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ABSTRACT 

There are lots of data mining tasks such as association rule, 

clustering, classification, regression and others. Among these 

tasks association rule mining is most prominent. One of the 

most popular approaches to find frequent item set in a given 

transactional dataset is Association rule mining. Frequent 

pattern mining is one of the most important tasks for 

discovering useful meaningful patterns from large collection 

of data. The FP Growth algorithm is currently one of the 

fastest approaches to frequent item set mining. 

This paper proposed an efficient and improved FP Tree 

algorithm which used a projection method to reduce the 

database scan and save the execution time. The advantage of 

PFP Tree is that it takes less memory and time in association 

mining.  

Experimental result showed that the improved PFP Tree 

algorithm performs faster than FP growth Tree algorithm and 

partition projection algorithm. It is more efficient and scalable 

in the case of large volume of data. The effectiveness of the 

method has been justified over a sample our one super market 

database. 
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1. INTRODUCTION 
Data mining has become an important field of research and 

has found a wide range of applications across to various areas. 

Data mining is a technique useful for attaining useful 

information from vast databases [12].Frequent item set mining 

(FIM) is a useful tool for discovering frequently co-concurrent 

items. Since its inception, a number of significant FIM 

algorithms have been developed to speed up mining 

performance [2]. Association rule mining is one of the most 

important data mining problems. The conviction of 

association rule mining is the discovery of association 

relationship among a set of items [4, 11].  

In 1994, Agrawal proposed the famous Apriori algorithm, but 

there are two drawbacks in it. First, because it repeatedly 

scans the transaction database, it needs a lot of I/O load; 

second, it will cause huge candidate set. FP-Growth algorithm 

is a good result to the above two problems. The biggest 

advantage of the FP-Growth algorithm is that it only scans 

database twice. It directly compresses the database into a 

frequent pattern tree instead of using a candidate set and 

finally generates association rules through FP-tree [6]. FP-

Growth Tree is more efficient than tree projection but it is 

difficult to maintain it in memory so tree projection is used  in 

tree projection two types of projection is used parallel 

projection is good but it takes more memory but partition 

projection takes more time is execution but takes  less apace  

compare to parallel projection[5]. 

2. RELATED WORK 
According to the past research in the field of frequent pattern 

generation the FP Growth is used most widely. FP-growth 

method is efficient algorithm to mine frequent patterns, in 

spite of long or short frequent patterns. By using compact tree 

structure method, partitioning-based method and divide-and-

conquer   method, it reduces the search costs substantially.  

The first known proposed method for extracting frequent 

patterns is Apriori algorithm proposed by Agrawal [1,3]. 

There have been developed enormous modified versions to 

improve it. Since the main drawback for Apriori-based 

algorithms was involving multiple database scans and 

generation of a large number of candidates, it was not 

appropriate. 

Association mining using Apriori algorithm perform better 

but in case of large database it performs slow because it has to 

scan the full database each time while scanning the 

transaction. In comparison with Apriori algorithm FP is much 

superior in case of efficiency. But problem with traditional FP 

is that it produces a huge number of conditional FP-Tree [14]. 

Divide-and-conquer technique is used to decompose the 

mining task into a set of smaller tasks for mining confined 

patterns in conditional databases, which dramatically reduces 

the search space, frequent pattern mining and association rule 

mining we call this temp database as Projection Database, we 

can create a temp database for storing all the frequent items 

ordered by the list of frequent items which is used for 

projecting, reduce the expensive costs of individual node 

computation The case that may happen in a very large 

database[13]. 

FP-Growth is the first successful tree base algorithm for 

mining the frequent item sets. As for large databases its 

structure does not fit into main memory therefore new 

techniques come into pictures which improve the efficiency of 

FP Growth tree by applying projection techniques. A database 

projection method has been developed to cope with the 

situation when an FP-tree cannot be held in main memory [8, 

9]. 
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3. MINING FREQUENT PATTERN 

USING FP GROWTH TREE 

3.1 FP Growth Tree 
FP-Growth works in a divide and conquers way. It requires 

two scans of the database. In first scan of the database FP-

Growth first computes a list of frequent items sorted by 

frequency in descending order (F-List). In second scan of the 

database, the database is compressed into a FP-tree. After that 

FP-Growth starts to mine the FP-tree for each item whose 

support is larger than ξ by recursively building its conditional 

FP-tree.   

The FP-tree is a compressed representation of the 

transactions, and it also al- lows quick access to all 

transactions that share a given item. Once the tree has been 

constructed, the subsequent pattern mining can be performed. 

However, a compact represent- ton does not reduce the 

potential combinatorial number of candidate patterns, which is 

the bottleneck of FP-Growth [2]. 

