
International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 14, March 2015

1

The Subset-Sum Problem: Revisited with an Improved

Approximated Solution

Hashem A. Isa
Faculty of Information

Technology, Al-Balqa Applied
University, Jordan

 Saleh Oqeili
Faculty of Information

Technology, Al-Balqa Applied
University, Jordan

Sulieman Bani-Ahmad
Faculty of Information

Technology, Al-Balqa Applied
University, Jordan

ABSTRACT
The Subset-sum Problem is one of the easiest to describe and

understand NP-complete problems. Available algorithms that

solve this problem exactly need an exponential time, thus

finding a solution to this problem is not currently feasible. The

current paper revisits the subset-sum problem and suggests a

new approach to find an approximate solution to this problem.

The proposed algorithm gives a reasonable solution with a

polynomial time-complexity.

Keywords: NP-complete problem, the subset-sum problem.

1. INTRODUCTION
The Subset-Sum Problem (SSP) is defined as follows: given a

set of positive integers S, e.g., {s1, s2, s3, s4, s5, s6}, and a

positive integer C. This problem is to find one/all subsets of S

that sum as close as possible to, but do not exceed, C [1, 2].

For an example, consider the set S={1, 2, 3, 4, 5} and let the

target sum C be 10. The total number of subsets of S in this

case is 25. Some of the valid solutions to this problem are the

sets {1, 2, 3, 4}, {1, 4, 5}, and {2, 3, 5}.

In general, we notice that the total number of subsets taken

from a set of n elements is 2n [7, 8]. An algorithm that tests all

of these possible solution subsets needs an exponential time.

Let the number of inputs, that is the size of set S, be n. Using a

computer that can generate and test one subset in one

microsecond we need 0.001 sec to solve an SSP problem of

input size 10. However, as this number of inputs grows to 100,

we need 4.1016 years on that same machine! This was the

main motive to work on this problem.

Approximation Algorithms try to attack NP-complete problems

[1, 5, 6]. Since it’s unlikely that there can be efficient

algorithms that solve such problems, one settles for non-

optimal solutions in order to have approximate solution be

found in a polynomial time [14, 16]. Unlike heuristics, which

just usually find good solutions reasonably fast, one may need

provable solution quality and provable run time bounds both

achieved together.

The current paper introduces a new approach that promises

finding some of the possible solutions to the SSP problems

based on a set of current user’s constraints. These constraints

mainly decide upon the maximum number of subsets required.

Based on the provided constraints, and using a polynomial

number of iterations the proposed algorithm can successfully

produce some of approximated and valid solutions to the

problem. The proposed algorithm can successfully produce all

possible solutions.

The rest of this paper is organized as follows: in section 2 we

quickly survey the already proposed approximated solutions.

We explain the proposed approximation algorithm in section 3.

A set of illustrative examples to clarify the major steps of our

proposed solution are presented in section 4. The proposed

solution is analyzed in terms of time and space complexities in

sections 5 and 6. Finally, section 7 is a conclusion.

2. APPROXIMATION SCHEMES
As an example for an approximation algorithm, consider a

greedy algorithm for solving subset-sum problem that starts

with an empty solution subset and examines the input numbers

in decreasing order of their values [16]. Each considered

number is inserted into the current solution if and only if it is

smaller than the difference between the target sum and the sum

of the current solution [16].

The time complexity of such approach is dominated by time

required by the sorting algorithm used to sorting the numbers

in hand [16, 7]. Notice that the greedy algorithm itself needs

linear time which is as small as O(n).

We can use a randomized algorithm that does not require the

numbers in hand to be sorted as a priory step. This should

reduce its execution time and the resulting randomized

algorithm gives often good results if we perform a few

independent trials on the given data and finally return the best

solution.

3. THE PROPOSED SOLUTION
The time requirement of the proposed algorithm described

below can be controlled by predetermining the number

iterations based on the current user input. Given some

predetermined time-frame, the algorithm may or may not find a

solution for the problem using the specified number of

iterations. When the provided number of iterations is

exhausted, the algorithm stops and displays the valid

solutions(s) that it has achieved within given time-frame.

