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ABSTRACT
In this paper, we employ the exp(−ϕ(ξ))-expansion method to
find the exact traveling wave solutions involving parameters of non-
linear evolution equations Fitzhugh-Nagumo (FN) equation and
Modified Liouville equation. When these parameters are taken to
be special values, the solitary wave solutions are derived from
the exact traveling wave solutions. It is shown that the proposed
method provides a more powerful mathematical tool for construct-
ing exact traveling wave solutions for many other nonlinear evolu-
tion equations.
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1. INTRODUCTION
Many models in mathematics and physics are described by nonlin-
ear differential equations. Nowadays, research in physics devotes
much attention to nonlinear partial differential evolution model
equations, appearing in various fields of science, especially fluid
mechanics, solid-state physics, plasma physics, and nonlinear op-
tics. Large varieties of physical, chemical, and biological phenom-
ena are governed by nonlinear partial differential equations. One
of the most exciting advances of nonlinear science and theoreti-
cal physics has been the development of methods to look for ex-
act solutions of nonlinear partial differential equations. Exact so-
lutions to nonlinear partial differential equations play an impor-
tant role in nonlinear science, especially in nonlinear physical sci-
ence since they can provide much physical information and more
insight into the physical aspects of the problem and thus lead
to further applications. Nonlinear wave phenomena of dispersion,
dissipation, diffusion, reaction and convection are very important
in nonlinear wave equations. In recent years, quite a few meth-
ods for obtaining explicit traveling and solitary wave solutions
of nonlinear evolution equations have been proposed. A variety
of powerful methods, tanh - sech method [1]-[3], extended tanh
- method [4]-[6], sine - cosine method [7]-[9], homogeneous bal-
ance method [10, 11],F-expansion method [12]-[14], exp-function

method [15, 16], trigonometric function series method [17], (G
′

G
)−

expansion method [18]-[21], Jacobi elliptic function method [22]-
[25], The exp(−ϕ(ξ))-expansion method[26]-[28] and so on.
The objective of this article is to apply The exp(−ϕ(ξ))-expansion
method for finding the exact traveling wave solution of Fitzhugh-
Nagumo (FN) equation and Modified Liouville equation which
play an important role in biology and mathematical physics.
The rest of this paper is organized as follows: In Section 2, we give
the description of The exp(−ϕ(ξ))-expansion method In Section
3, we use this method to find the exact solutions of the nonlinear
evolution equations pointed out above. In Section 4, conclusions
are given.

2. DESCRIPTION OF METHOD
Consider the following nonlinear evolution equation

F (u, ut, ux, utt, uxx, ....) = 0, (1)

where F is a polynomial in u(x, t) and its partial derivatives in
which the highest order derivatives and nonlinear terms are in-
volved. In the following,we give the main steps of this method
Step 1. We use the wave transformation

u(x, t) = u(ξ), ξ = x− ct, (2)

where c is a positive constant, to reduce Eq.1to the following ODE:

P (u, u′, u′′, u′′′, .....) = 0, (3)

where P is a polynomial in u(ξ) and its total derivatives,
while ′ = d

dξ

′
.

Step 2. Suppose that the solution of ODE3 can be expressed by a
polynomial in exp(−ϕ(ξ)) as follows

u(ξ) = am (exp(−ϕ(ξ)))m + ....., am 6= 0, (4)

where ϕ(ξ) satisfies the ODE in the form

ϕ′(ξ) = exp(−ϕ(ξ)) + µexp(ϕ(ξ)) + λ, (5)

the solutions of ODE 5 are
when λ2 − 4µ > 0, µ 6= 0,

ϕ(ξ) = ln

−
√
λ2 − 4µ tanh

(√
λ2−4µ
2

(ξ + C1)
)
− λ

2µ

 ,

(6)
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when λ2 − 4µ > 0, µ = 0,

ϕ(ξ) = −ln
(

λ

exp (λ (ξ + C1))− 1

)
, (7)

when λ2 − 4µ = 0, µ 6= 0, λ 6= 0,

ϕ(ξ) = ln

(
−2 (λ (ξ + C1) + 2)

λ2 (ξ + C1)

)
, (8)

when λ2 − 4µ = 0, µ = 0, λ = 0,

ϕ(ξ) = ln (ξ + C1) , (9)

when λ2 − 4µ < 0,

ϕ(ξ) = ln


√

4µ− λ2 tan
(√

4µ−λ2

2
(ξ + C1)

)
− λ

2µ

 ,

(10)
where am, ...., λ, µ are constants to be determined later,
Step 3. Substitute Eq.4 along Eq.5 into Eq.3 and collecting all the
terms of the same power exp (−mϕ(ξ)), m = 0, 1, 2, 3, .... and
equating them to zero, we obtain a system of algebraic equations,
which can be solved by Maple or Mathematica to get the values of
ai.
Step 4. substituting these values and the solutions of Eq.5 into Eq.3
we obtain the exact solutions of Eq.3.

