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ABSTRACT 
The Subset-sum Problem is one of the easiest to describe and 

understand NP-complete problems. Available algorithms that 

solve this problem exactly need an exponential time, thus 

finding a solution to this problem is not currently feasible. The 

current paper revisits the subset-sum problem and suggests a 

new approach to find an approximate solution to this problem. 

The proposed algorithm gives a reasonable solution with a 

polynomial time-complexity. 
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1. INTRODUCTION 
The Subset-Sum Problem (SSP) is defined as follows: given a 

set of positive integers S, e.g., {s1, s2, s3, s4, s5, s6}, and a 

positive integer C. This problem is to find one/all subsets of S 

that sum as close as possible to, but do not exceed, C [1, 2]. 

For an example, consider the set S={1, 2, 3, 4, 5} and let the 

target sum C be 10. The total number of subsets of S in this 

case is 25. Some of the valid solutions to this problem are the 

sets {1, 2, 3, 4}, {1, 4, 5}, and {2, 3, 5}.  

In general, we notice that the total number of subsets taken 

from a set of n elements is 2n [7, 8].  An algorithm that tests all 

of these possible solution subsets needs an exponential time. 

Let the number of inputs, that is the size of set S, be n. Using a 

computer that can generate and test one subset in one 

microsecond we need 0.001 sec to solve an SSP problem of 

input size 10. However, as this number of inputs grows to 100, 

we need  4.1016 years on that same machine! This was the 

main motive to work on this problem. 

Approximation Algorithms try to attack NP-complete problems 

[1, 5, 6]. Since it’s unlikely that there can be efficient 

algorithms that solve such problems, one settles for non-

optimal solutions in order to have approximate solution be 

found in a polynomial time [14, 16]. Unlike heuristics, which 

just usually find good solutions reasonably fast, one may need 

provable solution quality and provable run time bounds both 

achieved together.  

The current paper introduces a new approach that promises 

finding some of the possible solutions to the SSP problems 

based on a set of current user’s constraints. These constraints 

mainly decide upon the maximum number of subsets required. 

Based on the provided constraints, and using a polynomial 

number of iterations the proposed algorithm can successfully 

produce some of approximated and valid solutions to the 

problem. The proposed algorithm can successfully produce all 

possible solutions. 

The rest of this paper is organized as follows: in section 2 we 

quickly survey the already proposed approximated solutions. 

We explain the proposed approximation algorithm in section 3. 

A set of illustrative examples to clarify the major steps of our 

proposed solution are presented in section 4. The proposed 

solution is analyzed in terms of time and space complexities in 

sections 5 and 6. Finally, section 7 is a conclusion.   

2. APPROXIMATION SCHEMES 
As an example for an approximation algorithm, consider a 

greedy algorithm for solving subset-sum problem that starts 

with an empty solution subset and examines the input numbers 

in decreasing order of their values [16]. Each considered 

number is inserted into the current solution if and only if it is 

smaller than the difference between the target sum and the sum 

of the current solution [16].  

The time complexity of such approach is dominated by time 

required by the sorting algorithm used to sorting the numbers 

in hand [16, 7]. Notice that the greedy algorithm itself needs 

linear time which is as small as O(n).  

We can use a randomized algorithm that does not require the 

numbers in hand to be sorted as a priory step. This should 

reduce its execution time and the resulting randomized 

algorithm gives often good results if we perform a few 

independent trials on the given data and finally return the best 

solution. 

3. THE PROPOSED SOLUTION 
The time requirement of the proposed algorithm described 

below can be controlled by predetermining the number 

iterations based on the current user input. Given some 

predetermined time-frame, the algorithm may or may not find a 

solution for the problem using the specified number of 

iterations. When the provided number of iterations is 

exhausted, the algorithm stops and displays the valid 

solutions(s) that it has achieved within given time-frame. 

Sometimes, the number of iterations may be small and in this 

case the algorithm will stop before finding all solutions. 

Algorithm Subset-sum Approximation 

Inputs:  

Integer N, number of elements 

Elements, a set of N distinct positive integers 

Integer C, the target sum 

Output:  

All subsets of the set Elements that have a sum equal to C. 