Sometimes, the number of iterations may be small and in this

case the algorithm will stop before finding all solutions.

Algorithm Subset-sum Approximation

Inputs:

Integer N, number of elements

Elements, a set of N distinct positive integers

Integer C, the target sum

Output:

All subsets of the set Elements that have a sum equal to C.

Important declarations:

SSP(int N, int Elements[N], int C)

int Bitmap[N];

int K;

int PSum;

int Iteration;

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 14, March 2015

2

int Count;

int I, J;

boolean Found;

Where

 Bitmap is an array of size N and is used to store ones

and zeros; 1 at position x indicated that the xth

element is part of the identified solution. N is the size

of the set of integers in hand.

 K is the index of the last element in the sorted array

that is smaller than the required sum C.

 PSum holds the current partial sum.

 Iteration is the number of already elapsed iterations

(required to control the number of iterations

covered).

 Count holds the total number of already identified

valid solutions.

Step 1:

// sort Elements in an ascending order

//(using any sorting technique)

SortElements(N, Elements[N]);

// set Count and Iteration

Iteration = 1;

Count = 0;

Note: SortElements() is a function called to sort the set of

elements in ascending order. At this point, the variable

Iteration is set to 1 indicating the beginning of the first

iteration.

Step 2:

// remove from Elements all numbers greater than C

while Elements(N) > C

 N = N – 1

// set current number of elements

K = N;

Step 3:

// fill Bitmap with zeros starting from

// position K down to 1

for I = K downto 1

Bitmap[I] = 0;

Step 4:

// set partial sum to zero

PSum = 0;

Step 5:

// find the first partial subset and its sum

for I = K downto 1

if PSum + Elements[I] <= C

Bitmap[I] = 1;

PSum += Elements[I];

Step 6:

// print the partial subset if its sum equals C

// and add 1 to Count

if C = PSum

for I = 1 to N

if Bitmap[I] = 1

print Elements[I];

Count++;

Step 7:

// try to find the first “01”

// starting from the beginning of Bitmap

J = 1;

Found = False;

while J <= N and Not Found

if Bitmap[J] = 0 and Bitmap[J + 1] = 1

Found = True

else

J++;

Step 8:

// if we can not find “01” then there are no

// more solutions

if not Found

 go to Step 11;

else

// swap the “01” and fill the left side

// of Bitmap with zeros starting from J - 2

Bitmap[J] = 0;

Bitmap[J – 1] = 1;

for I = J – 2 downto 1

Bitmap[I] = 0;

Step 9:

// recalculate PSum for numbers from N downto J - 1

PSum = 0;

for I = N downto J – 1

if Bitmap[I] = 1

PSum += Elements[I];

Step 10:

// find the next partial subset and it sum

K = J – 2;

// count the number of iterations

Iteration = Iteration + 1

go to Step 5;

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 14, March 2015

3

Step 11:

// End – no more solutions

print Iteration, Count;

The algorithm finds all subsets that have a sum that is equal to

C. The user does not specify the maximum number of

iterations. Instead, the algorithm stops when there are no more

solutions available. At that point of time, it prints the number

of iterations needed and the number of subsets found.

To allow the user to specify the maximum number of iterations

(to control the execution time of the algorithm), Step 10 can be

modified as follows:

Step 10:

// find the next partial subset and its sum

K = J – 2;

// count the number of iterations

Iteration=Iteration++

if Iteration <= MaxIterations

go to Step 5;

4. AN ILLUSTRATIVE EXAMPLE
The input in this example is the following set: {3, 5, 6, 8, 10,

11, 12, 14, 15, 17}. Their size of this set is 10, and the target

sum is 25. Our goal is to find all subsets that sum to the target

sum. We use the following table to trace the algorithm.

