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ABSTRACT 

The solid transportation problem (STP) arises when bounds 

are given on three item properties. These properties are 

usually: sources destination and type of product or mode of 

transport. 

In this paper, a possibilistic multi-objective multi-item solid 

transportation problem (Poss MOMISTP) is studied. The 

problem is considered by incorporating possibilistic data into 

the objective functions coefficients. The efficient solutions 

and the stability of Poss MOMISTP problem are investigated. 

The concept of  -Possibly efficient is introduced in which 

the ordinary efficient solution is  -tended based on the  -

level of possibilistic variables. A necessary and sufficient 

condition for such solution is established. A relationship 

between solutions of possibilistic levels is constructed. The 

stability set of the first kind corresponding to one solution of 

the  - level of possibilistic variables is determined. An 

illustrative numerical example is given in the sake of the 

paper to clarify the obtained results. 

 Keywords 
Multi-objective multi-item solid transportation problems; 

Possibilistic variables;  -possibly efficient; Parametric 

analysis 

1. INTRODUCTION 
The solid transportation problem (STP) is a generalization of 

the wall-known transportation problem (TP) in which three 

item properties are taken into account in the constraint set 

instead of two (source and destination). The STP was first 

introduced by Shell (1955). Haley (1962) showed a 

comparison of the STP and the classical TP and then applied 

modified method to solve the STP. Jimenez and Verdegay 

(1998) present two types of uncertain STP in which the 

considered data are interval numbers and fuzzy numbers, 

respectively. 

Hussein (1998) studied the complete set of  -possibly 

efficient solutions of multiple objective transportation 

problems with possibilistic objectives functions coefficients. 

Ammar and Youness (2005) introduced the solutions of 

multiobjective TP problem with fuzzy objective, fuzzy 

sources, and fuzzy destinations. Pandion and Anuradha(2010) 

propose a new approach for solving STP. Ojha et al. (2010) 

introduced a TP with fixed charges and vehicle costs where all 

unit discount (AUD) incremental quantity discount (IQD) or 

combinations of AUD and IQD on the price depending upon 

the amount is offered and varies on the choice of origin, 

destination and conveyance and solved the problem using 

Genetic Algorithm. Kundu et al. (2013) modeled a multi-

objective multi-item solid transportation problem with fuzzy 

coefficient of the objectives and constraints and then solved 

by two different methods. Ammar  and Khalifa (2014) 

introduced the multiobjective solid transportation problem 

with fuzzy parameters. Ammar and Khalifa (2015) Studied 

the multiobjective solid transportation problems with 

possibilistic parameters. 

In this paper, multi-objective multi-item solid transportation 

problem with possibilistic objective functions coefficients is 

studied. The concept of  -possibly efficient and  -

parametric efficient solutions are introduced, and the relation 

between the two previous solution is given. A parametric 

analysis is used to characterize the set of all  -parametric 

efficient solution. A solution procedure to determine the 

stability set of the first kind corresponding to one parametric 

efficient solution of Poss MOMISTP is presented. A 

numerical example is given for studying the Poss-MOMISTP, 

we present some definitions and some notions related to the 

topic. 

2. PRELIMINARIES 
      Definition 1. A possibilistic variable y on U is a variable 

characterized by a possibility distribution ( )y U . This 

means that, if y is a variable having values in U, then a 

possibility distribution y  associated with y may be viewed 

as a fuzzy constraint on the values that may be assigned to y. 

Such a distribution is characterized by a possibility 

distribution function: 

: [0, 1]y U   which associated with each u U  

the degree of compatibility of the variable y with the 

realization u U . 

If U is a Cartesian product of 1, ..., nU U , then  

1( , ..., )y nu u is an n-ary possibility distribution, i.e., 
 

1 1( ) ( ( ), ..., ( ))
ny y y nu u u   . 

Definition 2. The  -cut of a possibilistic variable y is 

defined as: 

 { : ( ) , [0, 1]}yy u U u       . 

Definition 3. A possibility distribution y  on U is said to be 

convex if: 
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1 1 1 2 1 2( (1 ) ) min( ( ), ( )), ,y y yu u u u u u U         , 

[0, 1]  . 

Definition 4. The support of a possibilistic variable y is 

defined as: 

supp ( ) { : sup ( ) 0; 0}, ( )yy u U gp u u N u      , 

where ( ) { : || || }N u u U u U     . 

