
International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 18, March 2015

1

An FP Tree based Approach for Extracting Frequent

Pattern from Large Database by Applying Parallel and

Partition Projection

Jagrati Malviya
BU Bhopal

Department of Computer
Science & Engineering

BUIT, BU Bhopal

Anju Singh
BU Bhopal

Assistant Professor
Department of Computer

Science & Information

Technology UTD, BU Bhopal

Divakar Singh
BU Bhopal

HOD
Department of Computer
Science & Engineering

BUIT, BU Bhopal

ABSTRACT

There are lots of data mining tasks such as association rule,

clustering, classification, regression and others. Among these

tasks association rule mining is most prominent. One of the

most popular approaches to find frequent item set in a given

transactional dataset is Association rule mining. Frequent

pattern mining is one of the most important tasks for

discovering useful meaningful patterns from large collection

of data. The FP Growth algorithm is currently one of the

fastest approaches to frequent item set mining.

This paper proposed an efficient and improved FP Tree

algorithm which used a projection method to reduce the

database scan and save the execution time. The advantage of

PFP Tree is that it takes less memory and time in association

mining.

Experimental result showed that the improved PFP Tree

algorithm performs faster than FP growth Tree algorithm and

partition projection algorithm. It is more efficient and scalable

in the case of large volume of data. The effectiveness of the

method has been justified over a sample our one super market

database.

Keywords

Association Rule mining, Data Mining, Frequent Pattern

Mining, Parallel Projection, Partition projection.

1. INTRODUCTION
Data mining has become an important field of research and

has found a wide range of applications across to various areas.

Data mining is a technique useful for attaining useful

information from vast databases [12].Frequent item set mining

(FIM) is a useful tool for discovering frequently co-concurrent

items. Since its inception, a number of significant FIM

algorithms have been developed to speed up mining

performance [2]. Association rule mining is one of the most

important data mining problems. The conviction of

association rule mining is the discovery of association

relationship among a set of items [4, 11].

In 1994, Agrawal proposed the famous Apriori algorithm, but

there are two drawbacks in it. First, because it repeatedly

scans the transaction database, it needs a lot of I/O load;

second, it will cause huge candidate set. FP-Growth algorithm

is a good result to the above two problems. The biggest

advantage of the FP-Growth algorithm is that it only scans

database twice. It directly compresses the database into a

frequent pattern tree instead of using a candidate set and

finally generates association rules through FP-tree [6]. FP-

Growth Tree is more efficient than tree projection but it is

difficult to maintain it in memory so tree projection is used in

tree projection two types of projection is used parallel

projection is good but it takes more memory but partition

projection takes more time is execution but takes less apace

compare to parallel projection[5].

2. RELATED WORK
According to the past research in the field of frequent pattern

generation the FP Growth is used most widely. FP-growth

method is efficient algorithm to mine frequent patterns, in

spite of long or short frequent patterns. By using compact tree

structure method, partitioning-based method and divide-and-

conquer method, it reduces the search costs substantially.

The first known proposed method for extracting frequent

patterns is Apriori algorithm proposed by Agrawal [1,3].

There have been developed enormous modified versions to

improve it. Since the main drawback for Apriori-based

algorithms was involving multiple database scans and

generation of a large number of candidates, it was not

appropriate.

Association mining using Apriori algorithm perform better

but in case of large database it performs slow because it has to

scan the full database each time while scanning the

transaction. In comparison with Apriori algorithm FP is much

superior in case of efficiency. But problem with traditional FP

is that it produces a huge number of conditional FP-Tree [14].

Divide-and-conquer technique is used to decompose the

mining task into a set of smaller tasks for mining confined

patterns in conditional databases, which dramatically reduces

the search space, frequent pattern mining and association rule

mining we call this temp database as Projection Database, we

can create a temp database for storing all the frequent items

ordered by the list of frequent items which is used for

projecting, reduce the expensive costs of individual node

computation The case that may happen in a very large

database[13].

FP-Growth is the first successful tree base algorithm for

mining the frequent item sets. As for large databases its

structure does not fit into main memory therefore new

techniques come into pictures which improve the efficiency of

FP Growth tree by applying projection techniques. A database

projection method has been developed to cope with the

situation when an FP-tree cannot be held in main memory [8,

9].