The numbers C

3 5 6 8 10 11 12 14 15 17 25

Start from the right-hand side of the numbers (the largest

number after sorting the set in ascending order) and try to find

a partial set of numbers with sum less than or equal to 25. Put a

“1” under the number you include in this partial set. In this

example, the numbers 17 and 8 have a sum that is equal to 25,

therefore the first subset in the solution is {8, 17} as shown

next.

The numbers C

3 5 6 8 10 11 12 14 15 17 25

 1 1

Now, try to find the next solution. Start from the left side and

find the first “1” after a set of zeros. This “1” is below the

number 8. Move this “1” to the left one step and try to find

another solution with sum less than or equal to 25.

The numbers C

3 5 6 8 10 11 12 14 15 17 25

 1 1

The sum of the numbers that have a “1” under them is 17 + 6 =

23, so we continue with the rest of the numbers to the left of 6.

We find that those numbers when added to the previous sum 23

will give a new sum that is greater than 25, so we move the

leftmost “1” to the left to be under the number 5. Now the

partial sum is 17 + 5 = 22. We continue with the number 3 to

find the second solution {3, 5, 17}.

The numbers C

3 5 6 8 10 11 12 14 15 17 25

1 1 1

Now we repeat the same steps, starting from the left and

looking for another “1” that comes after a group of zeros. We

find the number 17, so we move the “1” below it to the left.

This means that there are no other solutions that contain the

number 17. The same steps are followed to find the next

solution that is {10, 15}.

The numbers C

3 5 6 8 10 11 12 14 15 17 25

 1 1

The same steps are repeated again and again. During that we

will find other solutions that are {11, 14}, {3, 8, 14}, {5, 6,

14}, {3, 10, 12}, {5, 8, 12}, {6, 8, 11}, {3, 5, 6, 11}. Note that

each time we move a “1” to the left, we empty all the ones to

the left of it. The final configurations of numbers is:

The numbers C

3 5 6 8 10 11 12 14 15 17 25

1 1 1 1

This is the last step. We try to find the first “1” after a group of

zeros and we find the 1 under the number 11, so we move it to

the left under the number 10. We try to find a sum that is equal

to 25 from the numbers 10, 8, 6, 5 and 3, but we could not, so

we again move the 1 under 10 to the left.

The numbers C

3 5 6 8 10 11 12 14 15 17 25

 1

Since the sum of all numbers starting from 8 is less than 25, the

algorithm will stop and this means that there are no more

solutions.

5. ALGORITHM COMPLEXITY
Let T represent the number of iterations done by the algorithm

to find all subsets that sum up to a given target sum C based on

n input numbers. We can estimate the worst case complexity as

follows:

Removing numbers that are larger than C need n steps. This

step is optional since the algorithm will not consider all the

numbers that are greater than C from the first iteration.

Initializing the array Bitmap: n steps.

T iterations, each contains the following steps:

Finding a partial sum: n steps.

Print a solution: n steps.

Finding the first “01” in the array Bitmap: n steps.

If we add the number of steps needed to sort the array of

numbers, then the worst time complexity of the algorithm will

be O(n log n + 3n · T).

6. EXPERIMENTAL RESULTS AND

ANALYSIS
Table 1 shows some experimental results of the proposed

algorithm. The algorithm was tested using the set {1, 2, …,

100} by taking 10 more numbers each time. The table shows

the number of iterations and the number of subsets found.

Figure 1 shows the relations between number of values and the

number of iterations done by the algorithm. Figure 2 shows the

relationship between number of iterations and number of

subsets found. Note that the relation is linear with a slope of

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 14, March 2015

4

0.77. This means that the algorithm finds 77 solutions in each

set of 100 iterations.

7. CONCLUSION
The proposed algorithm presented above is a good

approximation algorithm for the subset-sum problem. It finds

all solutions for a given input or based on a maximum number

of iterations, which prevents it from going very long search

paths.