Lemma 1. The supp ( )y  is a closed set on U. 

3. PROBLEM FORMULATION 
Consider the following possibilistic multi-objective multi-

item solid transportation problems (Poss MOMISTP) 

(Poss MOMISTP) min ( , )r r
rz x c c x  

1 1 1 1

, 1, ...,
t m n

r p p
i j k i j k

p i j k

c r q
   

     

 subject  to

 ( )

1 1

: , 1, ..., ; 1, ...,
n

p pq t m n
i j k i

j k

x G x R x a i m p t  

 


     


  ,

1 1 1 1 1

, 1, ..., ; 1, ..., ; ,
m t n n

p p p
ki j k j i j k

i k p i j

x b j n p t x e
    

      

1 1 1 1 1

1, ..., ; , 1, ..., ;
m n t n

p p p
ki j j

i j k p j

k a b p t e b
    

       
, 

and 0, 1, ..., , 1, ..., ; 1, ..., ; 1, ...,
p
i j kx p t i m j n k


     

 . 

Where, ( 1, ..., )p t items are to be transported from m 

origins ( 1, ..., )iO i m to n destinations 

( 1, ..., )iD i m  by means of ( 1, ..., )k   

different modes of transportation (conveyance). For the 

objective ,
r p

r i j kz c  represents possibilistic unit 

transportation penalty on R from ith origin to jth destination by 

kth conveyance from pth item which is an uncertain quantity 

can be characterized by possibility distributions 

( 1, ..., ; 1, ..., ; 1, ..., ; 1, ..., ; 1, ..., )r p
i j kc

r q p t i m j n k     

, 
p
ia  and 

p
jb  represent total supply of ith origin and total 

demand of jth destination, respectively for pth item, and ke  is 

the total capacity of kth conveyance. It is assumed that all 

possibility distributions involved in Poss MOMISTP are 

Definition 5. ( -possibly efficient solution). A point 

*x G  is said to be  -possibly efficient solution for Poss 

MOMISTP if there is no point x G  such that: 

1 * 1 ( 1) * ( 1)
1 1 1 1Poss ( ( , ) ( , ), ..., ( , ) ( , ),r r

r rz x c z x c z x c z x c 
  

* ( 1) * ( 1)
1 1( , ) ( , ), ( , ) ( , ), ...,r r r r

r r r rz x c z x c z x c z x c 
  

( , ) ( , ))q q
q qz x c z x c   ,                          (1) 

where Poss denotes possibility. 

On account of the extension principle,  

1 * 1 ( 1) * ( 1)
1 1 1 1Poss ( ( , ) ( , ), ..., ( , ) ( , ),r r

r rz x c z x c z x c z x c 
  

* ( 1) * ( 1)
1 1( , ) ( , ), ( , ) ( , ), ...,r r r r

r r r rz x c z x c z x c z x c 
  

1 1

1

1 1

( , ..., )

( , ) ( , )) sup min( ( ), ..., ( )r

q

q q r
q q c c

c c C

z x c z x c c c  




  , 

1
1( ), ( ), ..., ( ),r r q

r r q
c c c

c c c  


               (2) 

where  

1 ( ) 1 * 1
1 1{( , ..., ) : ( , ) ( , ), ...,q q t m nC c c R z x c z x c    

1 * 1 * 1
1 1 1( , ) ( , ), ( , ) ( , ), ( , )r r r r r

r r r r rz x c z x c z x c z x c z x c 
    

* 1 *
1 ( , ), ..., ( , ) ( , )}r q q

r qz x c z x c z x c
        (3) 

and  

( ), ( 1, ..., )r
r

c
c r q    

are ( )t m n   -ary possibility distributions. 

4. CHARACTERIZING OF β-Possibility 

EFFICIENT SOLUTIONS FOR POSS 

MOMISTP 

For characterizing the  -Possibility efficient solution for 

Poss MOMISTP let us consider the following  -parametric 

multi-objective multi-item solid transportation problems (  -

PMOMISTP). 

