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ABSTRACT 

Image denoising is a well explored topic in the field of image 

processing. A denoising algorithm is designed to suppress the 

noise while preserving as many image structures and details 

as possible. This paper presents a novel technique for edge-

preserving image denoising using wavelet transforms. The 

multi-level decomposition of the noisy image is carried out to 

transform the data into the wavelet domain. An adaptive 

thresholding scheme which employs arbitrary shaped local 

windows and is based on edge strength is used to effectively 

reduce noise while preserving significant features of the 

original image. The experimental results, compared to other 

approaches, prove that the proposed method is suitable for 

various image types corrupted by Gaussian noise. 
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1. INTRODUCTION 
Image denoising is the process of obtaining the original image 

by reducing unwanted noise from a corrupted image. Various 

techniques [1-3] for noise reduction have been introduced in 

last few decades, many of them are based on linear spatial 

domain filters. Most linear filtering techniques proposed so 

far need some prior knowledge about the noise and the image 

characteristics. Usually, such details are not available and may 

be hard to estimate from the input noisy image. Linear filters 

are easy to implement and usually smooth the data to 

eliminate the noise; however, this process can produce 

blurring in images [3].   

To handle the problems of linear filters, many non-linear 

edge-preserving methods have been developed and research is 

still continued in this direction [4]. These non-linear edge-

preserving filtering methods can remove the noise more 

effectively while preserving the important image features such 

as edges. Wavelet-based non-linear methods have shown 

excellent potential in providing efficient edge-preserving 

image denoising since they provide a suitable basis for 

separating noisy signal from the image signal. The common 

approach for noise reduction in wavelet domain in to 

determine the multiscale wavelet decomposition of the noisy 

image and to modify the wavelet coefficients, thus obtained. 

Coefficients that are supposed to be noisy are modified by 

means of thresholding. Reconstruction from these modified 

coefficients then gives the desired denoised image. Numerous 

denoising methods follow such procedure of wavelet 

thresholding [5-14].  

A major challenge in the wavelet shrinkage process is to 

estimate an appropriate threshold. Some well-known 

threshold estimation criteria are VisuShrink (non-adaptive) 

[6], SureShrink [7] (adaptive), BayesShrink [5, 17] (adaptive) 

and Cross Validation [18, 19] (adaptive). Once an appropriate 

threshold is estimated, the wavelet coefficients can be 

thresholded according to a shrinkage rule. A shrinkage 

(thresholding) rule at stage 3 defines the applicability of a 

threshold. The ultimate goal of a shrinkage rule is to preserve 

large coefficients which represent important signal features, 

while small coefficients can be thresholded without affecting 

the significant image features. Often used shrinkage rules are 

„keep-or-kill‟ hard thresholding and „shrink-or-kill‟ soft 

thresholding [16]. 

Most of the wavelet-based denoising methods often require 

the knowledge about the variances of signal and/or noise. 

Since these variances are usually unknown, assumptions are 

frequently made. A common solution to the problem is to 

estimate the variance from the data. Such variance estimation 

is popular for various denoising methods and achieves 

efficient denoising results with a low complexity. Numerous 

denoising approaches [10-13, 20] have taken benefit of joint 

statistical relationships among the wavelet coefficients by 

estimating the variance of a coefficient adaptively from a local 

neighborhood window consisting of coefficients within a 

subband. The size of the locally adaptive window also plays 

an important role in estimating the signal variance. 

In this paper, we present a new technique for noise reduction 

using wavelet transforms. A new locally adaptive thresholding 

scheme which involves estimation of thresholding parameters 

in arbitrarily shaped local neighborhood windows and is based 

on edge strength, is used to effectively suppress Gaussian 

noise while preserving relevant features of the original image. 

Experimental results show that the proposed method, when 

compared to well-known state-of-the-art denoising methods, 

is more suitable for various classes of images corrupted by 

Gaussian noise. 

The motivation behind using the concept of arbitrarily shaped 

(varying sized) local windows has come from the denoising 

approach suggested by Eom and Kim [11]. In [11], authors 

have been established that a locally adaptive window of 

nearly arbitrarily shape (i.e. varying size) can be more 

efficient in removing white Gaussian noise in comparison of 

fixed size local windows. The reason being with nearly 

arbitrarily shaped window, one can obtain more accurate local 

statistics of images. However, they had pointed that denoising 

results obtained with their approach were not so good in 

higher noise environment. Through the proposed approach, 

we have got better denoising results with effective edge-

preservation. 

The remainder of this paper is organized as follows. Section 2 

gives a brief review of related techniques; Section 3 contains 

the proposed method in detail; Section 4 gives experimental 

results, including a comparison with other denoising methods; 

Finally Section 5 summarizes the conclusions. 