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 18, March 2015

2

3. MINING FREQUENT PATTERN

USING FP GROWTH TREE

3.1 FP Growth Tree
FP-Growth works in a divide and conquers way. It requires

two scans of the database. In first scan of the database FP-

Growth first computes a list of frequent items sorted by

frequency in descending order (F-List). In second scan of the

database, the database is compressed into a FP-tree. After that

FP-Growth starts to mine the FP-tree for each item whose

support is larger than ξ by recursively building its conditional

FP-tree.

The FP-tree is a compressed representation of the

transactions, and it also al- lows quick access to all

transactions that share a given item. Once the tree has been

constructed, the subsequent pattern mining can be performed.

However, a compact represent- ton does not reduce the

potential combinatorial number of candidate patterns, which is

the bottleneck of FP-Growth [2].

3.2 Algorithm to find Frequent Item sets

using FP-Growth algorithm
The FP- Growth algorithm for mining frequent patterns using

FP-Tree is follows:

Input: A transaction database (D) and minimum support

threshold (ξ).

Output: The complete set of frequent patterns.

Method:

Call FP-growth (FP-tree, null)

Procedure FP-growth (Tree, A)

 {

If (Tree contains a single path P)

Then for each (combination (denoted as B) of the nodes in the

path P)

Do

generate pattern B∪A with support = minimum support of

nodes in B;

else (for each ai in the header of Tree) do

 {

generate pattern B = ai∪A with support = ai.support;

construct B’s conditional pattern base and then B’s

conditional FP-Tree Tree B;

 if (Tree B ≠ ∅)

 {

 call FP-growth (Tree B, B)

 }

 }

}

3.3 Example of FP Growth Tree
Table 1 Show a simple example

With the above observations, one may construct a frequent-

pattern tree as follows.

First, a scan of DB derives a list of frequent items, (f: 4), (c:

4), (a: 3), (b: 3), (m: 3), (p: 3) in which items are ordered in

frequency-descending order. This ordering is important since

each path of a tree will follow this order.

 Second, the root of a tree is created and labeled with “null”.

The FP-tree is constructed as follows

1. The scan of the first transaction leads to the construction

of the first branch of the tree: (f: 1), (c: 1), (a: 1), (m: 1),

(p: 1) Notice that the frequent items in the transaction are

listed according to the order in the list of frequent items.

2. For the second transaction, since its (ordered) frequent

item list f, c, a, b, m_ shares a common prefix f, c, a_ with

the existing path f, c, a, m, p_, the count of each node

along the prefix is incremented by 1, and one new node

(b:1) is created and linked as a child of (a:2) and another

new node (m:1) is created and linked as the child of (b:1).

3. For the third transaction, since its frequent item list f, b

shares only the node f with the f -prefix sub tree, f ’s

count is incremented by 1, and a new node (b:1) is created

and linked as a child of (f :3).

4. The scan of the fourth transaction leads to the construction

of the second branch of the tree, (c: 1), (b: 1), (p: 1) _.

5. For the last transaction, since its frequent item list _ f, c, a,

m, p_ is identical to the first one, the path is shared with

the count of each node along the path incremented by 1.

4. CONSTRUCTING FP GROWTH

TREE USING PROJECTION

4.1 Projection
Database projection means partition a database into a set of

projected database.Construct and mine FP Tree once the

projected Databasse can fit into main memory.

There are two types of database projection: parallel projection

and partition projection.

Parallel projection is implemented as follows: Scan the

database to be projected once, where the database could be

either a transaction database or aα-projected database. For

each transaction T in the database, for each frequent item ai in

T, project T to the ai- projected database based on the

transaction projection rule, species in the dentition of

projected database. Since a transaction is projected in

parallel to all the projected databases in one scan, it is called

parallel projection.

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 18, March 2015

3

Partition projection is implemented as follows. When

scanning the database (original or α-projected) to be

projected, a transaction T is projected to the ai-projected

database only if ai is a frequent item in T and there is no any

other item after ai in the list of frequent items appearing in the

transaction. Since a transaction is projected to only one

projected database at the database scan. After the scanning of

the database, it is partitioned by projection into a set of

projected databases, and hence it is called partition projection.

