
International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 4, March 2015

19

A Bee Colony based Multi-Objective Load Balancing

Technique for Cloud Computing Environment

Ashish Soni
Research scholar

Computer Science and
Engineering Department

Samrat Ashok Technological
Institute Vidisha (M.P.),

Gagan Vishwakarma
Assistant Professor

Computer Science and
Engineering Department

Samrat Ashok Technological
Institute Vidisha (M.P.),

Yogendra Kumar Jain,
Ph.D

Head of Department
Computer Science and

Engineering Department
Samrat Ashok Technological

Institute Vidisha (M.P.),

ABSTRACT
With the recent development of open cloud systems a surge in

outsourcing assignments from an internal server to a cloud

supplier has been seen. The Cloud can facilitate its clients

enormous resources hence even during heavy load conditions.

Since the cloud needed to be handle multiple clients workload

at same time and each client may have different resource

requirements hence choosing proper resources for given

workload in such a system, in any case, is a difficult problem.

This paper addresses this streamlining issue in a cloud system

with different client’s priority groups and resource

requirements and proposes a bee colony based Multi-

Objective load balancing technique, to attain efficient load

scheduling over virtual machines under cloud. The proposed

algorithm assigns the workload on the virtual machines in

such a way that it minimizes the total processing cost in cloud

without sacrificing priority of tasks and load management

performance.

General Terms
Cloud Computing, Load Balancing.

Keywords
Cloud Computing, Scheduling, Load Balancing, Bee Colony

Optimization

1. INTRODUCTION
Cloud computing holds a guarantee to provide large scale

accessibility of resources which help its client organizations to

choose appropriate resources depending upon their

requirements on pay per use or depending upon agreement

policies. Since the client does take resources from cloud it

saves the buying cost as well as it eliminates the hassle of

maintenance and placement. The model's appeal organizations

essentially because of the flexibility it provides. Because of

such advantages the number of suppliers conveying IT

Infrastructure as a Service (IaaS) has expanded rapidly in last

few years [1]. For example, Amazon, one of the bigger

players in this field has expanded the quantity of cloud sorts

from one to eight in under three years. Each one cloud system

separates itself from the others in terms of value, number of

virtual machines, accessible memory furthermore I/O data

transfer capacity and costs charged for distinctive assets

(system, memory, CPU) and performance. Nonetheless, in

spite of these benefits, previous research has demonstrated

that there is a confound between characteristics of cloud

environment and clients necessities, especially for high

performance computing applications which are strictly hard

coupled between resources, And perform frequent

communication between processor to processor or processor

to other resources and needed greater synchronization [2]. The

insufficient network performance because of improper load

balancing or utilization of resources is a major bottleneck in

cloud, and has been widely studied. These challenges gets

further complicated in heterogeneity and multi-accessing

environment however these consideration are not as mush

studied so far. Clouds needed to evolve its configuration in

processors, memory and network overtime, for properly

operating in heterogeneous and multi-accessing environment

[3]. The multi-accessing is also intrinsic of cloud and leads to

numerous sources of interference due to frequent time sharing

of CPU, cache, memory access, and their interconnections.

For strictly-coupled applications which require dedicated

resource requirements, heterogeneity and multi-accessing can

result degradation of quality of service and even un-

predictable cloud performance, since one slow resource can

slow down the entire application.

2. RECENT WORK
Due to the rising interest in cloud computing every field

related with it getting attention of researchers and the load

balancing in cloud is one of them which are most widely

studied. In this section some of them are presented. Shu-

Ching Wang et al [4] presented a two-phase scheduling which

combines OLB (Opportunistic Load Balancing) and LBMM

(Load Balance Min-Min) scheduling algorithms for proper

load balancing which give improved performance as compare

to single one. A Dynamic Load Balancing approach for high

performance computing in cloud is presented in [5], it

provides the analysis of static hardware heterogeneity placed

in virtualized environments, and also addresses the dynamic

heterogeneity caused by the interference arising as a result of

multi-accessing. Their proposed load balancer adapts to the

dynamic variations in cloud resources by continuous live

monitoring, instrumentation, and also a periodic refinement

of task distribution to VMs. Ant colony based optimization

approach for load balancing in cloud is discusses in [6]. In this

they calculate optimal solution for achieve load balancing

using Ant colony optimization. A comparison based on

various parameters like performance, scalability, associated

overhead etc. between existing load balancing techniques in

cloud is presented in [7]. It also discusses these techniques

from energy consumption and carbon emission perspective.