2. RELATED WORK 
A number of denoising approaches in wavelet domain have 

used the mechanism of locally adaptive windows. In this 

mechanism one can estimate the variance of each wavelet 
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coefficient from the coefficients in its local neighborhood. A 

noisy image in wavelet domain is modeled as 

    𝐲 = 𝐰 +  𝐧                                                                        (1) 

where 𝐲 is the observed image, 𝐰 is the unknown original 

image and 𝐧 is assumed to be an i.i.d. white Gaussian noise 

with zero mean and finite variance 𝜎𝑛𝑜𝑖𝑠𝑒
2 . The goal is to 

recover 𝐰 from the noisy observation 𝐲. Several denoising 

approaches [8, 10-13] use the signal variance 𝜎𝑠𝑖𝑔𝑛𝑎𝑙 ,𝑘
2  of a 

wavelet coefficient wk, that is assumed to be an independent 

Gaussian variable. It is assumed that 𝜎𝑠𝑖𝑔𝑛𝑎𝑙 ,𝑘
2  is deterministic 

and known. But if in fact 𝜎𝑠𝑖𝑔𝑛𝑎𝑙 ,𝑘
2  is not known, 𝜎 𝑠𝑖𝑔𝑛𝑎𝑙 ,𝑘

2 , 

which is an estimate of 𝜎𝑠𝑖𝑔𝑛𝑎𝑙 ,𝑘
2 , should be used. Obviously, 

𝜎 𝑠𝑖𝑔𝑛𝑎𝑙 ,𝑘
2  has to be estimated from the given noisy data. The 

performance of a denoising method is dependent on the 

quality of the estimator, 𝜎 𝑠𝑖𝑔𝑛𝑎𝑙 ,𝑘
2 . 

Mihcak et al. [10] proposed a powerful denoising scheme with 

low-complexity by exploiting the dependency of the local 

wavelet coefficients within each scale. In [10], authors 

obtained reasonably good results by performing a locally 

adaptive window-based maximum likelihood (LAWML) 

estimate. Eom and Kim [11] demonstrated improvisation over 

LAWML approach, as they obtained more better results by 

performing a nearly arbitrarily shaped window-based 

maximum likelihood (NASWML) estimate.    

Sendur and Selesnick [8] proposed a locally adaptive 

thresholding method in which they had also the same 

estimator for signal variance of a wavelet coefficient as was 

used in [10]. But unlike the method proposed in [10], Sendur 

and Selesnick used a bivariate shrinkage function which 

exploits the interscale dependency between wavelet 

coefficients. 

Jain and Tyagi [12] have recently proposed a denoising 

technique in tetrolet (Haar-type wavelet) domain which is 

deeply inspired by locally adaptive thresholding approach 

presented by Sendur and Selesnick [8]. They proposed a 

locally adaptive thresholding method which exploits interscale 

statistical dependency and based on computation of noise 

level.  

Jain and Tyagi [13] have also proposed very recently a new 

technique for noise reduction in wavelet domain. They 

presented a new locally adaptive patch-based (LAPB) 

thresholding scheme that relies on the aggregation of multiple 

thresholded estimates of a wavelet coefficient and involves 

estimation of thresholding parameters for a wavelet 

coefficient (such as signal variance) in a local neighborhood. 

Although the computation load is low for each coefficient in 

all the above discussed denoising approaches but all of them 

focus only on a fixed window size for the local neighborhood. 

Apart from this, it is a common thinking that the larger the 

size of the region in which to estimate the signal variance is, 

the more reliable this estimation is. However, the locally i.i.d 

assumption becomes inaccurate as the size of the 

neighborhood grows [20]. This suggests the existence of a 

proper neighborhood region for the variance estimation of 

each wavelet coefficient. A number of methods [11, 15, 20-

23] based on varying local varying windows have been 

developed. 

3. PROPOSED METHOD 
In previous section we have discussed the importance of using 

“proper neighborhood region” over fixed size neighborhood 

region for the variance estimation of each wavelet coefficient. 

By proper neighborhood region, we mean the neighborhood 

region in which one can obtain local statistics of images more 

accurately. This fact motivates us to use variable-sized 

neighborhood regions of nearly arbitrarily shapes (instead of 

fix-sized square shape). To employ the mechanism of nearly 

arbitrarily shaped windows, our approach used the region 

merging method suggested by Eom and Kim [11]. In our 

approach, an adaptive threshold is computed in neighborhood-

dependent manner to effectively characterize local features of 

the image. A new locally adaptive thresholding scheme is 

proposed to threshold the small wavelet coefficients 

considered to be noise while preserving edges. This 

neighborhood-dependent thresholding is obtained based on 

the calculation of local noise variance and edge strength.      

Though, the proposed thresholding scheme is inspired by the 

arbitrarily shaped window-based locally adaptive denoising 

method proposed by Eom and Kim [11] but there are some 

differences that make it superior. First, as our scheme 

computes the noise variance which is used in the computation 

of thresholds, locally at each resolution scale, it achieves 

better denoising results specially in higher noise environment. 

Second, as our scheme considers edge strength of a pixel for 

the estimation of local threshold, it achieves better edge-

preservation.  

Apart from improvisation over denoising approach in [11], 

our method also outperforms locally adaptive patch-based 

(LAPB) thresholding scheme proposed by Jain and Tyagi [13] 

due to some genuine facts. First, unlike the fix-sized local 

neighborhood mechanism used in LAPB method, proposed 

approach uses variable-sized neighborhood region for the 

estimation of signal variance of each wavelet coefficient. 

Second, the scheme preserves edges more efficiently as it 

considers the edge strength of a pixel during its thresholding. 

The main stages of the proposed denoising method are 

illustrated in Fig. 1.  

