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ABSTRACT

The solid transportation problem (STP) arises when bounds
are given on three item properties. These properties are
usually: sources destination and type of product or mode of
transport.

In this paper, a possibilistic multi-objective multi-item solid
transportation problem (Poss MOMISTP) is studied. The
problem is considered by incorporating possibilistic data into
the objective functions coefficients. The efficient solutions
and the stability of Poss MOMISTP problem are investigated.
The concept of & -Possibly efficient is introduced in which
the ordinary efficient solution is ¢ -tended based on the & -
level of possibilistic variables. A necessary and sufficient
condition for such solution is established. A relationship
between solutions of possibilistic levels is constructed. The
stability set of the first kind corresponding to one solution of
the & - level of possibilistic variables is determined. An
illustrative numerical example is given in the sake of the
paper to clarify the obtained results.
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1. INTRODUCTION

The solid transportation problem (STP) is a generalization of
the wall-known transportation problem (TP) in which three
item properties are taken into account in the constraint set
instead of two (source and destination). The STP was first
introduced by Shell (1955). Haley (1962) showed a
comparison of the STP and the classical TP and then applied
modified method to solve the STP. Jimenez and Verdegay
(1998) present two types of uncertain STP in which the
considered data are interval numbers and fuzzy numbers,
respectively.

Hussein (1998) studied the complete set of ¢ -possibly
efficient solutions of multiple objective transportation
problems with possibilistic objectives functions coefficients.
Ammar and Youness (2005) introduced the solutions of
multiobjective TP problem with fuzzy objective, fuzzy
sources, and fuzzy destinations. Pandion and Anuradha(2010)
propose a new approach for solving STP. Ojha et al. (2010)
introduced a TP with fixed charges and vehicle costs where all
unit discount (AUD) incremental quantity discount (IQD) or
combinations of AUD and 1QD on the price depending upon
the amount is offered and varies on the choice of origin,
destination and conveyance and solved the problem using
Genetic Algorithm. Kundu et al. (2013) modeled a multi-
objective multi-item solid transportation problem with fuzzy

coefficient of the objectives and constraints and then solved
by two different methods. Ammar and Khalifa (2014)
introduced the multiobjective solid transportation problem
with fuzzy parameters. Ammar and Khalifa (2015) Studied
the multiobjective solid transportation problems with
possibilistic parameters.

In this paper, multi-objective multi-item solid transportation
problem with possibilistic objective functions coefficients is
studied. The concept of ¢ -possibly efficient and « -
parametric efficient solutions are introduced, and the relation
between the two previous solution is given. A parametric
analysis is used to characterize the set of all ¢ -parametric
efficient solution. A solution procedure to determine the
stability set of the first kind corresponding to one parametric
efficient solution of Poss MOMISTP is presented. A
numerical example is given for studying the Poss-MOMISTP,
we present some definitions and some notions related to the
topic.

2. PRELIMINARIES

Definition 1. A possibilistic variable y on U is a variable
characterized by a possibility distribution 7Z'y (U ) This
means that, if y is a variable having values in U, then a
possibility distribution 7Z'y associated with y may be viewed

as a fuzzy constraint on the values that may be assigned to y.
Such a distribution is characterized by a possibility
distribution function:

7y *U —[0, 1] which associated with each U €U

the degree of compatibility of the variable y with the
realization U €U .

If U is a Cartesian product of Uyq,..,Up, then
Ty (Uq, ..., Uy, )is an n-ary possibility distribution, i.e.,
Ty (u)= (7Z-yl (Ug), ..., Ty, (Up))-

Definition 2. The & -cut of a possibilistic variable y is
defined as:

Yo={ueU 7z, (U)2a, a<l0,1]}.

Definition 3. A possibility distribution 7Z'y on U is said to be

convex if:



7, (ut+ (1= )Y 2 min(z, (01, 7, (0%)), ¥ u' u?eU,
y €[0,1].