Cost-Optimal Scheduling for Deadline Constrained

Workloads in Hybrid IaaS Clouds is presented in [8], they

proposed a binary integer program formulation for hybrid

IaaS scheduling problem and evaluate the computational costs

with respect to the problem’s key parameters. While

evaluating the performance they concluded that this approach

provides an acceptable solution for scheduling the public

cloud, but becomes much less feasible in a hybrid cloud

setting due to very high solve time variances.

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 4, March 2015

20

3. CLOUD COMPUTING
The cloud computing, or the cloud, is a term frequently used

in computer science to express a computing concept that

involves a number of interconnected computing resources

through a real-time communication network [9]. In general,

cloud computing is similar to distributed computing over a

network and means the ability to run a program on many

connected computers at the same time. In more practical way

cloud computing is described as utilization of computing

resources (hardware and software) which can be provided as a

service over a network.

Cloud computing enables us to pay for computing resources

what we require. These services are provided over the

internet, on a consume-based pay-as-you-use model means

pay only for how much users use, with short-term contracts

and without other expenditure. Whether we realize it or not,

we’re most likely already using cloud-based services.

Facebook and Google are two recognized companies offering

cloud-based software as a free online service to billions of

users across the world. Google, for example, hosts a

combination of online productivity tools and applications in

the cloud.

Fig 1: Cloud Computing

3.1 Load Balancing
It is a process of assigning the total load to the respective

nodes of the shared system to obtain resource utilization

effective. Load balancing also use to improve the response

time of the job, concurrently removing a state in which some

of the nodes are over loaded whereas some others are under

loaded. Load balancing algorithms have two types of nature.

First type is dynamic nature, it does not consider the previous

state or behavior of the system, it’s only depends on the

present condition of the system. Second is static in nature. The

important term to acknowledge while developing such types

of algorithm are evaluation of load, comparison of load,

stability of distinct system, performance of system, nature of

work to be transferred, interaction between the nodes,

selecting of nodes and many other ones [10]. This load

considered can be in terms of CPU load, amount of memory

used, network delay or Network load. Load balancing is a

technique that manages resources of a node for their better

utilization and user satisfaction. It also distributes workload

evenly across two or more computers for fast processing and

better performance. Load on a node can be calculated on the

basis of various parameters such as cost, response time, makes

span and number of connections.

3.2 Types of Load Balancing Algorithm
Static Load Balancing- In this approach of load balancing,

we consider static information of system to choose the least

loaded node. It performs better in terms of complexity issue

but compromises with the result as decision is made on

statically gathered data. It is further classified as Distributed

and Centralized. In distributed static Load balancing

approach, there are many decision makers but final decision is

made by comprehending decision of all individuals while

centralized static load balancing technique has a centralized

controller that incorporates decisions of all decision makers.

Distributed policies on the next level bifurcated to co-

operative and non co-operative policies.

In cooperative policies decision makers cooperate with each

other while making decision as they have common goal to

achieve like minimization of response time, cost incurred for

processing requests and maximization of throughput.

In non co-operative policies all decision makers have different

objectives to achieve so they take independent decisions to

reach an optimal solution for their defined goals. In global

static load balancing, there is only one decision maker that

optimizes the expected run time of entire system for all jobs.

Dynamic Load Balancing- In this strategy, current

system state plays major role while making decisions. Despite

the fact that dynamic load balancing has higher run rime

complexity then static one, dynamic has better performance

report as it considers current load of system for choosing next

datacenter to serve the request. This will surely provide an

optimal choice from available ones for that state of system.