The projected databases are mined in the reversed order of the

list of frequent items .That is, the projected database of the

least frequent item is mined first and so on. Each time when a

projected database is being processed, to ensure the remaining

projected databases obtain the complete information, each

transaction in it is projected to the aj-projected database,

where aj is the item in the transaction such that there is no any

other item after aj in the list of frequent items appearing in the

transaction [5].

4.2 Construction Process of PFP Tree
(1) we can create a temp database for storing all the frequent

items ordered by the list of frequent items L. we call this temp

database as Projection Database (or PDB for short), which is

used for projecting, reduce the expensive costs of individual

node computation.

(2) We can project the PDB, two columns at a time. One

column is used to compute the count of each different item,

the other (previous) column is used to distinguish the node’s

parent node of current column. By this way, we can insert one

level of nodes into the tree at a time, not compute frequent

items one by one. Then, the algorithm performance is only

related to the depth of tree, namely the number of frequent

items of the longest transaction in the database η, not the sum

of frequent items in the database [10].

(3) Because we only project two columns at a time, only save

the information of the current nodes and their parent nodes, if

there exist the case as follows: the current nodes’ parent nodes

are identical, but their parent nodes are different, we couldn’t

judge how to deal with it.

If we add their count regarding them as the same node, we

make a mistake; because they are different nodes belong to

different parent nodes. When encounter this case, we can add

the parent nodes’ name as the TAI to the current nodes, and

save to the PDB. Then when the next projection, we can

distinguish these nodes by their parent nodes’ TAI [7, 8].

4.3 Proposed Algorithm
In this paper new algorithm is proposed which combined FP

Growth Tree algorithm and projection algorithm.

Algorithm PFP-tree construction

Input: A transaction database and a minimum support

threshold ξ.

Output: PFP-tree

Method:

 (1). First scan the transaction database once. Collect the set of

frequent items F and their supports. Sort set of frequent items

F in support descending order as L.

(2). Select and sort the frequent items in transaction according

to the order of L, the result is saved in the PDB.

(3). Create the root of an FP-tree, T, and label it as “null”. Let

column number in PDB be j, the initial value of j is 1.

If j = 1

The process is implemented as follows:

First project the column (j-1) and column (j), then add 1 to j,

and project column (j-1) and column (j) circularly, and so on,

until project the last column of PDB.

Then Do

{

Project the column (1), collect the set of frequent items and

their supports, let the result be [q: n], where q is the frequent

item, n is the count; Insert these nodes as the root’s child

nodes into the PFP-tree.

}

Else Do

{

(1) Project both parent column (j-1) and current column (j),

compare the set of Binary-frequent items and collect their

supports1. Let the result be [px, q:n], where p is the parent

frequent item of column(j-1), x. is p’s TAI and q is the

current frequent item of column (j), n. Linked to the nodes

with the same item-name via the node-link structure.

(2) Compare the result sets of [px, q: n], if their current

frequent item name, q are identical, then add the count.

(3) Insert The node [qy:n]or[q:n] as the child nodes of px into

the PFP-tree and let their node-link be linked to the nodes

with the same item-name via the node-link structure.

}

(4)Delete all the TAI in the PFP-tree and PDB (this step can

be cancelled).

5. EXPERIMENTAL EVALUATION

AND PERORMANCE STUDY
In this section we present a performance comparison of FP

Growth with FP Parallel Projection and FP Partition

Projection algorithm. All the experiments of three algorithms

are performed on computer with a 3-GHz processor Pentium

PC machine with 512MB main memory. The algorithm

implemented on Microsoft Windows/NT. The proposed

algorithm is implemented in Microsoft Visual studio .net

using (C# 7.0).

Please note that run time used here means the total execution

time, that is, the period between input and output, instead of

CPU time measured in the experiments in some literature.

The experimental results are showed in Figure 1 and Figure 2

respectively. Experimental results shows that PFP Tree

algorithm works much faster than FP Growth Tree algorithm

and partition FP Growth tree algorithm because it doesn’t

need to generate 2-candidate item sets and reduce the search

space. PFP tree algorithm runs faster than FP-growth, because

in the case, FP-growth needs to construct a large of

conditional sub trees, it is not only time-consuming but also

high memory cost. But in the case , parallel projection is good

but it takes more memory but partition projection takes more

time is execution but takes less apace compare to parallel

projection. PFP doesn’t need too much extra spaces and time

on the mining process, so PFP tree algorithm has a better

scalability.