3.2 Algorithm to find Frequent Item sets 

using FP-Growth algorithm  
The FP- Growth algorithm for mining frequent patterns using 

FP-Tree is follows:  

Input: A transaction database (D) and minimum support 

threshold (ξ). 

Output: The complete set of frequent patterns.  

Method:  

Call FP-growth (FP-tree, null)  

Procedure FP-growth (Tree, A)  

  {  

If (Tree contains a single path P)  

Then for each (combination (denoted as B) of the nodes in the 

path P)  

Do  

generate pattern B∪A with support = minimum support of 

nodes in B;  

else (for each ai in the header of Tree) do  

   {  

generate pattern B = ai∪A with support = ai.support;  

construct B’s conditional pattern base and then B’s          

conditional FP-Tree Tree B;  

    if (Tree B ≠ ∅)  

   {  

      call FP-growth (Tree B, B)  

     }  

   }  

} 

 

 

 

 

3.3 Example of FP Growth Tree 
Table   1 Show a simple example 

 

With the above observations, one may construct a frequent-

pattern tree as follows. 

First, a scan of DB derives a list of frequent items, (f: 4), (c: 

4), (a: 3), (b: 3), (m: 3), (p: 3) in which items are ordered in 

frequency-descending order. This ordering is important since 

each path of a tree will follow this order. 

 Second, the root of a tree is created and labeled with “null”.  

The FP-tree is constructed as follows  

1. The scan of the first transaction leads to the construction 

of the first branch of the tree: (f: 1), (c: 1), (a: 1), (m: 1), 

(p: 1) Notice that the frequent items in the transaction are 

listed according to the order in the list of frequent items.  

2. For the second transaction, since its (ordered) frequent 

item list f, c, a, b, m_ shares a common prefix  f, c, a_ with 

the existing path  f, c, a, m, p_, the count of each node 

along the prefix is incremented by 1, and one new node 

(b:1) is created and linked as a child of (a:2) and another 

new node (m:1) is created and linked as the child of (b:1).  

3. For the third transaction, since its frequent item list  f, b 

shares only the node  f  with the f -prefix sub tree, f ’s 

count is incremented by 1, and a new node (b:1) is created 

and linked as a child of ( f :3).  

4. The scan of the fourth transaction leads to the construction 

of the second branch of the tree, (c: 1), (b: 1), (p: 1) _.  

5. For the last transaction, since its frequent item list _ f, c, a, 

m, p_ is identical to the first one, the path is shared with 

the count of each node along the path incremented by 1.  

4. CONSTRUCTING FP GROWTH 

TREE USING PROJECTION 

4.1 Projection 
Database projection means partition a database into a set of 

projected database.Construct and mine FP Tree once the 

projected Databasse  can fit into main memory. 

There are two types of database projection: parallel projection 

and partition projection. 

Parallel projection is implemented as follows: Scan the 

database to be projected once, where the database could be 

either a transaction database or aα-projected database. For 

each transaction T in the database, for each frequent item ai in 

T, project T to the ai- projected database based on the 

transaction projection rule, species in the dentition of 

projected   database. Since a transaction is projected in 

parallel to all the projected databases in one scan, it is called 

parallel projection.  
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Partition projection is implemented as follows. When 

scanning the database (original or α-projected) to be 

projected, a transaction T is projected to the ai-projected 

database only if ai is a frequent item in T and there is no any 

other item after ai in the list of frequent items appearing in the 

transaction. Since a transaction is projected to only one 

projected database at the database scan. After the scanning of 

the database, it is partitioned by projection into a set of 

projected databases, and hence it is called partition projection. 

The projected databases are mined in the reversed order of the 

list of frequent items .That is, the projected database of the 

least frequent item is mined first and so on. Each time when a 

projected database is being processed, to ensure the remaining 

projected databases obtain the complete information, each 

transaction in it is projected to the aj-projected database, 

where aj is the item in the transaction such that there is no any 

other item after aj in the list of frequent items appearing in the 

transaction [5]. 

4.2 Construction Process of PFP Tree 
(1) we can create a temp database for storing all the frequent 

items ordered by the list of frequent items L. we call this temp 

database as Projection Database (or PDB for short), which is 

used for projecting, reduce the expensive costs of individual 

node computation. 

(2) We can project the PDB, two columns at a time. One 

column is used to compute the count of each different item, 

the other (previous) column is used to distinguish the node’s 

parent node of current column. By this way, we can insert one 

level of nodes into the tree at a time, not compute frequent 

items one by one. Then, the algorithm performance is only 

related to the depth of tree, namely the number of frequent 

items of the longest transaction in the database η, not the sum 

of frequent items in the database [10]. 