The experimental results show that the proposed algorithm’s

performance is 77%. This means that the proposed algorithm

finds an average of 77 subsets in each bulk of 100 iterations

which is a high percent.

Table 1: Different problem sizes vs number of iterations

and the number of subsets found.

Numbers C #Iterations #Subsets

1 – 10 10 11 10

1 – 20 20 78 64

1 – 30 30 370 296

1 – 40 40 1,416 1,113

1 – 50 50 4,708 3,658

1 – 60 60 14,130 10,880

1 – 70 70 39,168 29,927

1 – 80 80 101,820 77,312

1 – 90 90 251,028 189,586

1 – 100 100 591,724 444,793

Figure 1: Time complexity of the proposed algorithm

Figure 2: The relationship between number of iterations

and number of subsets found using the proposed algorithm.

8. REFERENCES
[1] Baase, S. and Gelder, A. V. (2000). Computer Algorithms.

Addison Wesley Longman.

[2] Bazgan, C., Santha, M., and Tuza, Z. (1998). Efficient

approximation algorithms for the subset-sum equality

problem.

[3] Bentley, J. (1986). Programming Pearls, Addison-Wesley

Reading.

[4] Blair, C. (1994). Notes on Cryptography. Business

Administration Dept., University of Illinois,

http://www.math.sunysb.edu/~scott/blair/Blair_s_Cryptog

raphy_Notes.html

[5] Borwein, J. and Bailey, D. (2003) Mathematics by

Experiment: Plausible Reasoning in the 21st Century,

Natick, MA: A. K. Peters.

[6] Cook, S. A. (1971). The complexity of theorem proving

procedures. Third Annual ACM Symposium on the

Theory of Computing, ACM, New York.

[7] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein,

C. (2001). Introduction to Algorithms, 2nd Edition. MIT

Press and McGraw-Hill, 2001.

[8] Coster, M. J.; Joux, A.; LaMacchia, B. A.; Odlyzko, A.

M.; Schnorr, C. P.; and Stern, J. (1992). Improved Low-

Density Subset-sum Algorithms, Computing Complex. 2.

[9] Ferguson, H. R. P. and Bailey, D. H. (1992). A

Polynomial Time, Numerically Stable Integer Relation

Algorithm, RNR Technical Report RNR-91-032.

[10] Garey, M. and Johnson, D. (1979). Computers and

Intractability; A Guide to the Theory of NP-Completeness.

[11] Garey, M., Johnson, D., and Stockmeyer, L. (1974). Some

simplified NP-complete problems, Proceedings of the

sixth annual ACM symposium on Theory of computing..

0

100000

200000

300000

400000

500000

600000

700000

10 20 30 40 50 60 70 80 90 100

N
u
m

b
e

r
o

f
it
e

ra
ti
o

n
s

Number of values

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 200000 400000 600000 800000

N
u
m

b
e
r

o
f
s
u
b
s
e
ts

 f
o
u
n
d

Number of iterations

http://portal.acm.org/citation.cfm?id=803884
http://portal.acm.org/citation.cfm?id=803884

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 14, March 2015

5

[12] Hodges, A. (1970). Alan Turing: The Enigma, Simon and

Schuster, New York.

[13] Impagliazzo R. and Naor M., (1996). Efficient

cryptographic schemes provably as secure as subset-sum,

Department of Computer Science, University of

California at San Diego, 1996.

[14] Lagarias, L. C. and Odlyzko, A. M. (1985) "Solving Low-

Density Subset-sum Problems." Journal of ACM 32.

[15] Karp, R. (1972). Reducibility Among Combinatorial

Problems. Proceedings of a Symposium on the

Complexity of Computer Computations.

[16] Martello, S. and Toth, P. (1984). Worst case analysis of

greedy algorithms for the subset-sum problem.

Mathematical Programming.

[17] Papadimitriou, C.H. (1994). Computational Complexity.

Addison-Wesley.

IJCATM : www.ijcaonline.org