Definition 4. The support of a possibilistic variable y is
defined as:

supp(y ) ={u eV :sup gp, (U)>0; ¥ >0} ueN(u),

where N . (U) ={u €U :|ju-U | <&}.
Lemma 1. The supp (Y ) is a closed set on U.

3. PROBLEM FORMULATION

Consider the following possibilistic multi-objective multi-
item solid transportation problems (Poss MOMISTP)
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andx;y 20,p=L...t,i =L, m;j=1., 1.0

Where, p (=1, ...,
origins O;(i=1..m)wo n
D; (i=1...,m) by means of k(=1..,7)

different modes of transportation (conveyance). For the

t)items are to be transported from m

destinations

objective Zr,(firjpk represents  possibilistic  unit

transportation penalty on R from i origin to j'" destination by
k™" conveyance from p™ item which is an uncertain quantity
can be characterized by possibility distributions

ﬁdka (r :L)q’ p:]-v)ti I :11) ml J :11 | ni k :1)15)
B

, aip and b jp represent total supply of i origin and total

demand of j" destination, respectively for p" item, and € is

the total capacity of k™" conveyance. It is assumed that all
possibility distributions involved in Poss MOMISTP are

Definition 5. (¢ -possibly efficient solution). A point

*
X €G issaidtobe o -possibly efficient solution for Poss
MOMISTP if there is no point X €G such that:
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Poss (2 (x, ¢") < ( e,z (x, <z, (8 e,
2, (%, €N <z, (X", €"), 2,y (6, 6"y <z (x7 ),
Zq (X, )<z (x ¢ 2a, 1)

where Poss denotes possibility.

On account of the extension principle,

Poss (z(x, ") <23 (X, €%, . 2,4 (6, €T V) <7, (¢, 1Y),

Zr(x Cr) < (X ¢ ) r+1(X C(Hl)) Zr+1(X*lC~(r+l)):---a

24 (x,€1) <74 (x,€") = sup min(fzﬁl(cl),...,ﬂc.,.l(cr‘l),
(c..,c)eC

T (€7), mra €7, oy e (€7), @

where

C ={(c%, ... c¥) eRICM ™D 7 (x,cly<z,(x" el ...

2p4(6, 6" <z (e 2 (06T <2 (1), 2 X, €

Zrg(x ¢, Lz (x,c%) <z, (x )} @

and

r —
7er (€7), (r=1..9)
are (t *M *nN *ﬁ)-ary possibility distributions.

4. CHARACTERIZING OF g-Possibility
EFFICIENT SOLUTIONS FOR POSS
MOMISTP

For characterizing the ﬂ-PossibiIity efficient solution for
Poss MOMISTP let us consider the following ﬂ -parametric

multi-objective multi-item solid transportation problems (,B -
PMOMISTP).

(B-PMOMISTP) minz, (x,c")=c"x

subject to
x €G, and ; pk E(Cljk )ﬂ, £ <€[0,1], where
(CI jk )ﬂ denotes the ,3 -cut of the possibilistic variable

Cirjpk. By the convexity assumption ﬂ-c«rp and,

ijk
&) (r=bongip=lotii=lo,m j=1..n;
k =1,...,7) are intervals that will be denoted as

10



[/ P (BN (€ (B 1. Let gy be the st of

t*m*n*/  matrices _(C|Jk)ﬂ with

|rjke[(c|1k(ﬂ) C”k(ﬂ) ] |’=1,---,q:
p=L..t;i=L..m j=L..,n k=1.. /¢

. It is clear that & -PMOMISTP may be rewritten in the
following form:

P(B):minz (x,c"),r=1..,q

subject to
x €G and ¢" egp, r=1,..,q.

Definition 6. ﬁ -parametric efficient solution: A point
*

X €G s said to be an /3 -parametric efficient solution

for problem (P (B)P (&) ) if and only if there are no

X eG and Ierk € ¢ﬁ such that

z,(x,c")<z, (x",c") foral r=1..0q and
strict inequality holds for at least one r.