(3) Because we only project two columns at a time, only save 

the information of the current nodes and their parent nodes, if 

there exist the case as follows: the current nodes’ parent nodes 

are identical, but their parent nodes are different, we couldn’t 

judge how to deal with it.  

If we add their count regarding them as the same node, we 

make a mistake; because they are different nodes belong to 

different parent nodes.  When encounter this case, we can add 

the parent nodes’ name as the TAI to the current nodes, and 

save to the PDB. Then when the next projection, we can 

distinguish these nodes by their parent nodes’ TAI [7, 8]. 

4.3 Proposed Algorithm 
In this paper new algorithm is proposed which combined FP 

Growth Tree algorithm and projection algorithm. 

Algorithm PFP-tree construction 

Input: A transaction database and a minimum support 

threshold ξ. 

Output: PFP-tree 

Method: 

 (1). First scan the transaction database once. Collect the set of 

frequent items F and their supports. Sort set of frequent items 

F in support descending order as L. 

(2). Select and sort the frequent items in transaction according 

to the order of L, the result is saved in the PDB. 

(3). Create the root of an FP-tree, T, and label it as “null”. Let 

column number in PDB be j, the initial value of j is 1.  

If j = 1  

The process is implemented as follows:  

First project the column (j-1) and column (j), then add 1 to j, 

and project column (j-1) and column (j) circularly, and so on, 

until project the last column of PDB.  

Then Do 

{ 

Project the column (1), collect the set of frequent items and 

their supports, let the result be [q: n], where q is the frequent 

item, n is the count; Insert these nodes as the root’s child 

nodes into the PFP-tree. 

} 

Else Do 

{ 

(1) Project both parent column (j-1) and current column (j), 

compare the set of Binary-frequent items and collect their 

supports1. Let the result be [px, q:n],  where p is the parent 

frequent item of column(j-1), x. is p’s TAI  and q is the 

current frequent item of column (j), n. Linked to the nodes 

with the same item-name via the node-link structure. 

(2) Compare the result sets of [px, q: n], if their current 

frequent item name, q are identical, then add the count. 

(3) Insert The node [qy:n]or[q:n] as the child nodes of px into 

the PFP-tree and let their node-link be linked to the nodes 

with the same item-name via the node-link structure.  

}  

(4)Delete all the TAI in the PFP-tree and PDB (this step can 

be cancelled). 

5. EXPERIMENTAL EVALUATION 

AND PERORMANCE STUDY  
In this section we present a performance comparison of FP 

Growth with FP Parallel Projection and FP Partition 

Projection algorithm. All the experiments of three algorithms 

are performed on computer with a 3-GHz processor Pentium 

PC machine with 512MB main memory. The algorithm 

implemented on Microsoft Windows/NT. The proposed 

algorithm is implemented in Microsoft Visual studio .net 

using (C# 7.0).  

Please   note that run time used here means the total execution 

time, that is, the period between input and output, instead of 

CPU time measured in the experiments in some literature.  

The experimental results are showed in Figure 1 and Figure 2 

respectively. Experimental results shows  that PFP Tree 

algorithm  works much faster than FP Growth Tree algorithm 

and partition FP Growth tree algorithm because it doesn’t 

need to generate 2-candidate item sets and reduce the search 

space. PFP tree algorithm runs faster than FP-growth, because 

in the case, FP-growth needs to construct a large of 

conditional sub trees, it is not only time-consuming but also 

high memory cost. But in the case , parallel projection is good 

but it takes more memory but partition projection takes more 

time is execution but takes  less apace  compare to parallel 

projection. PFP doesn’t need too much extra spaces and time 

on the mining process, so PFP tree algorithm has a better 

scalability. 
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Our First transaction Dataset: 

This paper explores the PFP Tree algorithm on the sample of 

super market dataset; it is a synthesized data set, which is 

illustrated in Table 2. 

TRANSACTION_ID ITEM SET 

T01 

BREAD,MILK, BISCUIT, 

CORNFLAKES 

T02 BREAD,TEA, BOURNVITA 

T03 JAM ,MAGGI,BREAD,MILK 

T04 MAGGI,TEA, BISCUIT 

T05 BREAD,TEA, BOURNVITA 

T06 MAGGI,TEA, CORNFLAKES 

T07 MAGGI,BREAD,TEA,BISCUIT 

T08 JAM ,MAGGI,BREAD,TEA 

T09 BREAD,MILK 

T10 

COFFEE,COCK, BISCUIT, 

CORNFLAKES 

T11 

COFFEE,COCK, BISCUIT, 

CORNFLAKES 

T12 COFFEE,SUGER, BOURNVITA 

T13 BREAD,COFFEE,COCK 

T14 BREAD,SUGER, BISCUIT 

T15 COFFEE,SUGER,CORNFLAKES 

T16 BREAD,SUGER, BOURNVITA 

T17 BREAD,COFFEE,SUGER 

T18 BREAD,COFFEE,SUGER 

T19 

TEA,MILK,COFFEE, 

CORNFLAKES 

T20 MILK, BREAD, BISCUIT 

 (A) Comparison on the basis of execution time and minimum 

support count between FP-Growth Tree conditional pattern, 

FP-Growth Tree with DB parallel projection and Partition 

projection.  