Dynamic load balancing is classified as Centralized and

distributed. In centralized policy, allocation decisions are

made by the central computer that maintains a global state of

system based on collected information. Flaw with this

approach is the central computer which acts as bottleneck

with increase in number of computers. In distributed policy

each computer has its own view of global state.

Distributed load balancing approach is further classified as

initiated by sender, initiated by receiver and initiated

symmetrically. In sender initiated scheme, request from

heavily loaded node is sent to lightly loaded node for

processing. Sender is identified as a node which if accepts the

next request will exceed its threshold level. In receiver

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 4, March 2015

21

initiated scheme, lightly loaded nodes show their willingness

to share some load from heavily loaded nodes by requesting

them for the same. In symmetrically initiated scheme, both

sender and receiver initiate load balancing process. Actually

there is switching between sender initiated and receiver

initiated load balancing on the basis of load behavior as it

fluctuates between upper and lower threshold.

4. PROBLEM FORMULATION
Workload in the cloud is regularly a multi-objective problem.

In this paper we highlighted and paid attention to some of

these problem and possible solution, so as to obtain an

optimal solution. We expect that every application comprises

of a number of slightly parallel tasks. Every application has a

strict fulfillment due time. Prior to this due time, all

computational assignments in the application must be

completely executed with the results conveyed to the client.

Our current application model concentrates on random sort of

workloads. With two different clients group one with higher

resources accessing rights while other group has relatively

lower resources accessing rights. A cloud supplier permits it

clients to accessibility to one or more virtual machine on its

foundation. The capabilities of the virtual machine on which

these applications are executed are dictated by their execution

capacity. Each task has a related runtime priority and

execution capacity requirement by which it can be executed.

The problem formulation with mathematical modeling of the

system is presented below:

Let there be two different groups of clients 𝐺1 𝑎𝑛𝑑 𝐺2. the

group 𝐺1 clients having greater priority and required

dedicated immediate resources allocation.

𝐺1 = 𝑐1
1 , 𝑐2

1 , 𝑐3
1 , ……………… . . , 𝑐𝑀

1 ;

𝐺2 = 𝑐1
2, 𝑐2

2 , 𝑐3
2, ……………… . . , 𝑐𝑁

2 ;

Where 𝑐𝑗
𝑖 represents the 𝑗𝑡𝑕client in 𝑖𝑡𝑕 group while M and N

are the maximum number of clients in each group.

At any time 𝑡 the client’s generated request is given by

𝑔1 ⊆ 𝐺1 , 𝑔2 ⊆ 𝐺2 , 𝑐𝑎𝑟𝑑 𝑔1 = 𝑚, 𝑐𝑎𝑟𝑑 𝑔2 = 𝑛,

𝑚 ≤ 𝑀, 𝑛 ≤ 𝑁

The request from each client can be described by the tuple of

execution resources requirements and execution priority

𝑅𝑗
𝑖 = 𝑊𝑗

𝑖 , 𝑃𝑗
𝑖 , 𝑖 ∈ 𝑔1 , 𝑔2 , 𝑗 ∈ 𝑔1 𝑖𝑓 𝑖 = 𝑔1 𝑒𝑙𝑠𝑒 𝑗 ∈ 𝑔2 .

However for 𝑔2 clients

∀𝑗: 𝑃𝑗
2 = 1

Now the cloud is given by

𝑆 = 𝑉𝑀1 , 𝑉𝑀2, ………………… . 𝑉𝑀𝐾

Where 𝐾 is the maximal number of virtual machines (VM) in

cloud environment and each VM can be described by the tuple

of execution capacity and execution cost.