3. APPLICATION
Here, we will apply the exp(−ϕ(ξ))-expansion method described
in sec.2 to find the exact traveling wave solutions and then the soli-
tary wave solutions for the following nonlinear systems of evolu-
tion equations.

3.1 Example 1: Fitzhugh-Nagumo (FN) equation
The nonlinear well-known Fitzhugh-Nagumo (FN) equation reads
[29], [30] and [34]

uxx − u(1− u)(α− u)− ut = 0, (11)

where α is an arbitrary constant. When α = −1, the FN equation
reduces to the Newell-Whitehead (NW) equation. The FN equation
11 is an important nonlinear reaction-diffusion equation and usu-
ally is used to model the transmission of nerve impulses [31], [32],
also is used in circuit theory, biology and the area of population
genetics [33] as mathematical models. In addition, this equation
arises in heat and mass transfer. Sayed and Gharib have found trav-
eling wave solution class for FN and NW equations by using an
improved sine-cosine method and Wu’s elimination method [30].
Also Abbasbandy has employed the Homotopy Analysis Method
(HAM) to obtain the solitary solutions of FN equation [34].
Using the wave transformation u(x, t) = u(ξ), ξ = kx + ωt, to
reduce Eq.f1 to be the following ODE:

k2u′′ − ωu′ + u(u− 1)(α− u) = 0, (12)

Balancing u′′ and u3 in Eq.12 yields, N + 2 = 3N =⇒ N = 1.
Consequently, we have the formal solution:

u(ξ) = a0 + a1exp(−ϕ(ξ)), (13)

where a0 and a1 are constants to be determined, such that a1 6= 0.
It is easy to see that

u′ = − a1

(eφ(ξ))
2
− a1µ−

a1λ

eφ(ξ)
, (14)

u′′ = 2
a1

(eφ(ξ))
3
+ 2

a1µ

eφ(ξ)
+ 3

a1λ

(eφ(ξ))
2
+ a1λµ+

a1λ
2

eφ(ξ)
. (15)

Substituting Eq.13 and its derivatives in Eq.12 and equating the
coefficient of different power’s of exp(ϕ(ξ)) to zero, we get

exp(−3ϕ(ξ)) : 2 k2a1 − a13 = 0, (16)

exp(−2ϕ(ξ)) : 3 k2a1λ+ a1
2 + αa1

2 − 3 a0a1
2 + ω a1 = 0,

(17)

exp(−ϕ(ξ)) : 2 k2a1µ+ k2a1λ
2 − αa1 + 2 a0a1 + 2αa0a1

−3 a02a1 + ω a1λ = 0,
(18)

exp(0ϕ(ξ)) : k2a1λµ− αa0 + a0
2 + αa0

2

−a03 + ω a1µ = 0.
(19)

Eqs.16-19 yields
Case 1.

k = ±
√

1

2
a1, µ =

1

4

−1 + a1
2λ2

a12
, ω =

1

2
a1 − αa1,

a0 =
1

2
a1λ+

1

2
, a1 = a1.

Case 2.

k = ±
√

1

2
a1, µ = −1

4

α2 − a12λ2

a12
, ω = −a1 +

1

2
αa1,

a0 =
1

2
α+

1

2
a1λ, a1 = a1.

Case 3.

k = ±
√

1

2
a1, µ = −1

4

1 + α2 − 2α− a12λ2

a12
,

ω =
1

2
a1 +

1

2
αa1, a0 =

1

2
α+

1

2
+

1

2
a1λ, a1 = a1.

Let us now discuss the following case:
Case 1.
When λ2 − 4µ > 0, µ 6= 0,

u =
1

2
a1λ+

1

2
+

2µa1

−
√
λ2 − 4µ tanh

(√
λ2−4µ
2

(ξ + C1)
)
− λ

.

(20)
When λ2 − 4µ > 0, µ = 0,

u =
1

2
a1λ+

1

2
+

λa1
exp (λ (ξ + C1))− 1

. (21)

When λ2 − 4µ = 0, µ 6= 0, λ 6= 0,

u =
1

2
a1λ+

1

2
− 2a1 (λ (ξ + C1) + 2)

λ2 (ξ + C1)
. (22)
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When λ2 − 4µ = 0, µ = 0, λ = 0,

u =
1

2
+

a1
ξ + C1

. (23)

When λ2 − 4µ < 0,

u =
1

2
a1λ+

1

2
+

2µa1√
4µ− λ2 tan

(√
4µ−λ2

2
(ξ + C1)

)
− λ

.