 (  -PMOMISTP)   min ( , )r r
rz x c c x  

1 1 1 1

, 1, ...,
t m n

r p p
i j k i j k

p i j k

c x r q
   

     

subject to 

x G , and ( ) , [0, 1]
r p r p
i j k i j kc c    , where 

( )
r p
i j kc   denotes the  -cut of the possibilistic variable 

r p
i j kc . By the convexity assumption r p

i j kc
 and,

( ) , ( 1, ..., ; 1, ..., ; 1, ..., ; 1, ..., ;
r p
i j kc r q p t i m j n    

 1, ..., )k   are intervals that will be denoted as 
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[( ( )) , ( ( ) ]
r p r pL U
i j k i j kc c  . Let 

r
  be the set of 

t m n    matrices ( )
r pr
i j kc c   with 

[( ( ) , ( ) ]
r p r p r pL U
i j k i j k i j kc c c  , 1, ...,r q ; 

1, ..., ; 1, ..., ; 1, ..., ; 1, ...,p t i m j n k   
. It is clear that  -PMOMISTP may be rewritten in the 

following form: 

qrcxzP r

r ,...,1),,(min:)(   

subject to 

x G   and  , 1, ...,r rc r q  . 

Definition 6.  -parametric efficient solution: A point 

*x G  is said to be an  -parametric efficient solution 

for problem ( ( ) ( ) )P P    if and only if there are no 

x G  and 
r p r
i j kc   such that 

*( , ) ( , )r r
r rz x c z x c , for all 1, ...,r q  and 

strict inequality holds for at least one r. 

Theorem 1. A point 
*x G  is an  -possibly efficient 

solution for problem Poss MOMISTP if and only if 
*x G

is an  -parametric efficient solution for problem ( )P  . 

Proof. Necessity. Let 
*x G  be an  -possibly efficient 

solution for problem Poss MOMIST and 
* ( )x G   be 

not an  -parametric efficient solution for problem ( )P  . 

Then there are 
1x G  and 

r rt  , 1, ...,r q  such 

that: 

1 *( , ) ( , )d d
d dz x t z x t , 

for all {1, ..., }, {1, ..., }d q r q  ,  

such that 

 
1 *( , ) ( , )r r

r rz x t z x t . 

As , 1, ...,r rt r q  , we have  

Poss 
1 1 * 1 1 ( 1) * ( 1)

1 1 1 1( ( , ) ( , ), ..., ( , ) ( , )r r
r rz x c z x c z x c z x c 
   , 

1 * 1 ( 1) * ( 1)
1 1( , ) ( , ), ( , ) ( , ), ...,r r r r

r r r rz x c z x c z x c z x c 
  

 1 *( , ) ( , ))q q
q qz x c z x c   . 

This contradicts that 
* ( )x G   is an  -possibly 

efficient solution for problem Poss MOMISTP. 

Sufficiency: Let 
*x G  be an  -parametric efficient 

solution for problem ( ( ))P   and 
*x G  be not an 

-possibly efficient solution for problem Poss MOMISTP. 

Then there are 
2x G  and {1, ..., }r q  such that: 

2 1 * 1 2 ( 1) * ( 1)
1 1 1 1Poss ( ( , ) ( , ), ..., ( , ) ( , ),r r

r rz x c z x c z x c z x c 
  

 

2 * 2 ( 1) * ( 1)
1 1( , ) ( , ), ( , ) ( , ), ...,r r r r

r r r rz x c z x c z x c z x c 
  

 
2 *( , ) ( , )q q

q qz x c z x c    

i.e.,  

1 1

1

1 1

( , ..., )

sup min( ( ), ..., ( ( ))
q

c c
c c C

c c  


    (4) 

Where,  

1 ( ) 2 1 * 1 2 1
1 1{( , ..., ) : ( , ) ( , ), ..., ( , )q t m n r

r rC c c R z c z x c z x c   
   

* 1 2 * 2 *
1 ( , ), ( , ) ( , ), ..., ( , ) ( , )}r r r q q

r r r q qz x c z x c z x c z x c z x c
   . 

For the supremum in (4) to exist, there is 

1( , ..., )qe e C  with 

 1
1min( ( ), ..., ( ))q

q
c c

e e   , 

then, 

1

1

1

( , ..., )

sup min( ( ), ..., ( ))q

q

q

c c
e e C

e e  


 . 