𝑉𝑀𝑘 = 𝐸𝑘 , 𝐶𝑘 , 𝑉𝑀𝑘 ∈ 𝑆

Now the problem can be stated as

𝛼 = 𝐸𝑘 − 𝑊𝑗
1 +

𝑘∈𝐾1

𝑚

𝑗 =1

 𝐸𝑘 − 𝑊𝑗
2

𝑘∈𝐾2

𝑛

𝑗 =1

, 𝐾1 ⊆ 𝐾, 𝐾2

⊆ 𝐾, 𝐾1⋂𝐾2 = ∅

𝛽 = 𝐶𝑘

𝑘∈{𝐾1 ,𝐾2}

𝛾 = 𝑃𝑖1

1

𝑚

𝑖1=1

+ 𝑃𝑗1

2

𝑛

𝑗1=1

 , 𝑖1

∈ ∀𝑗 𝑤𝑕𝑖𝑐𝑕 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝐸𝑘 − 𝑊𝑗
1

𝑘∈𝐾1

𝑚

𝑗 =1

> 0,

𝑗1 ∈ ∀𝑗 𝑤𝑕𝑖𝑐𝑕 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝐸𝑘 − 𝑊𝑗
2

𝑘∈𝐾2

𝑛

𝑗 =1

> 0,

Hence the objective can be expresses as to find the values of

𝐾1and 𝐾2 such that it minimizes the 𝛼 + 𝛽 + 𝛾

𝑜𝑏𝑗 = min
𝐾1 ,𝐾2

(𝛼 + 𝛽 + 𝛾)

5. ARTIFICIAL BEE COLONY

OPTIMIZATION
Swarm Intelligence is the part of Artificial Intelligence based

on behavior of individuals in various decentralized systems.

The Bee Colony Optimization (BCO) is relatively a new

member in Swarm Intelligence based Meta heuristic

searching. In the algorithm each artificial bees represent

agents and also a possible solution of the problem, which

collaboratively solve complex combinatorial optimization

problem by exchanging the information. The algorithm can

be described as follows [11]:

Phase 1: Initialization

1. Set the number of bees in the hive. These bees

hold information about passed parameters of all

nodes

2. Set the number of productive moves during one

forward pass. These moves are used for selecting

optimal solution.

At the time of starting all the bees are in the hive.

Phase 2: Execution

1. For every bee estimate all possible productive

moves, which are useful for next process.

2. According to estimation, select one move using

the roulette wheel.

3. All bees are back to the hive with taking

information about passed parameter of nodes.

4. Sort the bees by their objective function (fitness

value) value;

5. Every bee concludes randomly whether to

continue its own exploration by turn into a recruiter,

or to a follower.

6. For every follower, select a new solution from

recruiters with using roulette wheel;

Phase 3: Stopping

1. If the objective function value reach to desired

value.

2. If the maximum number of iterations reached.

3. If the maximum execution time reached.

Phase 4: Output

1. Output the best result.

Honey bee behavior inspired load balancing (HBB-LB)

algorithm [12]:

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 4, March 2015

22

Cloud computing deals with assigning computational tasks on

a dynamic resource pool of virtual machines online according

to different requirements from user or the system. In this

HBB-LB algorithm these requirements are fulfill by bee

colony as we have already discussed in section 4. The service

requests(𝑅𝑗
𝑖) from the clients for diverse applications must be

routed to 𝐾1 , 𝐾2 virtual machines such that it satisfies the

objective function.

6. PROPOSED ALGORITHM
Previous studies shown that the scheduling algorithm for

cloud systems does not performs efficiently which result the

lower QoS. The Cloud network consist multiple users input

with their different requirements which needed to fulfill by

efficiently utilizing the available resources. There are different

ways to fulfill user’s requirement (Like priority). Such as,

1. To allocate overall resources on priority basis from

highest priority to lowest priority.

2. To allocate overall resources on the round robin

basis.

3. To allocate overall resources randomly.

Although these scheduling and resource assignment schemes

could not assure perfect performance for all needs of QoS

because each scheduling algorithm has own specific criteria to

solve the problem statements which doesn’t matches with the

generalized requirements of cloud computing [12].

The proposed algorithm is developed to overcome all related

problems stated above. The scheduler based on Bee Colony

algorithm tunes the system for optimize performance on

multi-objective requirements by optimize fitness value of

Load, Priority and Execution error (VM’s).