Important declarations:  

SSP(int N, int Elements[N], int C) 

int Bitmap[N];    

int K;    

int PSum;   

int Iteration;   
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int Count;   

int I, J;  

boolean Found;  

 

Where  

 Bitmap is an array of size N and is used to store ones 

and zeros; 1 at position x indicated that the xth 

element is part of the identified solution. N is the size 

of the set of integers in hand. 

 K is the index of the last element in the sorted array 

that is smaller than the required sum C. 

 PSum holds the current partial sum. 

 Iteration is the number of already elapsed iterations 

(required to control the number of iterations 

covered). 

 Count holds the total number of already identified 

valid solutions. 

Step 1:  

// sort Elements in an  ascending order  

//(using any sorting technique) 

SortElements(N, Elements[N]); 

// set Count and Iteration 

Iteration = 1; 

Count = 0; 

Note: SortElements() is a function called to sort the set of 

elements in ascending order.  At this point, the variable 

Iteration is set to 1 indicating the beginning of the first 

iteration. 

Step 2:  

// remove from Elements all numbers greater than C 

while Elements(N) > C 

  N = N – 1 

// set current number of elements 

K = N;  

Step 3: 

// fill Bitmap with zeros starting from 

// position K down to 1 

for I = K downto 1  

Bitmap[I] = 0; 

Step 4: 

// set partial sum to zero 

PSum = 0; 

Step 5: 

// find the first partial subset and its sum 

for I = K downto 1 

if PSum + Elements[I] <= C 

Bitmap[I] = 1; 

PSum += Elements[I]; 

Step 6: 

// print the partial subset if its sum equals C 

// and add 1 to Count 

if C = PSum 

for I = 1 to N 

if Bitmap[I] = 1 

print Elements[I]; 

Count++; 

Step 7: 

// try to find the first “01” 

// starting from the beginning of Bitmap 

J = 1; 

Found = False; 

while J <= N and Not Found 

if Bitmap[J] = 0 and Bitmap[J + 1] = 1  

Found = True 

else 

J++; 

Step 8: 

// if we can not find “01” then there are no 

// more solutions 

if not Found  

 go to Step 11; 

else 

// swap the “01” and fill the left side  

// of Bitmap with zeros starting from J - 2 

Bitmap[J] = 0; 

Bitmap[J – 1] = 1; 

for I = J – 2 downto 1 

Bitmap[I] =  0; 

Step 9: 

// recalculate PSum for numbers from N downto J - 1 

PSum = 0; 

for I = N downto J – 1 

if Bitmap[I] = 1  

PSum += Elements[I]; 

Step 10: 

// find the next partial subset and it sum 

K = J – 2; 

// count the number of iterations 

Iteration = Iteration + 1 

go to Step 5; 
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Step 11: 

// End – no more solutions 

print Iteration, Count; 

The algorithm finds all subsets that have a sum that is equal to 

C. The user does not specify the maximum number of 

iterations. Instead, the algorithm stops when there are no more 

solutions available. At that point of time, it prints the number 

of iterations needed and the number of subsets found.  

To allow the user to specify the maximum number of iterations 

(to control the execution time of the algorithm), Step 10 can be 

modified as follows: 

Step 10: 

// find the next partial subset and its sum 

K = J – 2; 

// count the number of iterations 

Iteration=Iteration++ 

if Iteration <= MaxIterations  

go to Step 5; 

4. AN ILLUSTRATIVE EXAMPLE 
The input in this example is the following set: {3, 5, 6, 8, 10, 

11, 12, 14, 15, 17}. Their size of this set is 10, and the target 

sum is 25. Our goal is to find all subsets that sum to the target 

sum. We use the following table to trace the algorithm.  

The numbers  C 

3 5 6 8 10 11 12 14 15 17  25 

Start from the right-hand side of the numbers (the largest 

number after sorting the set in ascending order) and try to find 

a partial set of numbers with sum less than or equal to 25. Put a 

“1” under the number you include in this partial set. In this 

example, the numbers 17 and 8 have a sum that is equal to 25, 

therefore the first subset in the solution is {8, 17} as shown 

next.  

The numbers  C 

3 5 6 8 10 11 12 14 15 17  25 

   1      1   

Now, try to find the next solution. Start from the left side and 

find the first “1” after a set of zeros. This “1” is below the 

number 8. Move this “1” to the left one step and try to find 

another solution with sum less than or equal to 25. 