This contradicts (4). Then there is 
1( , ..., )qe e C , 

satisfying 

1
1min( ( ), ..., ( ))q

q
c c

e e    (5) 

i.e.,  

, 1, ...,q re r q                 (6) 

(4) and (6) leads to the contradiction of the efficiency of 

*x G  for problem ( )P  . 

Let ( )E Y  be the set of all possibly efficient solutions for 

problem Poss MOMISTP and            Eff ( )  be the set of 

all  -parametric efficient solutions for problem ( )P  at 

contain [0, 1]  . 

Theorem 2. (a) 
1 2
( ) ( )E Y E Y   if and only if 

1 2  , 

(b) 0

[0, 1]

( ) ( )E Y E Y


 . 
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Problem ( )P   will be treated using the weighting 

approach, i.e., by defining the following problem: 

1 1

( , ) : min ( , )
q q

r r
r r r

r r

P w w z x c w c x
 

 

subject to 

, , 1, ...,r rx G c r q   , and 

1

: 1, 0
q

r r

r

w W w R w w


  
     

  
 . 

We see that 
*x  is an  -parametric efficient solution of 

problem ( ( ))P   if there exists 
*w W  such that 

*x  

is the unique  -possibly optimal solution of problem 

*( , )P w . 

5. PARAMETRIC ANALYSIS 
For characterizing the set of all 0-possibly efficient solution to 

Poss MOMISTP problem ( ( ))E Y , we use the 

decomposition of the parametric space. For  the sake of 

parametric analysis. (0, )P w problem can be written in 

the following form (Bazaraa et al., (1990) and Steuer (1986)): 

1

(0, ) : min (( (0) (0)
q

r L rU
r

r

P w w c c x


  

subject to 

, 0A x b x  , 

w W     and   [0, 1]  . 

Decomposing A into [ , ], (0)r LB N B c  into 

[ (0), (0)]
r L r L
B N Bc c  and [ (0), (0)]

rU rU
B N Bc c , we get  

B N BB x N B x b  ,  (7) 

1

[( (0) (0)) ( (0) (0)) ] 0
q

r L rU r L rU
r B BB B N B N B

r

z w c c x c c x 


     .

     (8) 

Updating the tableau and denoting 
rU

bBc y  by 
rU
dz , we 

obtain 

B d dx y x b     (9) 

 

1

{( ) ( )}
q

r L r L rU rU
r dd d d d

r d D

z w z c z c x
 

 
    

  
 

1

( (0) (0))
q

r L rU

r

c c b


  , (10) 

where D is the set of current indices associated with the non-

basic variables ( )N B . 

For given 
*w W , the current tableau has 

0   and 

gives an efficient basic feasible solution of 
* 0

0 ( , )P w  . 

Our aim is to find aut haw for we can move in the direction 

rU  which still main taining the optimal solution of 

* 0
0 ( , )P w   problem. Let 

*

1

: ( 0 0
q

rU rU
r m m

r

M m w z c


  
   
  

  (11) 

If M  , then the current solution is optimal to 

* 0
0 ( , )P w   problem for all values of 

0[ , 1]  . 

Otherwise, estimate the range of   which is 
0 1[ , ]   as: 

 

*

1 1

*

1

( )

min

( )

q
r L r L

r m m

r
qx M

rU rU
r m m

r

w z c

w z c

 





 
  

 
  

 
 
 





. 

            (12) 

Also, for determining the set of all parameters w W  

corresponding to the current optimal solution of 

* 0
0 ( , )P w   problem, we calculate the ranges of  

, 1, ...,rw r q  by using 

1

1 1 1

( )
min , 1, .., 1

( ) ( )r

r r
t t

r r r r rt T
r r r r

z c
w r q

z c z c

  

   
   

    
              (13) 

where  

1 1
1 { : ( ) 0r r

r r rT t z c 
     

,and ( ) 0}q q
r rz c  .              (14) 

If 1rT   , then the range of 1rw   is [1 , 1]rw . 

Otherwise, the range of 1rw   is 1[1 , ]r rw w   for all 

1, ..., 1r q  . 



International Journal of Computer Applications (0975 – 8887)  

Volume 114 – No. 13, March 2015 

13 

From the above analysis, the stability set of the first kind 

*( ( ))S x  can be determined. 

The previous procedure can be repeated until both parametric 

spaces of   and w are fully determined, and hence the set 

0 ( )E P  is fully determined. 