An algorithm has proposed as following steps:

Algorithm:
Start:

1. Users send a request about required resources,

task priority and task size request to cloud manager;

2. Cloud Manager Store all requests.

3. Now it forms a request table with required

resources, task priority and task size request, from

all users.

4. Apply Bee-Colony algorithm for all entry;

5. Schedule and Assigns the channel according to

Bee-Colony algorithms output.

6. Stop.

 End

Fig 2: Flow Chart of the Proposed Algorithm

Sub Algorithm 1: This algorithm consists of step (5) of main

algorithm

Start:

Scheduler divides available requests;

 a.) Primary users;

 b.) Secondary users;

End

In the proposed algorithm these fitness value are conclude by

minimizing differences of requested load and served load,

requested priority and served priority, and also minimizing

total execution error. Previous algorithms are not taking

account all these parameters. Using these parameters in

objective function we get improved performance.

Sub Algorithm 2: This algorithm consists of step (5) of main

algorithm

Start:

i. Apply Bee-Colony algorithm with required

resources, task priority and task size request.

a.) form objective function which

minimizes at best request serving;

b.) Apply cloud constrains (Number of

VMs their Processing Capabilities

and Availability).

 c.) calculates fitness value;

ii. Iterate till best solution (fitness) found.

End

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 4, March 2015

23

Fig 3: Flow chart of Sub Algorithm

7. SIMULATION RESULTS
The implementation and simulation of the proposed algorithm

is performed using MATLAB. The simulation is executed for

the configuration given in table 1 and table 2. Finally the

simulation results are presented in the form of graphs.

Table 1: the cloud and users configuration

Configuration Variable Value

Number of VMs 10

Cloud Execution Capacity 10 (MIPS)

Maximum Load (Requested) 10(MIPS)

Number of Paid Users 5

Number of Free Users 20

Request Arrival Probability 0.5

Total Simulation Time 10 Sec.

Table 2: the Bee-Colony configuration

Number of Bees 16

Number of Rounds 1000

Fig 4: the Load execution ratio comparison for different techniques the graph shows that the proposed technique gives the best

execution ratio.

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 4, March 2015

24

Fig 5: the priority requests execution ratio comparison for different techniques the graph shows that the proposed technique

gives the best execution ratio even with best over load execution ratio (Fig (4)).

All the result shows improved performance compare to other

existing Load balancing algorithm. Number of paid users

shows which users have higher priority. Number of free users

shows which users have lower priority. Paid users get

resources first then free users. For simulate cloud environment

we set Request arrival probability 0.5, which shows that at

any instant of time Primary user and Secondary user request

arriving probability is 50%. Maximum load 10 mips which set

randomly between 0 to 10 mips value and distribute to all

users. Set Cloud capacity distributes randomly to all VM. We

also set execution error randomly of all VM. Figure shows the

performance comparison with respect to time between

Artificial Bee Colony-Multi Objective (Load, Priority and

Execution Error of VM), Artificial Bee Colony -Single

Objective (Load), First-in First-out (FIFO) and Random

algorithm.

Fig 6: the graph represents the unhandled task ratio or request drop ratio for different techniques the graph shows that the

proposed technique provides minimum unhandled task.

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 4, March 2015

25

Fig 7: overall performance comparison of different techniques the graph shows that the proposed technique achieves all the

objectives.

8. CONCLUSION AND FUTURE WORK
This paper presents a new optimization approach for the

efficient load scheduling while maintaining some client

specific objectives, under complex load conditions and the

simulation result shows that it effectively utilizes the

resources while minimizing latency and without

compromising processing speed in cloud. In the proposed

algorithm, fitness values are conclude by minimizing

differences of requested load and served load, requested

priority and served priority, and also minimizing total

execution error. Previous algorithms are not taking account of

all the parameters that are load, execution error of VM’s and

priority. Using these parameters in objective function we get

improved performance. The simulation results also show that

the proposed technique also fulfils the user specific

requirements such as priority execution, and specific resource

allocation. It also reduces the number of unhandled tasks

during heavy load conditions. These results validates that the

proposed algorithm is can provide a better solution for cloud

systems. Using this algorithm we can effectively perform load

balancing and QOS provisioning for Cloud environment.