Suppose that a given image 𝐟 =  f 𝑥, 𝑦 , 𝑥 = 1, … , 𝑀, 𝑦 =
1,…𝑁 has been corrupted by additive noise as 

    𝐠 = 𝐟 +  𝐧,                                                                         (2) 

where 𝐠 and 𝐟 are the noisy image and the original image, 

respectively, 𝐧 represents the noise and is modeled as 

independent and identically distributed (i.i.d). Gaussian with 

zero mean and standard deviation σ, denoted as 𝒩 0, σ2 .  

The multiscale decomposition 𝐆 of the noisy image 𝐠 at stage 

1 can be obtained through the application of the discrete 

wavelet transform W, expressed as 

    𝐆 = 𝐖 𝐠                                                                                     (3) 
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Fig 1: Proposed denoising method

The discrete wavelet transform decomposes an image into 

different frequency subbands labeled as LLJ, LHj, HLj, and 

HHj, j = 1,2,…..,J, where j is the scale and J is the coarsest 

scale. The larger j is, the coarser the scale is. 

Let us use the notations 𝐠𝐽 , 𝐒1
𝑗
, 𝐒2

𝑗
 and 𝐒3

𝑗
, 𝑗 = 1, …… , 𝐽, for 

the subbands LL𝐽 , LH𝑗 , HL𝑗  and HH𝑗 , respectively. Consider 

the detail subband 𝐒𝑙
𝑗
, j = 1,…..,J and l = 1, 2, 3. Note that the 

additive noise model for image 𝐠 in spatial domain in Eq. (2) 

is also applicable for the subband 𝐒𝑙
𝑗
 in wavelet domain. Thus, 

we have 

    𝐒𝑙
𝑗

= 𝐰𝑙
𝑗

+ 𝐧𝑙
𝑗
,                                                                   (4) 

where the noisy subband 𝐒𝑙
𝑗
 is obtained after adding the noise 

𝐧𝑙
𝑗
 in its noiseless counterpart 𝐰𝑙

𝑗
. The objective of the 

proposed locally adaptive thresholding scheme is to obtain 

𝐰 𝑙
𝑗
, the estimate of 𝐰𝑙

𝑗
, from its noisy observation 𝐒𝑙

𝑗
. Let 

𝑦𝑘 ∈  𝐒𝑙
𝑗
, 𝑤𝑘 ∈  𝐰𝑙

𝑗
 and 𝑛𝑘 ∈  𝐧𝑙

𝑗
. Eq. (4) can be rewritten as 

𝑦𝑘 = 𝑤𝑘 + 𝑛𝑘 ,   𝑘 = 1 …… no. of wavelet coefficients      (5) 

where 𝑦𝑘  is noisy observation of 𝑤𝑘  and 𝑛𝑘  is noisy sample. 

Thus, we have to obtain 𝑤 𝑘 ∈  𝐰 𝑙
𝑗
 which is an estimate of 𝑤𝑘  

from its noisy observation 𝑦𝑘 .     

The local noise variance 𝜎 𝑛𝑜𝑖𝑠𝑒 ,𝑗
2  at stage 2 can be estimated as 

    𝜎 𝑛𝑜𝑖𝑠𝑒 ,𝑗 =  
𝑚𝑒𝑑𝑖𝑎𝑛   y𝑖  

0.6745
, y𝑖 ∈  𝐒3

𝑗
                                        (6) 

The expression on right-hand side of Eq. (6) is a robust 

median estimator generally used to estimate noise variance 

from highest frequency subband, i.e., the subband 𝐒3
1) [6].   

An edge detection algorithm at stage 3 is used to identify 

edges in the image. A multiscale edge detection based on 

Haar wavelet transform modulus maxima is used for this 

purpose [24], being applied separately to each subband. The 

multiscale edge detection produces an edge map for each 

subband 𝐒𝑙
𝑗
, that is, a binary image where 1 represents an 

active edge element and 0 represents a non-edge element. 

An arbitrarily shaped window at stage 4 is estimated. The 

objective is to determine a reasonable window size in order to 

estimate the signal variance for each wavelet coefficient.  We 

have used region merging method [11] for this purpose. 

Assume that there is a region 𝑅 including 𝑦𝑘 . Let 

𝑟𝑘,0, ⋯ , 𝑟𝑘,𝑄−1 be the disjoint partitions of region 𝑅, that is, 

𝑟𝑘,𝑖 ∩ 𝑟𝑘,𝑗 = ∅, 𝑖 ≠ 𝑗, and ∪𝑖 𝑟𝑘,𝑖 = 𝑅. In addition, only a 

subregion 𝑟𝑘,0 includes 𝑦𝑘 .  

Starting from the subregion 𝑟𝑘,0 which includes the denoising 

point 𝑦𝑘 , the region in which to estimate the signal variance 

𝜎 𝑠𝑖𝑔𝑛𝑎𝑙 ,𝑘
2  is expanded until the homogeneity of the variance is 

achieved. The measure of the homogeneity is defined 

according to the normalized difference of variances, that is 

    𝑕𝑘,𝑞 =
 𝜎𝑘,𝑞

2 −𝜎𝑘,0
2  

𝜎𝑘,0
2 , 𝑞 = 0, 1, ⋯ , 𝑄 − 1                                 (7) 

where 𝜎𝑘,𝑞
2  is the local variance of subregion 𝑟𝑘,𝑞 . Since the 

local mean of wavelet coefficients is very small, 𝜎𝑘,𝑞
2  is 

approximately calculated by 

    𝜎𝑘,𝑞
2 =  

1

 𝑟𝑘 ,𝑞  
 𝑦𝑚

2
𝑦𝑚∈𝑟𝑘 ,𝑞

                                                    (8) 

where,  𝑟𝑘,𝑞   is the size of the subregion 𝑟𝑘,𝑞 .  