Table 3: Comparison Table of 3 algorithms on the basis of 

minimum support count and execution time 

Minimum  

support 

count 

Time taken 

to execute 

(In 

millisecond) 

FP-Growth 

Tree  

Time taken 

to execute 

(In 

millisecond) 

FP-Growth 

Tree with 

Data base 

Parallel 

Projection 

Time taken 

to execute 

(In 

millisecond) 

FP-Growth 

Tree with 

Data base 

Partition 

projection 

2       132       102         153 

3       124       85        131 

4        84      60         95 

5       74       45         79 

 

Fig 1:  Figure representing the comparison of FP-Growth 

Tree, Data base Parallel Projection and Partition 

projection when minimum support count varying 

(B) Comparison on the basis of execution time and no of 

records between FP-Growth Tree conditional pattern, FP-

Growth Tree with DB parallel projection and Partition 

projection.  

Table 4: Comparison Table of 3 algorithms on the basis 

of number of records and execution time 

No of 

records 

Time taken 

to execute 

(In 

millisecond) 

FP-Growth 

Tree  

Time taken 

to execute 

(In 

millisecond) 

FP-Growth 

Tree with 

Data base 

Parallel 

Projection 

Time taken 

to execute 

(In 

millisecond) 

FP-Growth 

Tree with 

Data base 

Partition 

projection 

200       84       60         91 

300       97       70        102 

400      145      132        156 

500      196      180       222 

 

Fig 2: Figure representing the comparison of FP-Growth 

Tree, Data base Parallel Projection and Partition 

projection when no of records varying 
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6. CONCLUSION 
 This paper proposed a new algorithm which combined FP 

Growth Tree algorithm and projection algorithm which deals 

with large size database. 

The experimental results show that this new algorithm (PFP 

Tree) works much faster than FP Growth Tree algorithm. 

Proposed algorithm is the enhancement of FP Tree technique 

of association with parallel and partition projection integration 

on it. Traditional FP Tree method performs well but generates 

redundant trees resulting efficiency degrades. To achieve 

better efficiency in association mining parallel and partition 

projection techniques helps out.  

Result shows that proposed method perform well and handle 

very large size of data set.   

There are several advantages of PFP-growth over other 

approaches: 

(1) It constructs a highly compact PFP-tree, which is usually 

substantially smaller than the original database, and thus saves 

the costly database scans in the subsequent mining processes. 

(2) By using projection technique into the process of tree-

construction, we save the expensive frequent items scans in 

PFP Algorithm, which hugely shortens the time of tree-

construction. And the performance is much more scalable 

than the FP-Growth method. 

(3) It applies a pattern growth method, which avoids costly 

candidate generation. 

(4) It applies a partition -based divide-and-conquer method, 

which dramatically reduces the size of the subsequent 

conditional pattern bases and conditional PFP-trees. 

Our performance study shows that the method mines both 

short and long patterns efficiently in large databases. 

Parallel projection takes more memory space but less time 

than FP Growth Tree and Partition projection. But partition 

projection takes less memory space but more time than FP 

Growth Tree and Parallel projection. The parallel projection is 

more scalable and efficient than partition projection and FP 

Growth Tree. 

7. FUTURE WORK 
Another issue related to FP-tree materializations how to 
incrementally update an FP-tree, such as when adding daily 

new transactions in to a database containing records 

accumulated for months. If the materialized FP-tree takes 1 as 

its minimum support (i.e., it is just a compact version of the 

original database), the update will not cause any problem 

since adding new records is equivalent to scanning additional 

transactions in the FP-tree construction. However, a full FP-

tree may be an undesirably large. Thus setting 1 as its 

minimum support may not be a good solution. When support 

is very low, FP-tree becomes bushy. In such cases, the degree 

of sharing in branches of FP-tree becomes low. The overhead 

of links makes the size of FP-tree large. Therefore, instead of 

building FP-tree, we should construct projected databases. 

That is the reason why we build FP-tree for transaction 

database/projected database only when it passes certain 

density threshold. From the experiments, one can see that 

such a threshold is pretty low, and easy to touch. Therefore, 

even for very large and/or sparse database, after one or a few 

rounds of database projection, FP-tree can be   used for all the 

remaining mining tasks.  
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