6. NUMERICAL EXAMPLE 
To illustrate numerically Poss MOMISTP problem, we 

consider an example with 1, 2 ,P i j   and k. 

 (Poss MOMISTP)  

2 2 2 2
1

1

1 1 1 1

min
p p

i j k i j k
p i j k

z c x
   

    , 

          

2 2 2 2
2

2

1 1 1 1

min
p p

i j k i j k
p i j k

z c x
   

    , 

 subject to 

2 2
2
1

1 1

34j k

j k

x
 

  , 

2 2
1
2

1 1

30j k

j k

x
 

  , 

2 2
2
2

1 1

27j k

j k

x
 

  , 

2 2
1
1

1 1

16j k

i k

x
 

  , 

2 2
2
1

1 1

22j k

i k

x
 

  , 

2 2
1

2

1 1

19i k

i k

x
 

  , 

2 2
2
2

1 1

18i k

i k

x
 

  , 

2 2 2

1
1 1 1

51
p
i j

p i k

x
  

   , 

2 2 2

2
1 1 1

55
p
i j

p i k

x
  

   ,

 

0, 1, 2; 1, 2; 1, 2; 1, 2}
p
i j kx p i j k      

The possibilistic variables 
1p
i j kc  and 

2 p
i j kc  are 

characterized by a possibility distributions 1( ( )p
i j kc

   and 

2 ( ))p
i j kc

  . The supports of the possibilistic variables 

1p
i j kc  and 

2 p
i j kc  are [8,13] and [9, 14]. It is appropriate to 

characterize the supports by a parametric functions beginning 

by the points of maximum possibility. Hence, the parametric 

function  of G to the supports for [0, 1]   are: 

11
111supp 8 5c   ,    11 11

111 111

(8) (13) 0
c c

   , 

12
111supp 13 5c   , 12 12

111 111

(13) (8) 0
c c

   , 

11
211supp 3 5c   , 11 11

211 211

(3) (8) 0
c c

   , 

12
211supp 7 5c   , 12 12

211 211

(7) (2) 0
c c

   , 

11
121supp 7 5c   , 11 11

121 121

(7) (12) 0
c c

   , 

12
121supp 8 5c   , 12 12

121 121

(8) (3) 0
c c

   , 

11
221supp 6 5c   , 11 11

221 221

(6) (11) 0
c c

   , 

12
221supp 6 5c   , 12 12

221 221

(6) (1) 0
c c

   , 

11
112supp 9 5c   , 11 11

112 112

(9) (14) 0
c c

   , 

12
112supp 9 5c   , 12 12

112 112

(9) (4) 0
c c

   , 

11
212supp 7 5c   , 11 11

212 212

(7) (12) 0
c c

   , 

12
212supp 7 5c   , 12 12

212 212

(7) (2) 0
c c

   , 

11
122supp 8 5c   , 11 11

122 122

(8) (13) 0
c c

   , 

12
122supp 7 5c   , 12 12

122 122

(7) (2) 0
c c

   , 

11
222supp 13 5c   , 11 11

222 222

(13) (18) 0
c c

    

12
222supp 13 5c   , 12 12

222 222

(13) (8) 0
c c

   , 

21
111supp 9 5c   , 21 21

111 111

(9) (14) 0
c c

   , 

22
111supp 9 5c   , 22 22

111 111

(9) (4) 0
c c

   , 

21
211supp 2 5c   , 21 21

211 211

(2) (7) 0
c c

   , 

22
211supp 8 5c   , 22 22

211 211

(8) (3) 0
c c

   , 

21
121supp 15 5c   , 21 21

121 121

(15) (20) 0
c c

   , 

22
121supp 15 5c   , 22 22

121 121

(15) (10) 0
c c

   , 

22
221supp 13 5c   , 22 22

221 221

(13) (8) 0
c c

   , 
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21
112supp 9 5c   , 21 21

112 112

(9) (14) 0
c c

   , 

22
112supp 11 5c   , 22 22

112 112

(11) (6) 0
c c

   , 

21
212supp 7 5c   , 21 21

212 212

(7) (12) 0
c c

   , 

22
212supp 6 5c   , 22 22

212 212

(6) (1) 0
c c

   , 

21
122supp 11 5c   , 21 21

122 122

(11) (16) 0
c c

   , 

22
122supp 14 5c   , 22 22

122 122

(14) (9) 0
c c

   , 

21
122supp 6 5c   , 21 21

222 222

(6) (11) 0
c c

   , 

22
222supp 7 5c   , 22 22

222 222

(7) (2) 0
c c

   . 