   Let 𝑏𝑘,𝑞  be a binary factor indicating whether the variance 

𝜎𝑘,𝑞
2  is homogenous or not with 𝜎𝑘,0

2 . That is,   

    𝑏𝑘,𝑞 =       1, if 𝑕𝑘,𝑞 <  𝑡𝑘  

                     0, otherwise                                                    (9) 

where 𝑡𝑘  is the homogeneity threshold defined as 

    𝑡𝑘 =  𝛽2 𝐿−𝑙 , 𝑙 = 0, ⋯ , 𝐿.                                               (10) 

Therefore, an arbitrarily shaped locally adaptive 

neighborhood region 𝑊 𝑘  around the coefficient 𝑦𝑘  will be 

formed by merging those subregions (partitions) of region 𝑅 

whose local variances are homogeneous with the local 

variance of the subregion 𝑟𝑘,0. In other words, the variable-

sized locally adaptive window 𝑊 𝑘  will contain those 

subregions 𝑟𝑘,𝑞  whose respective binary factor 𝑏𝑘,𝑞  is 1. 

Various types of locally adaptive windows are demonstrated 

in Fig. 2. 
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Fig. 2: Various types of locally adaptive windows. The 

black-colored region indicates 𝒓𝒌,𝟎. 

In Eq.(10), 𝛽 is a scaling constant, 𝐿 = 𝐽 − 1. Note that 𝑙 = 0 

represents the finest scale and 𝑙 = 𝐿 represents the coarsest 

scale of the wavelet decomposition. Then, the local variance 

of neighborhood window 𝑊 𝑘  is obtained as 

    𝜎 𝑊 𝑘 
2 =

 𝜎𝑘,𝑞
2 ∙𝑏𝑘,𝑞

𝑄−1
𝑞=0

 𝑏𝑘 ,𝑞
𝑄−1
𝑞=0

                                                        (11) 

Therefore, the estimate of the signal variance 𝜎 𝑠𝑖𝑔𝑛𝑎𝑙 ,𝑘
2  can be 

obtained as 

    𝜎 𝑠𝑖𝑔𝑛𝑎𝑙 ,𝑘
2 =   𝜎 𝑊 𝑘 

2 − 𝜎 𝑛𝑜𝑖 𝑠𝑒,𝑗
2  

+
                                     (12) 

where   𝑎 + is defined as 

 a + =     
0,                                      if a < 0  

  a,                                      otherwise 
    

                     (13) 

The neighborhood adaptive threshold 𝜆𝑘  at stage 5 to 

threshold the wavelet coefficient 𝑦𝑘  is obtained by using 

BayesShrink criterion [5, 17], expressed as 

    𝜆𝑘 =  
𝜎 𝑛𝑜𝑖𝑠𝑒 ,𝑗

2

𝜎 𝑠𝑖𝑔𝑛𝑎𝑙 ,𝑘
                                 (14) 

Before thresholding of the coefficient 𝑦𝑘  by using above 

estimated threshold 𝜆𝑘 , we have checked its activeness toward 

an edge by using edge map which was computed in stage 3. If 

it is related to active edge element, it must be associated with 

smaller threshold value. The threshold 𝜆′𝑘   for such 

coefficients proposed in our method is computed as the 

product between the threshold 𝜆𝑘  and a given value τ, 

expressed by 

    𝜆′𝑘 =  𝜏𝜆𝑘                                                                         (15) 

that is, τ corresponds to a factor used to weight the threshold 

in wavelet coefficients related to edges in the image. Thus, if 

𝑦𝑘  is related to an edge in the image, the denoised value 𝑤 𝑘  is 

obtained by applying its corresponding threshold 𝜆′𝑘  

according to a soft shrinkage function [16] at stage 6 as 

follows: 

    𝑤 𝑘 =  𝑇𝑠𝑜𝑓𝑡  𝑦𝑘 , 𝜆𝑘
′  = sgn 𝑦𝑘 max  𝑦𝑘  − 𝜆𝑘

′ , 0         (16) 

Otherwise, the denoised value 𝑤 𝑘  is obtained by applying the 

threshold 𝜆𝑘  as follows: 

    𝑤 𝑘 =  𝑇𝑠𝑜𝑓𝑡  𝑦𝑘 , 𝜆𝑘 = sgn 𝑦𝑘 max  𝑦𝑘  − 𝜆𝑘 , 0          (17) 

where sgn 𝑥  function returns the sign of the parameter 𝑥. 