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 18, March 2015

4

Our First transaction Dataset:

This paper explores the PFP Tree algorithm on the sample of

super market dataset; it is a synthesized data set, which is

illustrated in Table 2.

TRANSACTION_ID ITEM SET

T01

BREAD,MILK, BISCUIT,

CORNFLAKES

T02 BREAD,TEA, BOURNVITA

T03 JAM ,MAGGI,BREAD,MILK

T04 MAGGI,TEA, BISCUIT

T05 BREAD,TEA, BOURNVITA

T06 MAGGI,TEA, CORNFLAKES

T07 MAGGI,BREAD,TEA,BISCUIT

T08 JAM ,MAGGI,BREAD,TEA

T09 BREAD,MILK

T10

COFFEE,COCK, BISCUIT,

CORNFLAKES

T11

COFFEE,COCK, BISCUIT,

CORNFLAKES

T12 COFFEE,SUGER, BOURNVITA

T13 BREAD,COFFEE,COCK

T14 BREAD,SUGER, BISCUIT

T15 COFFEE,SUGER,CORNFLAKES

T16 BREAD,SUGER, BOURNVITA

T17 BREAD,COFFEE,SUGER

T18 BREAD,COFFEE,SUGER

T19

TEA,MILK,COFFEE,

CORNFLAKES

T20 MILK, BREAD, BISCUIT

 (A) Comparison on the basis of execution time and minimum

support count between FP-Growth Tree conditional pattern,

FP-Growth Tree with DB parallel projection and Partition

projection.

Table 3: Comparison Table of 3 algorithms on the basis of

minimum support count and execution time

Minimum

support

count

Time taken

to execute

(In

millisecond)

FP-Growth

Tree

Time taken

to execute

(In

millisecond)

FP-Growth

Tree with

Data base

Parallel

Projection

Time taken

to execute

(In

millisecond)

FP-Growth

Tree with

Data base

Partition

projection

2 132 102 153

3 124 85 131

4 84 60 95

5 74 45 79

Fig 1: Figure representing the comparison of FP-Growth

Tree, Data base Parallel Projection and Partition

projection when minimum support count varying

(B) Comparison on the basis of execution time and no of

records between FP-Growth Tree conditional pattern, FP-

Growth Tree with DB parallel projection and Partition

projection.

Table 4: Comparison Table of 3 algorithms on the basis

of number of records and execution time

No of

records

Time taken

to execute

(In

millisecond)

FP-Growth

Tree

Time taken

to execute

(In

millisecond)

FP-Growth

Tree with

Data base

Parallel

Projection

Time taken

to execute

(In

millisecond)

FP-Growth

Tree with

Data base

Partition

projection

200 84 60 91

300 97 70 102

400 145 132 156

500 196 180 222

Fig 2: Figure representing the comparison of FP-Growth

Tree, Data base Parallel Projection and Partition

projection when no of records varying

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 18, March 2015

5

6. CONCLUSION
 This paper proposed a new algorithm which combined FP

Growth Tree algorithm and projection algorithm which deals

with large size database.

The experimental results show that this new algorithm (PFP

Tree) works much faster than FP Growth Tree algorithm.

Proposed algorithm is the enhancement of FP Tree technique

of association with parallel and partition projection integration

on it. Traditional FP Tree method performs well but generates

redundant trees resulting efficiency degrades. To achieve

better efficiency in association mining parallel and partition

projection techniques helps out.

Result shows that proposed method perform well and handle

very large size of data set.

There are several advantages of PFP-growth over other

approaches:

(1) It constructs a highly compact PFP-tree, which is usually

substantially smaller than the original database, and thus saves

the costly database scans in the subsequent mining processes.

(2) By using projection technique into the process of tree-

construction, we save the expensive frequent items scans in

PFP Algorithm, which hugely shortens the time of tree-

construction. And the performance is much more scalable

than the FP-Growth method.

(3) It applies a pattern growth method, which avoids costly

candidate generation.