At 0  , the corresponding 0-PMOMISTP problem is 

1 2 1 2
1 111 111 211 211min ( ) (8 5 ) (13 5 ) (3 5 ) (7 5 )z x x x x           

1 2 1 2
121 121 221 221(7 5 ) (8 5 ) (6 5 ) (6 5 )x x x x          

1 2 1 2
112 112 212 212(9 5 ) (9 5 ) (7 5 ) (7 5 )x x x x          

1 2 1
122 122 222(8 5 ) (7 5 ) (13 5 )x x x       

2
222(13 5 )x  , 

1 2 1 2
2 111 111 211 211min ( ) (9 5 ) (9 5 ) (2 5 ) (8 5 )z x x x x           

1 2 1 2
121 121 221 221(15 5 ) (15 5 ) (13 5 ) (13 5 )x x x x          

1 2 1 2
112 112 212 212(9 5 ) (11 5 ) (7 5 ) (6 5 )x x x x          

1 2 1
122 122 222(11 5 ) (14 5 ) (6 5 )x x x       

2
222(7 5 )x  , 

subject to x G  and [0, 1]  . 

Also, 0 ( , )P w   is

  
1 1 2 2min ( ) ( )

x G
w z w z 


  

subject to 

1 20 1, 1w w      and  1 2, 0w w  . 

Let 
0 (1, 0)w   and 

0 0  . Then the corresponding  

0 1 2 1 2 1 2 1 2 1 2 1 2 1
111 111 211 211 121 121 221 221 112 112 212 212 122( , , , , , , , , , , , , ,x x x x x x x x x x x x x x

        
2 1 2
122 222 222, , )x x x  

(0, 11, 16, 0, 5, 0, 14, 5, 0, 0, 0, 0, 0, 13, 0, 0)
,and  

0 0 0 3 0 0 0
1 2

2 1 1
( ) ( , ) : 1, 0 , and 0

3 3 8
S x w R w w 

 
        
 

 

Let 
1 2 1

,
3 3

w
 

  
 

 and 
0 0  . Then the corresponding 

efficient solution is: 

0 1 2 1 2 1 2 1 2 1 2 1 2 1
111 111 211 211 121 121 221 221 112 112 212 212 122( , , , , , , , , , , , , ,x x x x x x x x x x x x x x

        
2 1 2
122 222 222, , )x x x  

(0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 19, 0, 0, 18) , 

and 

1 1 0 3 1 1 0
1 2

1 4 1 5
( ) ( , ) : , , 0 1

6 6 3 6
S x w R w w 

 
        
 

Let 
2 1 5

,
6 6

w
 

  
 

 and 
0 0  . Then the corresponding 

efficient solution is: 

2 1 2 1 2 1 2 1 2 1 2 1 2 1
111 111 211 211 121 121 221 221 112 112 212 212 122( , , , , , , , , , , , , ,x x x x x x x x x x x x x x

         
2 1 2
122 222 222, , )x x x  

(0, 11, 0, 0, 0, 0, 0, 0, 5, 0, 11, 0, 19, 0, 0, 18)
and

2 2 0 3 2 2 0
1 2

1 5 21
( ) ( , ) : 0 , 1, 0

6 6 32
S x w R w w 

 
        
 

Let 
0 (1, 0)w   and 

1 3

8
  . Then the corresponding 

efficient solution is 
1x  and 

1 0 1 3 0 0 0
1 2

1 5 3
( ) ( , ) : 1, 0 , 1

6 6 8
S x w R w w 

 
        
 

Let 
1 1 5

,
6 6

w
 

  
 

 and 
1 3

8
  . Then the corresponding 

efficient solution is 
2x  and 

2 1 1 3 1 1 1
1 2

1 5 3
( ) ( , ) : 0 , 1, 1

6 6 8
S x w R w w 

 
        
 

Thus,  

 
0 1 2

0 ( ) { , , }E P x x x . 
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