(24)
Case 2.
When λ2 − 4µ > 0, µ 6= 0,

u =
1

2
α+

1

2
a1λ+

2µa1

−
√
λ2 − 4µ tanh

(√
λ2−4µ
2

(ξ + C1)
)
− λ

.

(25)
When λ2 − 4µ > 0, µ = 0,

u =
1

2
α+

1

2
a1λ+

λa1
exp (λ (ξ + C1))− 1

. (26)

When λ2 − 4µ = 0, µ 6= 0, λ 6= 0,

u =
1

2
α+

1

2
a1λ−

2a1 (λ (ξ + C1) + 2)

λ2 (ξ + C1)
. (27)

When λ2 − 4µ = 0, µ = 0, λ = 0,

u =
1

2
α+

a1
ξ + C1

. (28)

When λ2 − 4µ < 0,

u =
1

2
α+

1

2
a1λ+

2µa1√
4µ− λ2 tan

(√
4µ−λ2

2
(ξ + C1)

)
− λ

.

(29)
Case 3.
When λ2 − 4µ > 0, µ 6= 0,

u =
1

2
α+

1

2
+
1

2
a1λ+

2µa1

−
√
λ2 − 4µ tanh

(√
λ2−4µ
2

(ξ + C1)
)
− λ

.

(30)
When λ2 − 4µ > 0, µ = 0,

u =
1

2
α+

1

2
+

1

2
a1λ+

λa1
exp (λ (ξ + C1))− 1

. (31)

When λ2 − 4µ = 0, µ 6= 0, λ 6= 0,

u =
1

2
α+

1

2
+

1

2
a1λ−

2a1 (λ (ξ + C1) + 2)

λ2 (ξ + C1)
. (32)

When λ2 − 4µ = 0, µ = 0, λ = 0,

u =
1

2
α+

1

2
+

a1
ξ + C1

. (33)

When λ2 − 4µ < 0,

u =
1

2
α+

1

2
+
1

2
a1λ+

2µa1√
4µ− λ2 tan

(√
4µ−λ2

2
(ξ + C1)

)
− λ

.

(34)

3.2 Example 2. Modified Liouville equation
Now, let us consider the Modified Liouville equation.

a2uxx − utt + beβ u = 0, (35)

respectively, where a, β and b are non zero and arbitrary coeffi-
cients. Using the wave transformation u(x, t) = u(ξ), ξ = kx+ωt,
v = eβ u, to reduce Eq.35 to be in the form:

(
k2a2

β
− ω2

β
)v′′v − (

k2a2

β
− ω2

β
)v′2 + bv3 = 0. (36)

Balancing v′′v and v3 in Eq.36 yields, N + 2 + N = 3N =⇒
N = 2. Consequently, we have the formal solution:

v = a0 + a1e
−φ(ξ) + a2e

−2φ(ξ), (37)

v′ = − a1

(eφ(ξ))
2
−a1µ−

a1λ

eφ(ξ)
−2 a2

(eφ(ξ))
3
−2 a2µ

eφ(ξ)
−2 a2λ

(eφ(ξ))
2
,

(38)

v′′ = 2
a1

(eφ(ξ))
3
+ 2

a1µ

eφ(ξ)
+ 3

a1λ

(eφ(ξ))
2
+ a1λµ+

a1λ
2

eφ(ξ)

+6
a2

(eφ(ξ))
4
+ 8

a2µ

(eφ(ξ))
2
,

+10 a2λ

(eφ(ξ))
3 + 2 a2µ

2 + 6 a2µλ

eφ(ξ) + 4 a2λ
2

(eφ(ξ))
2 .

(39)
Substituting Eq.37 and its derivatives in Eq.36 and equating the
coefficient of different power’s of exp(ϕ(ξ)) to zero, we get

exp(−6ϕ(ξ)) : 2
(
k2a2

β
− ω2

β

)
a2

2 + ba2
3 = 0, (40)

exp(−5ϕ(ξ)) :
(
k2a2

β
− ω2

β

)
(4 a1a2 + 2 a2

2λ)

+3 ba1a2
2 = 0,

(41)

exp(−4ϕ(ξ)) :
(
k2a2

β
− ω2

β

)
(5 a1λa2 + 6 a2a0 + a1

2)