*
Theorem 1. A point X €G is an [ -possibly efficient

*
solution for problem Poss MOMISTP ifand only if X €G
isan /3 -parametric efficient solution for problem P (5.

*
Proof. Necessity. Let X €eG bean -possibly efficient
*
solution for problem Poss MOMIST and X €G () be
notan /3 -parametric efficient solution for problem P (3.

Then there are X - €G and t" E¢Or!, r=1..,q such
that:

Zy (Xl,td)SZd (x*,td),
foral d €{4,...,q}, re{l ..,q}.
such that

z, (xht) <z, (x",t").

Ast’ €¢50r¢, r=1..,0,wehave

poss (23(',¢) <24 (X", €, 25 (€0 <25 (0 €1Y),

r+1)) r+1))

SZpg(x "l o

2, (<€) <z, (x,€7), 2 (¢

zg(x1 69 <z4(x7,¢Y)) 2.

*
This contradicts that X €G (&) is an [ -possibly
efficient solution for problem Poss MOMISTP.
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*
Sufficiency: Let X €G be an [3 -parametric efficient

*
solution for problem (P (/)) and X €G benotan 3
-possibly efficient solution for problem Poss MOMISTP.

Then there are X 2 €G and r ={l, vy q} such that:

Poss (z,(x2, ) <z, (x " €Y), o 2,4 (62 €YY <z, (x 7, 60D,

Zr(XZ:Gr) (X C) r+1(X C(r+1))<zr+1(x C(Hl)) "

Zq (x ,c~q)<zq(x ,CNH>p

sup  min(za(ct), ...
(¢t ....c9)eC

(a2 (e 2B @

Where,
C={(c ... eRE™™ 7 (2 ehy<a, (x ¢}, 2,4 (x40
g (€2 (0 ) <2 (6, 2 (6 69 <2 (6 ),

For the supremum in (4) to exist, there s
(el ...,e9) eC with

min (7 (e'), ..

7 (€)) < B,
then,

sup  min(z e, ...,
(et ...,e%")eC

7 (€9)) < B.

This contradicts (4). Then there is (el, .,el)eC,
satisfying

min(za (€', .. 74 (€928 @
i.e.,

q e¢2, r=1..,0q ©)
(4) and (6) leads to the contradiction of the efficiency of
x eG for problem (P,b’) .

Let Eﬂ (Y ) be the set of all possibly efficient solutions for
problem Poss MOMISTP and Eff (¢ﬂ) be the set of
all ﬁ -parametric efficient solutions for problem (a P ) at
contain [0, 1].

Theorem 2. (a) E g Y )c Eg, (Y ) if and only if
B2bs,

0 Eo(Y )= (J Ez(Y).
pel0, 1]
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Problem P () will be treated using the weighting
approach, i.e., by defining the following problem:

g g
P(Bw):mind> w, z (x,c")=>w,c"x

r=1 r=1
subject to

x €G, c" egy, r=1..9,and

q
WeW =<weR:>w, =Lw, >0
r=1

*
We see that X is an /3 -parametric efficient solution of

problem (P (3)) if there exists W “eW suchthat X

is the unique ﬂ-possibly optimal solution of problem
P(sw").
5. PARAMETRIC ANALYSIS

For characterizing the set of all 0-possibly efficient solution to
Poss MOMISTP problem (E 5 (Y )), we use the

decomposition of the parametric space. For the sake of
parametric analysis. P (0, W ) problem can be written in
the following form (Bazaraa et al., (1990) and Steuer (1986)):

P(OwW): miniwr((c”‘(O)JrecrU (0)x
r=1

subject to

AX =D, X >0,
w eW and 6€[0,1].

Decomposing A into  [B, N B], c't (0) into
[cg" (0), s (0)] and [cg” (0), ¢l g (0)], we get

Bxg +N Bxyg =b, ©)

l- Zwr[ 0)+8cq° (0)xg +(ch (0)+ el (0)xg]=0.