By suppressing the noise in each coefficient 𝑦𝑘  in 𝐒𝑙
𝑗
 through 

above described thresholding scheme, we get the 

corresponding denoised coefficient 𝑤 𝑘 . That is, the estimate 

𝐰 𝑙
𝑗
 is obtained. The above procedure will be used to obtain 

the noiseless estimate for all the detail subbands at each level 

and the final thresholded result of complete image in wavelet 

domain can be obtained as 

    𝐅 =   𝐠𝐽 ;  𝐰 1
𝑗
;  𝐰 2

𝑗
; 𝐰 3

𝑗
, 𝑗 = 𝐽, 𝐽 − 1, … ,1                       (18) 

Lastly, the desired denoised image 𝐟  can be obtained by 

applying an inverse discrete wavelet transform 𝐖−1, at stage 

7, on thresholded wavelet domain image 𝐅 . 

    𝐟 = 𝐖−1 𝐅                                                                      (19)  

The whole denoising algorithm is summarized in Table 1. 

Table1. Algorithm for proposed denoising method 

Input: Noisy image 𝐠. 

Output: Denoised image 𝐟 . 

 1: Obtain the J - level wavelet decomposition of noisy     

 2: image 𝐠  into the frequency subbands 𝐠𝐽 , 𝐒1
𝑗
,𝐒2

𝑗
, 𝐒3

𝑗
,   j =  

 3: 1,2,…,J using (3). 

 4: for each resolution scale (j = 1J ) do             

 5:   Calculate the local noise variance 𝜎 𝑛𝑜𝑖𝑠𝑒 ,𝑗
2  using (6).  

 6:      for each subband  𝐒𝑙
𝑗

= 𝐰𝑙
𝑗

+ 𝐧𝑙
𝑗
, (l =1, 2, 3) do 

 7:         Compute edge map for 𝐒𝑙
𝑗
          

 8:             for each coefficient 𝑦𝑘  in 𝐒𝑙
𝑗
 do 

 9:               Determine the arbitrarily shaped locally adaptive   

10:              window 𝑊 𝑘 around 𝑦𝑘  using (7)-(10).          

11:              Compute the local variance 𝜎 𝑊 𝑘 
2  of the window   

12:              𝑊 𝑘  using (11).   

13:              Compute the signal deviation 𝜎 𝑠𝑖𝑔𝑛𝑎𝑙 ,𝑘  using (12).  

14:              if the coefficient 𝑦𝑘  is not related to an edge in the    

15:              image do  

16:              Obtain the corresponding threshold 𝜆𝑘  using (14).  

17:              Get the denoised estimate 𝑤 𝑘  using (17).  

18:              else     

19:              Obtain the corresponding threshold 𝜆𝑘
′  using (15). 

20:              Get the denoised estimate 𝑤 𝑘  using (16).   

21:              end if    

22:             end for     

23:      end for 

24: end for 

25: Get the thresholded wavelet output 𝐅  using (18). 

26: Obtain the denoised image 𝐟  by performing an inverse  

27:  wavelet transform to 𝐅  using (19). 
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4. EXPERIMENTAL RESULTS 
To validate the proposed denoising method, a number of 

experiments were conducted on several real test images 

corrupted by simulated additive white Gaussian noise at six  

different power level 𝜎  [10, 15, 20, 25, 30, 35]. The 

proposed algorithm has been iterated over ten different noise 

realizations for each standard deviation and the results are 

averaged over these ten runs. The test set comprises images 

from standard gray-scale image dataset [25], as well as well-

known images such as Lena, cameraman and peppers.  A 

subset of gray-scale test images shown in Fig. 3 is considered 

in the subsequent discussions for testing the performance. 

       

 

               Fig. 3 Images used in experiments 

4.1 Experimental Setup 
We estimate a set of parameters used by the proposed method 

in section 4: wavelet transform and its number of resolution 

scales (decomposition levels) J, size of region 𝑅, number of 

subregions 𝑄, scaling constant 𝛽 [Eq. (10)], 𝜏 [Eq. (15)]. 

These parameters are estimated using a set of images different 

from those shown in the comparisons. Once the parameters 

are set, they are kept fixed throughout the comparisons to 

other methods. 

A set of stationary wavelets [26] from Symlet, Coeflet, 

Daubechies and Biothogonal families is tested for 

effectiveness. According to our experiments, Symlet-8 (sym8) 

provided better results than other wavelet bases. In addition, 

four resolution levels (i.e. J = 4) achieved the best results. 

Thus, for all other wavelet-based methods (LAPB, LAWML, 

NASWML and Bayes), the Symlet-8 with four decomposition 

levels is used for fair comparison.  

In our experiments, we have chosen the size of region 𝑅 as 9 

× 9 and number of subregions 𝑄 = 9. Therefore, nine 3 × 3 

subregions, and there exist 256 differently shaped windows. 

For practical purposes, all subregions were modeled in square 

shapes as shown in Fig. 2. The scaling constant of 

homogeneity threshold 𝑡𝑘  is set at 𝛽 = 0.1 (our results were 

insensitive to this value).         

According to our experiments, the best value for 𝜏, defined in 

Eq. 17, is 0.8. This shows that it is worth having a trade-off 

between smoothness and edge preservation. This value will be 

used in the remaining experiments and comparisons. 

4.2 Comparisons 
To assess the denoising effectiveness, the proposed method is 

compared to state-of-the-art methods, namely, LAPB [13], 

LAWML [10], NASWML [11] and Bayes [5]. PSNR (in dB), 

SSIM [27] and FOM [28] values of the denoised images 

relative to their original images using these methods are 

reported in Tables 2, 3 and 4, respectively. The best values 

amongst all the methods are highlighted with bold face. 