+b
(
3 a0a2

2 + 3 a1
2a2
)
= 0,

(42)

exp(−3ϕ(ξ)) :
(
k2a2

β
− ω2

β

)
(2 a1µa2 + a1λ

2a2 + 10 a2λa0

−2 a22µλ+ a1
2λ+ 2 a0a1 + b

(
6 a0a1a2 + a1

3
)
= 0,

(43)

exp(−2ϕ(ξ)) :
(
k2a2

β
− ω2

β

)
(3 a1λa0 + 8 a2µa0

+4 a2λ
2a0 − a1λµa2

−2 a22µ2) + b (3 a0
2a2 + 3 a0a1

2) = 0,

(44)

exp(−ϕ(ξ)) :
(
k2a2

β
− ω2

β

)
(2 a1µa0 − a12λµ+ a1λ

2a0

−2 a2µ2a1 + 6 a2µλa0 + 3 ba0
2a1 = 0,

(45)

exp(0ϕ(ξ)) :
(
k2a2

β
− ω2

β

)
(a1λµa0 + 2 a2µ

2a0 − a12µ2)

+ba0
3 = 0.

(46)
Eqs.40-46 yields

a0 = −2 µ (k2a2 − ω2)

bβ
, a1 =

(
−2 λ (k2a2 − ω2)

bβ

)
,

3
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a2 = −2 k
2a2 − ω2

bβ
.

Let us now discuss the following case:
When λ2 − 4µ > 0, µ 6= 0,

v1 = −2 µ (k2a2 − ω2)

bβ
− 2A

λ (k2a2 − ω2)

bβ
− 2

k2a2 − ω2

bβ
A2,

(47)
for this

u1 = 1
β
ln(v1). (48)

since

A =

 2µ

−
√
λ2 − 4µ tanh

(√
λ2−4µ
2

(ξ + C1)
)
− λ

 (49)

When λ2 − 4µ > 0, µ = 0,

v2 = −2 µ(k2a2−ω2)
bβ

−
(
2
λ(k2a2−ω2)

bβ

)
λ

exp(λ(ξ+C1))−1

−2 k
2a2 − ω2

bβ

[
λ

exp (λ (xi+ C1))− 1

]2
,

(50)

for this

u2 = 1
β
ln(v2). (51)

When λ2 − 4µ = 0, µ 6= 0, λ 6= 0,

v3 = −2 µ(k2a2−ω2)
bβ

+
(
2
λ(k2a2−ω2)

bβ

)
2(λ(ξ+C1)+2)

λ2(ξ+C1)

−2 k
2a2 − ω2

bβ

[
2 (λ (ξ + C1) + 2)

λ2 (ξ + C1)

]2
,

(52)

u = 1
β
ln(v3). (53)

When λ2 − 4µ = 0, µ = 0, λ = 0,

v4 = −2 µ(k2a2−ω2)
bβ

−
(
2
λ(k2a2−ω2)

bβ

)
1

ξ+C1

−2 k
2a2 − ω2

bβ

[
1

ξ + C1

]2
,

(54)

for this

u4 = 1
β
ln(v4). (55)

When λ2 − 4µ < 0,

v5 = −2 µ(k2a2−ω2)
bβ

−
(
2B

λ(k2a2−ω2)
bβ

)
−2B2 k

2a2 − ω2

bβ
,

(56)

for this

u5 = 1
β
ln(v5). (57)

Since

B =

 2µ√
4µ− λ2 tan

(√
4µ−λ2

2
(ξ + C1)

)
− λ

. (58)

[Eq.30]

[Eq.31]

[Eq.32]

Fig. 1. The figures of solution of Eqs.30, 31 and 32
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[Eq.33]

[Eq.34]

Fig. 2. The figures of solution of Eqs. 33 and 34

4. CONCLUSION
The exp(−ϕ(ξ))-expansion method has been applied in this paper
to find the exact traveling wave solutions and then the solitary wave
solutions of two nonlinear evolution equations, namely, Fitzhugh-
Nagumo (FN) equation and Modified Liouville equation . Let us
compare between our results obtained in the present article with
the well-known results obtained by other authors using different
methods as follows: Our results of Fitzhugh-Nagumo (FN) equa-
tion and Modified Liouville equation are new and different from
those obtained in [29]-[34] and fig. 1, 2, 3, 4 show the solitary trav-
eling wave solution of Fitzhugh-Nagumo (FN) equation and Mod-
ified Liouville equation. We can conclude that the exp(−ϕ(ξ))-
expansion method is is a very powerful and efficient technique
in finding exact solutions for wide classes of nonlinear problems
and can be applied to many other nonlinear evolution equations in
mathematical physics. Another possible merit is that the reliabil-
ity of the method and the reduction in the size of computational
domain give this method a wider applicability.

[Eq.48]

[Eq.51]

[Eq.53]

Fig. 3. The figures of solution of Eqs.48, 51 and 53
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[Eq.55]

[Eq.57]

Fig. 4. The figures of solution of Eqs. 55 and 55
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