(4) It applies a partition -based divide-and-conquer method,

which dramatically reduces the size of the subsequent

conditional pattern bases and conditional PFP-trees.

Our performance study shows that the method mines both

short and long patterns efficiently in large databases.

Parallel projection takes more memory space but less time

than FP Growth Tree and Partition projection. But partition

projection takes less memory space but more time than FP

Growth Tree and Parallel projection. The parallel projection is

more scalable and efficient than partition projection and FP

Growth Tree.

7. FUTURE WORK
Another issue related to FP-tree materializations how to
incrementally update an FP-tree, such as when adding daily

new transactions in to a database containing records

accumulated for months. If the materialized FP-tree takes 1 as

its minimum support (i.e., it is just a compact version of the

original database), the update will not cause any problem

since adding new records is equivalent to scanning additional

transactions in the FP-tree construction. However, a full FP-

tree may be an undesirably large. Thus setting 1 as its

minimum support may not be a good solution. When support

is very low, FP-tree becomes bushy. In such cases, the degree

of sharing in branches of FP-tree becomes low. The overhead

of links makes the size of FP-tree large. Therefore, instead of

building FP-tree, we should construct projected databases.

That is the reason why we build FP-tree for transaction

database/projected database only when it passes certain

density threshold. From the experiments, one can see that

such a threshold is pretty low, and easy to touch. Therefore,

even for very large and/or sparse database, after one or a few

rounds of database projection, FP-tree can be used for all the

remaining mining tasks.

8. REFERENCES
[1] R. Agrawal and R. Srikant.,” Fast algorithms for mining

association rules”, VLDB, 1994, pp 487-499.

[2] Li Haoyuan, Yi Wang, Zhang Dong, Zhang Ming, Chang

Edward, “PFP: Parallel FP Growth for query

Recommendation”.

[3] Jiawei Han, M. Kamber, “Data Mining-Concepts and

Techniques”, Sam Francisco 2009, Morgan Kanufmann

Publishers.

[4] R Agrawal, T. Imielinski, and A. Swami, “Mining

association rules between sets of items in large

databases”, In Proc.1993 ACM-SIGMOD Int. Conf.

Management of Data, May 1993, Washington, D.C., pp

207–21.

[5] Jiawei Han, Jian Pei, Runying Mao,” Mining Frequent

Patterns without Candidate Generation: A Frequent-

Pattern Tree Approach”, Data Mining and Knowledge

Discovery, April 2001, Kluwer Academic Publishers,

Manufactured in The Netherlands.

[6] Lijuan Zhou , Xiang Wang, “Research of the FP Growth

algorithm based on Cloud Environment” , Journal of

Software, March 2014,volume 9, N0. 3.

[7] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen , U. Dayal ,

and Hsu, M.-C. FreeSpan, “Frequent pattern-projected

sequential pattern mining”, ACM SIGKDD, 2010.

[8] J. Han, J. Pei, and Y. Yin , “Mining Frequent Patterns

without Candidate Generation”, SIGMOD 2000, pp 1-12.

[9] H. Huang , X.W , and R. Relue , “Association Analysis

with One Scan of Databases”, Proceedings of the IEEE

International Conference on Data Mining, 2002.

[10] R. Agrawal, C.C. Aggarwal , and V. V. V. Prasad,” A

Tree Projection Algorithm For Generation of Frequent

Itemsets”, Journal on Parallel and Distributed

Computing[(Special Issue on High Performance Data

mining)], 2010.

[11] Jagrati Malviya , Anju Singh , “ A comparative study of

various database techniques for frequent pattern

generation”, ACSIT Nov 2014.

[12] Vikram Garg , Anju Singh , Divakar Singh , “A Hybrid Algorithm for

Association Rule Hiding using Representative Rule”, International

Journal of Computer Applications (IJCA)2014.

[13] C.C. Agarwal, “An Introduction to uncertain data

algorithm and applications”, Advances in Database

Systems, 2009, 35; pp 1–8.

[14] Rashmi Shikhariya, Nitin Shukla , “An improved

association rule mining with FP Tree using positive and

negative integration”,Journal of global research in

computer science (JGRCS), Oct 2012. Volume 3, No. 10.

IJCATM : www.ijcaonline.org