The results shown in tables demonstrate that the proposed 

method is superior to the methods LAWML, NASWML and 

Bayes in regarding the PSNR and SSIM measures but 

sometimes these methods are competing in regarding FOM 

measure. When we compared with the LAPB method, the 

proposed method is at times contested in regarding the PSNR 

and SSIM measures but it almost beats LAPB method in 

regarding FOM measure. 

In Fig. 4 which compares the PSNR performances of our 

method with other well-known denoising methods, starting 

from (a) to (f) it can be observed that the proposed method 

performs better in comparison to others in most of the cases. 

Though sometimes the LAPB method [Fig. 4 (a), (d), (e)] 

marginally beats the proposed one. Figures 5, 6, 7 and 8 

demonstrate the visual comparison among all the methods 

including the proposed one in respect to the sample test 

images: Lena, Barbara, Cameraman and Peppers, respectively. 

The Bayes method tends to produce smoothened results in 

homogeneous regions. Nevertheless, certain features such as 

edges are affected. As the proposed denoising method takes 

into account the located edges in each high frequency subband 

to threshold the wavelet coefficients, it is possible to observe 

that such variable-sized window-based locally adaptive 

thresholding, effectively reduces noise while preserving 

features of the image. This effect can be better seen in Figs. 

5(f) and 7(f). 

The LAPB method produces a similar result on edges. 

However it can be perceived from Figs. 5, 6, 7 and 8, that the 

proposed method outperforms LAPB in homogeneous 

regions, producing smoother results. That can be clearly 

observed in the various smooth regions in Fig. 8. 

The LAWML and Bayes methods fail to smoothen up images 

when noise increases to higher levels. These produce good 

results at lower 𝜎 values but give poor denoised images at 

higher noise levels. The proposed method overcomes such 

problem as some crucial parameters are set based on noise 

levels.  

5. CONCLUSIONS 
This paper presented a new edge-preserving image denoising 

method in wavelet domain. A new locally adaptive 

thresholding scheme which employs arbitrarily shaped 

(variable-sized) local windows to estimate the thresholding 

parameters, is used to effectively suppress Gaussian noise 

while preserving relevant features of the original image. The 

region merging technique is used to obtain variable-sized 

locally adaptive window. In our approach, an adaptive 

threshold is computed in neighborhood-dependent manner to 

effectively characterize local features of the image.  This 

neighborhood-dependent thresholding is obtained based on 

the calculation of local noise variance and edge strength. 

The proposed method has several desirable features. First, 

with the approach of using variable-sized local neighborhood 

window we can obtain accurate local statistics of the image. 

Second, estimating the term noise variance, used in the 

 (a) Lena              (b)   Cameraman         (c) Barbara 

 (d) Man                     (e) Boat                   (f) Peppers 
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computation of thresholds, locally at each resolution scale 

makes it more beneficial as it takes the noise strength at that 

scale into consideration. Third, taking the edge strength of 

each pixel into consideration during its thresholding gives rise 

to better edge-preservation.    

 

Table 2. Performance of various methods as measured by PSNR 

 

Methods 

 

LAPB 

 

LAWML 

 

NASWML 

 

Bayes 

 

Proposed 

method   method   method   method   method 

Lena 

           σ = 10 34.36 

 

34.35 

 

34.43 

 

33.54 

 
34.67 

  σ = 15 32.56 

 

32.31 

 

32.57 

 

31.32 

 
32.78 

  σ = 20 31.74 

 
30.80 

 
31.01 

 
30.10 

 
30.98 

  σ = 25 30.85 

 

29.76 

 

29.87 

 

29.43 

 

30.42 

  σ = 30 29.71 

 

28.89 

 

28.91 

 

28.56 

 
29.87 

  σ = 35 28.73 

 

28.15 

 

28.16 

 

28.19 

 
28.95 

Cameraman 

          σ = 10 36.29 
 

36.01 
 

36.33 
 

35.16 
 

36.57 

  σ = 15 33.97 

 

33.65 

 

34.01 

 

32.93 

 
34.39 

  σ = 20 32.51 

 

32.04 

 

32.46 

 

31.58 

 
32.65 

  σ = 25 31.23 
 

30.82 
 

31.32 
 

30.34 
 

31.79 

  σ = 30 30.58 

 

29.81 

 

30.34 

 

29.54 

 
30.76 

  σ = 35 30.25 

 

29.01 

 

29.49 

 

29.03 

 
30.50 

Barbara 

           σ = 10 32.41 

 

32.47 

 

32.44 

 

31.10 

 
32.69 

  σ = 15 30.76 
 

30.33 
 

30.61 
 

29.54 
 

31.47 

  σ = 20 29.16 

 

28.95 

 

29.24 

 

27.50 

 
29.48 

  σ = 25 27.82 

 

27.99 

 

28.32 

 

26.67 

 
28.60 

  σ = 30 27.51 
 

27.25 
 

27.55 
 

25.47 
 

27.78 

  σ = 35 26.85 

 

26.62 

 

26.91 

 

24.97 

 
27.11 

Man 

           σ = 10 31.42 

 

31.20 

 

31.46 

 

31.44 

 
31.80 

  σ = 15 29.68 

 