®)

. . ru ru
Updating the tableau and denoting Cg~ Yy by Z4~ , we
obtain
Xg + Y. Y4 Xq =b ©)
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q
z-dw, | > {(zg" —cft )+ (24" —c4Y )Ixg
r=1 deD
=i (c"t(0)+6c™ (0))b, (10)
r=1

where D is the set of current indices associated with the non-
basic variables (N B ).

*
For given W €W | the current tableau has @ = 0° and

*
gives an efficient basic feasible solution of Py (W o° ).
Our aim is to find aut haw for we can move in the direction

erU which still main taining the optimal solution of

*
Po(w -, 490) problem. Let
J *r,ruU ru
m:> W, (zy —Cyp 0>0¢ (1)
If M =¢@, then the current solution is optimal to

Py (W 5 490) problem for all values of € € [90, 1].

Otherwise, estimate the range of & which is [6°, G'] as:

ZW (ZrL rL
@' = min{ =L

X eM q * U U
Zwr(zr; _erw )
r=1

(12)

Also, for determining the set of all parameters W €W
corresponding to the current optimal solution of

Py(w 00) problem, we calculate the ranges of
W,, =1 ..,q byusing

_(Zt ¢/ )
W= ,r=1.,q-1
=W e af o)
(13)
where
T ={t:(zf " =c{™)20
and (2] —cl)<0}. (14)

If T,,q=¢, then the range of W 4 is [1-wW,1].
Otherwise, the range of W 1 is [1—W [, W 1] for all
r=1..q-1
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From the above analysis, the stability set of the first kind
(S (X)) can be determined.

The previous procedure can be repeated until both parametric
spaces of € and w are fully determined, and hence the set
Eo (P) is fully determined.

6. NUMERICAL EXAMPLE

To illustrate numerically Poss MOMISTP problem, we
consider an example with P =1, 2=1, j andk.

(Poss MOMISTP)

subject to

2 2 )

DD Xijk <34, Zszjk<3o,
i=1k=1 j=1k=1

2 2 2 2

D3 X35k <27, D Xij¢ 216,

j=lk=1 i=lk=l

2 2 2 2

S x{k 2223 Xy 219,

i=1k=1 i=1k=1

2 2 5 2 2 2

DD Xiw 218, 3 > > xf; <51,
i=1k=1 p=li=lk=1

2 2 2

2, 2. 2. X255,

p=li=1k=1

Ijk_o p=L21i=12j=12k =12}

The possibilistic  variables |§]k and C~i2jpk are

characterized by a possibility distributions (77,1p (+) and
i ik

7Z'C~_2_pk ()) The supports of the possibilistic variables
ij

('fil?k and C~i2jpk are [8,13] and [9, 14]. It is appropriate to

characterize the supports by a parametric functions beginning
by the points of maximum possibility. Hence, the parametric

function of G to the supports for € €[ 0, 1] are:

supp €11y =8+56, 7 (8) =7 (13)=0,
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supp €17 =13-50, 7z (13) = 72 (8) =0,
supp €31, =3+50, 7 (3) =7 (8)=0,
SUPP €311 =750, mz (7) =7z (2)=0,
supp €13, =7+56, 7 (1) =70 (12) =0,
supp 1o =8—56, 7tz (8) = 72 (3) =0,
supp €33, =6+56, 7 (6) =7 (11)=0,
supp €35, =656, 7z (8) =7 (1) =0,
supp i, =9+56, 7 (9) =7z (14) =0,
supp ¢i% =9-56, 7z (9) =7 (4)=0,
supp Cai, = 7+56, 7 (1) =7 (12)=0,
SUpp €37, =756, 7 (7) =7z (2)=0,
supp €13, =8+50, 7 (8) =7z (13)=0,
supp iz, =756, 7z (1) =7 (2)=0,
supp €33, =13+56, 7 (13) =7 (18)=0
supp €33, =13-56, 7z (13) =7 (8)=0,
supp €7, =9+50, 7 (9) = e (14) =0,
supp ¢34 =956, 7w (9) = e (4) =0,
supp Caiy =2+56, 7 (2) =72 (1)=0,
supp €27 =8-50, T, (8)= Tz (3)=0,
supp €55 =15+56, 7z (15) = gz (20)=0,
supp c121 =15-50, Tz (15) = Ttz (10) =0,