Since this paper considers only two groups of clients which

can be further increased and the VM specifications can also be

added for more detailed simulation but presently these tasks

are leaved for the future work. Also, we can try to add some

more parameters for load calculation to improve the results.

9. ACKNOWLEDGMENTS
I would like to thank Mr. Gagan Vishwakarma Assistant

Professor and Dr. Yogendra Kumar Jain, Head, Department

of Computer Science and Engineering who has contributed

towards development of the template.

10. REFERENCES
[1] Ali Khajeh-Hosseini, David Greenwood, Ian

Sommerville, 2010 “Cloud Migration: A Case Study of

Migrating an Enterprise IT System to IaaS”, Proceeding

CLOUD '10 Proceedings of the IEEE 3rd International

Conference on Cloud Computing Pages 450-457.

[2] Alexander Lenk, Markus Klems, Jens Nimis, Stefan Tai,

Thomas Sandholm, 2009 “What’s Inside the Cloud? An

Architectural Map of the Cloud Landscape”, Proceeding

CLOUD '09 Proceedings of the ICSE Workshop on

Software Engineering Challenges of Cloud Computing

Pages 23-31.

[3] Rajkumar Buyya, Rajiv Ranjan, Rodrigo N. Calheiros,

2010 “InterCloud: Utility-Oriented Federation of Cloud

Computing Environments for Scaling of Application

Services”, ProceedingICA3PP'10 Proceedings of the 10th

international conference on Algorithms and

Architectures for Parallel Processing - Volume Part I.

[4] Shu-Ching Wang, Kuo-Qin Yan, Wen-Pin Liao and

Shun-Sheng Wang, 2010 “Towards a Load Balancing in

a Three-level Cloud Computing Network”, Computer

Science and Information Technology (ICCSIT), 2010 3rd

IEEE International Conference on (Volume:1): 9-11.

[5] Abhishek Gupta, Osman Sarood, Laxmikant V Kale,

Dejan Milojicic, 2013 “Improving HPC Application

Performance in Cloud through Dynamic Load

Balancing”, Cluster, Cloud and Grid Computing

(CCGrid), 2013 13th IEEE/ACM International

Symposium on13-16.

[6] Ratan Mishra and Anant Jaiswal, 2012 “Ant colony

Optimization: A Solution of Load balancing in Cloud”,

International Journal of Web & Semantic Technology

(IJWesT) Vol.3, No.2.

[7] Nidhi Jain Kansal, Inderveer Chana, 2012 “Cloud Load

Balancing Techniques: A Step Towards Green

Computing”, IJCSI International Journal of Computer

Science Issues, Vol. 9, Issue 1, No 1, ISSN (Online):

1694-0814.

[8] Ruben Van den Bossche, Kurt Vanmechelen and Jan

Broeckhove, 2010 “Cost-Optimal Scheduling in Hybrid

IaaS Clouds for Deadline Constrained Workloads”, IEEE

3rd International Conference on Cloud Computing.

[9] Ambika Mishra, Prof. Susheel Jain and Prof. Anurag

Jain, 2014 “A Hierarchical Resource Switching and Load

Assignment Algorithm for Load Balancing in Cloud

System”, International Journal of Scientific &

Engineering Research, Volume 5, Issue 3.

[10] T. Casavant and J.G Kuhl, 1988 “Taxonomy of

scheduling in general-purpose distributed computing

systems”, IEEE Transaction on Software Engineering,

vol. 14, issue 2, pp 141-154.

[11] Dušan Teodorović, 2009 “Bee Colony Optimization

(BCO)”, Innovations in Swarm Intelligence Studies in

Computational Intelligence Volume 248, Pages 39-60.

[12] Dhinesh Babu L.D. , P. Venkata Krishnab, 2013 “Honey

bee behavior inspired load balancing of tasks in cloud

computing environments”, ELSEVIER Applied Soft

Computing 13,Pages 2292–2303.

IJCATM : www.ijcaonline.org