29.64 

 

29.73 

 

29.76 

 
30.27 

  σ = 20 28.86 

 

28.34 

 

28.59 

 

28.50 

 

28.70 

  σ = 25 28.10 

 

27.34 

 

27.74 

 

27.36 

 

27.89 

  σ = 30 27.44 

 
26.54 

 
27.05 

 
27.04 

 
27.24 

  σ = 35 26.72 

 

25.92 

 

26.44 

 

25.94 

 
26.86 

Boat 

           σ = 10 32.69 

 

32.74 

 

32.70 

 

32.07 

 
32.89 

  σ = 15 31.45 

 

30.65 

 

30.97 

 

30.14 

 
31.70 

  σ = 20 30.59 

 
29.37 

 
29.59 

 
28.80 

 
30.25 

  σ = 25 29.34 

 

28.37 

 

28.56 

 

27.48 

 

28.80 

  σ = 30 28.51 

 

27.56 

 

27.60 

 

26.77 

 

28.14 

  σ = 35 27.76 

 
26.88 

 
27.01 

 
26.25 

 
27.20 

Peppers 

           σ = 10 32.82 

 

32.53 

 

32.59 

 

32.38 

 
32.96 

  σ = 15 31.84 

 

31.16 

 

31.49 

 

30.51 

 
32.17 

  σ = 20 30.75 

 

30.05 
 

30.38 
 

29.59 
 

31.28 

  σ = 25 29.48 

 

29.17 

 

29.51 

 

28.88 

 
29.71 

  σ = 30 29.02 

 

28.42 

 

28.64 

 

27.95 

 

29.31 

  σ = 35 28.68   27.78   27.87   26.15   28.88 

          
Table 3. Performance of various methods as measured by SSIM 

 
Methods 

 
LAPB 

 

LAWML 

 

NASWML 

 

Bayes 

 

Proposed 

  method   method   method   method   method 

Lena 

           σ = 10 0.90 

 

0.89 

 

0.90 

 

0.87 

 
0.91 

  σ = 15 0.88 

 

0.85 

 

0.86 

 

0.83 

 
0.88 

  σ = 20 0.84 

 

0.82 

 

0.82 

 

0.80 

 
0.84 

  σ = 25 0.82 

 

0.78 

 

0.79 

 

0.78 

 
0.84 

  σ = 30 0.81 

 

0.74 

 

0.75 

 

0.76 

 

0.80 

  σ = 35 0.78 

 

0.70 

 

0.71 

 

0.74 

 
0.78 

Cameraman 

          σ = 10 0.94 

 

0.92 

 

0.93 

 

0.89 

 
0.94 

  σ = 15 0.90 

 

0.87 

 

0.89 

 

0.84 

 
0.90 

  σ = 20 0.88 

 

0.83 

 

0.84 

 

0.80 

 

0.87 

  σ = 25 0.84 

 

0.78 

 

0.80 

 

0.76 

 
0.84 

  σ = 30 0.82 

 

0.73 

 

0.75 

 

0.74 

 

0.81 

  σ = 35 0.81 

 

0.69 

 

0.70 

 

0.59 

 
0.81 
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Barbara 

           σ = 10 0.91 

 
0.91 

 
0.91 

 

0.85 

 
0.91 

  σ = 15 0.87 

 

0.87 

 
0.88 

 

0.79 

 
0.88 

  σ = 20 0.84 

 

0.83 

 
0.84 

 

0.74 

 
0.84 

  σ = 25 0.80 

 

0.79 

 
0.80 

 

0.70 

 
0.80 

  σ = 30 0.77 

 

0.75 

 

0.76 

 

0.67 

 
0.77 

  σ = 35 0.73 

 

0.71 

 

0.71 

 

0.64 

 
0.74 

Man 

           σ = 10 0.88 

 

0.86 

 

0.86 

 

0.86 

 

0.87 

  σ = 15 0.84 

 

0.81 

 

0.82 

 

0.80 

 

0.83 

  σ = 20 0.79 

 

0.76 

 

0.77 

 

0.75 

 
0.80 

  σ = 25 0.76 

 

0.72 

 

0.73 

 

0.71 

 
0.76 

  σ = 30 0.73 

 

0.68 

 

0.69 

 

0.69 

 

0.71 

  σ = 35 0.71 

 

0.64 

 

0.65 

 

0.67 

 

0.69 

Boat 

           σ = 10 0.91 

 

0.90 

 

0.90 

 

0.86 

 
0.91 

  σ = 15 0.88 

 

0.85 

 

0.86 

 

0.80 

 

0.87 

  σ = 20 0.84 

 

0.80 

 

0.81 

 

0.76 

 
0.84 

  σ = 25 0.81 

 

0.76 

 

0.77 

 

0.73 

 

0.80 

  σ = 30 0.77 

 

0.71 

 

0.73 

 

0.71 

 
0.77 

  σ = 35 0.74 

 

0.67 

 

0.69 

 

0.68 

 
0.74 

Peppers 

           σ = 10 0.88 

 

0.85 

 

0.86 

 

0.84 

 

0.86 

  σ = 15 0.84 

 

0.81 

 

0.82 

 

0.79 

 
0.84 

  σ = 20 0.81 

 

0.77 

 

0.79 

 