supp 0221_13 50, 7, z (13)= Tz (8)=0,
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supp €25 =9+56, Zen (9) =7z (14) =0,
supp ¢35 =11-560, 7 (11) = 7z (6) =0,
supp €5, = 7+56, 7 (7) =7z (12) =0,
supp €22, =650, Tosze (6) = Trs, (1)=0,
supp €2, =11+580., 7 (11) = 7z (16) =0,
supp €2, =14 56, 7 (14) = 7 (9) =0,

supp €5, =6+50, 7z (6) =7z (11)=0,

supp €22, =750, 7 (7) =7z (2)=0.

At o =0, the corresponding 0-PMOMISTP problem is

min z,(0) = (8+56) x4, + (13-50)x 4, + (3+50) X3y, +(1-50)x 3
+(7+50) X1y +(8—=560) X7y +(6+50) X3, +(6-50)X 5,
+(9+50) X115 +(9-560)x {4 + (7+50) X315 + (7T -50)X 31,
+(8+50)X1py + (7 —50) X159 +(13+50) X 3,
+(13-50)x2,,,

min 2, (8) = (9+56) x4y, +(9-50)% 3, + (2+560) X3, +(8-560)x 2
+(15+50) X1y, + (15-50)x 5 + (13+56) X 2y + (13-56) 2,
+(9+50) X1, +(11-50)x 2y +(7+50)X 31 +(6-560)x 415
+(11+50) X 15y + (14—=50) X 5y + (6 +56) X 30
+(7-50)x2,,,

subjectto X €G and € €[0, 1].

Also, Py(W, &) is minw,z,(0)+w,z,(80)
x G

subject to

0<0<lw;+W, =1 and Wq,W, >0.
Letw ¥ = (4,0) and 6% =0. Then the corresponding

0 ol 02 ol w2 ol u2 ol y2 u1 w2 u1 2 1
X" = (X1 X111 X210 X 10 X120 X120 X201, X201, X1 X100 X219: X710 Xi2p»
2 1 2
X122+ X322+ X222)
=(0,11,16,0,5,0,14,5,0,0,0,0, 0,13, 0, 0)

,and
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21
Letw ! = ( 3’3 j and 0% =0 Then the corresponding

efficient solution is:

K= (X1111v X1211: X%n’ X2211: X11211 xf21, X%zp X§21| X1112’ X1212v X%IZ' X2212: X1122’
X1222’ X %22’ X 522)

=(0,14,0,0,0,0,0,0,0,0,16, 0,19, 0, 0,18),

and

1 41
s(xH={wh % er®: Z<wi<”
(){( )e g Wise

5
Zwi<2 0<60<1
3 6
15
Leew 2 =] =, > | and 6° = 0. Then the corresponding
6 6
efficient solution is:
2 01 w2 ol U2 Ly w1 2l w2 1 2
X = (Xq99, X310, X210, X210, X120, X120 X201 X220 X112 X101 X212 X210 X122
2 1 2
X122+ X222, X222)

=(0,1,0,0,0,0,0,0,5,0,11, 0,19, 0, 0,18)
and

S(xz): (W2,¢90)ER3:OSW12§1,§SW2231,OSHOS§
6 6 32
Let w® = 4, 0) and o zg. Then the corresponding
efficient solution is X ! and
1 0 3.1 _ 0 0.93_0
s(x})={w? 6 eR Eswlsl,oswzsg,gse <1
Lethz(—,g) and 4912— Then the corresponding
efficient solution is X 2 and
2 1 3. 15 1.3
S(x¥)={(wh 6)eR¥:0<wi<z Zcwi<t 2<ht<1
66 8
Thus,
Eo(P)={x% x% x?}.
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