The numbers  C 

3 5 6 8 10 11 12 14 15 17  25 

  1       1   

The sum of the numbers that have a “1” under them is 17 + 6 = 

23, so we continue with the rest of the numbers to the left of 6. 

We find that those numbers when added to the previous sum 23 

will give a new sum that is greater than 25, so we move the 

leftmost “1” to the left to be under the number 5. Now the 

partial sum is 17 + 5 = 22. We continue with the number 3 to 

find the second solution {3, 5, 17}. 

The numbers  C 

3 5 6 8 10 11 12 14 15 17  25 

1 1        1   

Now we repeat the same steps, starting from the left and 

looking for another “1” that comes after a group of zeros. We 

find the number 17, so we move the “1” below it to the left. 

This means that there are no other solutions that contain the 

number 17. The same steps are followed to find the next 

solution that is {10, 15}. 

The numbers  C 

3 5 6 8 10 11 12 14 15 17  25 

    1    1    

The same steps are repeated again and again. During that we 

will find other solutions that are {11, 14}, {3, 8, 14}, {5, 6, 

14}, {3, 10, 12}, {5, 8, 12}, {6, 8, 11}, {3, 5, 6, 11}. Note that 

each time we move a “1” to the left, we empty all the ones to 

the left of it. The final configurations of numbers is: 

The numbers  C 

3 5 6 8 10 11 12 14 15 17  25 

1 1 1   1       

This is the last step. We try to find the first “1” after a group of 

zeros and we find the 1 under the number 11, so we move it to 

the left under the number 10. We try to find a sum that is equal 

to 25 from the numbers 10, 8, 6, 5 and 3, but we could not, so 

we again move the 1 under 10 to the left. 

The numbers  C 

3 5 6 8 10 11 12 14 15 17  25 

   1         

Since the sum of all numbers starting from 8 is less than 25, the 

algorithm will stop and this means that there are no more 

solutions. 

5. ALGORITHM COMPLEXITY 
Let T represent the number of iterations done by the algorithm 

to find all subsets that sum up to a given target sum C based on 

n input numbers. We can estimate the worst case complexity as 

follows: 

Removing numbers that are larger than C need n steps. This 

step is optional since the algorithm will not consider all the 

numbers that are greater than C from the first iteration. 

Initializing the array Bitmap: n steps. 

T iterations, each contains the following steps: 

Finding a partial sum: n steps. 

Print a solution: n steps. 

Finding the first “01” in the array Bitmap: n steps. 

If we add the number of steps needed to sort the array of 

numbers, then the worst time  complexity of the algorithm will 

be O(n log n + 3n · T). 

6. EXPERIMENTAL RESULTS AND 

ANALYSIS 
Table 1 shows some experimental results of the proposed 

algorithm. The algorithm was tested using the set {1, 2, …, 

100} by taking 10 more numbers each time. The table shows 

the number of iterations and the number of subsets found. 

Figure 1 shows the relations between number of values and the 

number of iterations done by the algorithm. Figure 2 shows the 

relationship between number of iterations and number of 

subsets found. Note that the relation is linear with a slope of 
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0.77. This means that the algorithm finds 77 solutions in each 

set of 100 iterations. 

7. CONCLUSION 
The proposed algorithm presented above is a good 

approximation algorithm for the subset-sum problem. It finds 

all solutions for a given input or based on a maximum number 

of iterations, which prevents it from going very long search 

paths. 

The experimental results show that the proposed algorithm’s 

performance is 77%. This means that the proposed algorithm 

finds an average of 77 subsets in each bulk of 100 iterations 

which is a high percent. 

Table 1: Different problem sizes vs number of iterations 

and the number of subsets found. 

Numbers C #Iterations #Subsets 

1 – 10 10 11 10 

1 – 20 20 78 64 

1 – 30 30 370 296 

1 – 40 40 1,416 1,113 

1 – 50 50 4,708 3,658 

1 – 60 60 14,130 10,880 

1 – 70 70 39,168 29,927 

1 – 80 80 101,820 77,312 

1 – 90 90 251,028 189,586 

1 – 100 100 591,724 444,793 

 

Figure 1: Time complexity of the proposed algorithm 

 

Figure 2: The relationship between number of iterations 

and number of subsets found using the proposed algorithm. 
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