0.76 

 
0.82 

  σ = 25 0.78 

 

0.73 

 

0.75 

 

0.73 

 
0.80 

  σ = 30 0.76 

 

0.69 

 

0.71 

 

0.71 

 
0.76 

  σ = 35 0.75   0.66   0.67   0.56   0.74 

Table 4. Performance of various methods as measured by FOM 

 

Methods 

 

LAPB 

 

LAWML 

 

NASWML 

 

Bayes 

 

Proposed 

  method   method   method   method   method 

Lena 

           σ = 10 0.89 

 

0.88 

 

0.86 

 

0.89 

 

0.89 

  σ = 15 0.86 

 

0.87 

 

0.85 

 

0.81 

 

0.86 

  σ = 20 0.85 

 

0.83 

 

0.84 

 

0.84 

 

0.84 

  σ = 25 0.82 

 

0.79 

 

0.82 

 

0.76 

 

0.82 

  σ = 30 0.78 

 

0.75 

 

0.76 

 

0.66 

 

0.79 

  σ = 35 0.75 

 

0.76 

 

0.72 

 

0.67 

 

0.76 

Cameraman 

          σ = 10 0.90 

 

0.92 

 

0.89 

 

0.91 

 

0.90 

  σ = 15 0.87 

 

0.85 

 

0.88 

 

0.87 

 

0.85 

  σ = 20 0.82 

 

0.84 

 

0.82 

 

0.74 

 

0.84 

  σ = 25 0.78 

 

0.80 

 

0.76 

 

0.62 

 

0.81 

  σ = 30 0.74 

 

0.75 

 

0.77 

 

0.59 

 

0.77 

  σ = 35 0.71 

 

0.71 

 

0.70 

 

0.57 

 

0.74 

Barbara 

           σ = 10 0.89 

 

0.90 

 

0.88 

 

0.91 

 

0.91 

  σ = 15 0.87 

 

0.83 

 

0.86 

 

0.87 

 

0.88 

  σ = 20 0.81 

 

0.83 

 

0.85 

 

0.83 

 

0.85 

  σ = 25 0.81 

 

0.82 

 

0.84 

 

0.78 

 

0.84 

  σ = 30 0.79 

 

0.81 

 

0.79 

 

0.72 

 

0.81 
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  σ = 35 0.78 

 

0.79 

 

0.81 

 

0.69 

 

0.80 

Man 

           σ = 10 0.86 

 

0.87 

 

0.84 

 

0.91 

 

0.90 

  σ = 15 0.82 

 

0.84 

 

0.81 

 

0.88 

 

0.85 

  σ = 20 0.80 

 

0.83 

 

0.78 

 

0.84 

 

0.83 

  σ = 25 0.78 

 

0.74 

 

0.77 

 

0.80 

 

0.79 

  σ = 30 0.76 

 

0.71 

 

0.76 

 

0.76 

 

0.76 

  σ = 35 0.73 

 

0.70 

 

0.72 

 

0.74 

 

0.74 

Boat 

           σ = 10 0.91 

 

0.91 

 

0.90 

 

0.92 

 

0.92 

  σ = 15 0.87 

 

0.90 

 

0.87 

 

0.89 

 

0.90 

  σ = 20 0.86 

 

0.88 

 

0.85 

 

0.86 

 

0.89 

  σ = 25 0.86 

 

0.86 

 

0.83 

 

0.83 

 

0.86 

  σ = 30 0.81 

 

0.84 

 

0.82 

 

0.78 

 

0.84 

  σ = 35 0.81 

 

0.81 

 

0.80 

 

0.75 

 

0.81 

Peppers 

           σ = 10 0.88 

 

0.86 

 

0.83 

 

0.85 

 

0.86 

  σ = 15 0.83 

 

0.85 

 

0.82 

 

0.81 

 

0.85 

  σ = 20 0.82 

 

0.81 

 

0.83 

 

0.80 

 

0.83 

  σ = 25 0.78 

 

0.74 

 

0.80 

 

0.75 

 

0.80 

  σ = 30 0.76 

 

0.76 

 

0.74 

 

0.65 

 

0.77 

  σ = 35 0.72   0.71   0.67   0.52   0.73 

 

 

a 

 

b 

 

c 

 

d 
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e 
 

f

Fig. 4 PSNR performance graphs for test images 

 

(a)  Noisy (σ =30) 

 

(b) LAPB 

 

(c) LAWML 

 

(d) NASWML 
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(e)  Bayes 

 

(f) Proposed 

Fig. 5 Denoising results for Lena image 

 
(a) Noisy (σ =30) 

 
(b) LAPB 

 
(c) LAWML 

 
(d) NASWML 

 
(e)  Bayes 

 
(f) Proposed 

 

Fig. 6 Denoising results for Barbara image 
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Fig. 7 Denoising results for Cameraman image 

        (a)  Noisy (σ =30)                                                                                                     (b) LAPB    

           (c) LAWML                                                                                                             (d) NASWML   

                    (e)  Bayes                                                                                                              (f) Proposed   
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Fig. 8 Denoising results for Peppers image 

        (a)  Noisy (σ =30)                                                                                                     (b) LAPB    

           (c) LAWML                                                                                                             (d) NASWML   

                    (e)  Bayes                                                                                                              (f) Proposed   
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