineering Societies in the

Agents World III, ed: Springer, 2003, pp. 156-169.

[6] M. Zapf and T. Weise, "Offline emergence engineering

for agent societies," in Proc. of the Fifth European

Workshop on Multi-Agent Systems EUMAS, 2007.

IJCATM : www.ijcaonline.org

