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ABSTRACT 

This study examines modeling and simulation of the transient 

thermal behavior of a solar collector adsorber tube. The data 

used for model setup and validation were taken 

experimentally during the start-up procedure of a solar 

collector adsorber tube. ANN models are developed based on 

the nonlinear autoregressive with exogenous input NARX 

model and are implemented using the MATLAB® tools 

including the Neural Network ToolboxTM. It is considered that 

the data used for model training and validation are 

experimental data taken during solar collector operation using 

standard instrumentation. The neural network predictions 

agreed well with experimental values with mean squared error 

which are near 0 and the best fit between outputs and targets 

(R) are very close to 1. These results showed that NARX 

models (1–12–1 with d1 = 10, d2 = 9 and 35 epochs) can 

successfully be used to predict thermal performance of the 

adsorber tube.   

General Terms 
Neural networks, training algorithm. 

Keywords 
Solar radiation, solar collector, adsorber tube temperature, 

neural network. 

1. INTRODUCTION 
Solar energy has various advantages over conventional energy 

sources, such as short installation time and long-life operation, 

simplicity, no moving parts, silent, safe, non-polluting, and it 

is renewable source of heat and electricity [1]. Solar-powered 

adsorption refrigerators in recent years have been receiving 

much attention as a replacement for conventional vapor 

compression refrigeration cycles driven by electricity. In an 

adsorption system, adsorbent (activated carbon) is used to 

adsorb methanol and promote its evaporation using a flat-plate 

solar collector. Solar collectors are a special kind of heat 

exchanger that transforms solar radiation energy to the 

internal energy of the transport medium [2]. These 

transforming processes depend on climatic factors such as 

incoming solar radiation, duration of sunlight, and the thermal 

properties of the collector adsorbing tubes, glazing materials, 

heat insulators, and transparent cover.  

An Artificial Neural Network (ANN), inspired by the 

biological nervous system, unifies a series of learning and 

autocorrecting functions to resolve diverse problems using 

algorithms or computational programming codes. The 

processing elements of a neural network, first proposed by 

McCulloch and Pitts [3], are analogous to the neurons of a 

nervous system.  An ANN-based approach is considered to be 

a very effective modeling method, because it can trace back 

during the training procedure. As a result, an ANN have 

ability tocan recognize highly complex, ill-defined time series 

patterns and nonlinear characteristics with better accuracy 

over other methods in making predictions [4, 5]. Yang [6] 

stated that there are several significant reasons why ANNs are 

such a powerful tool for modelling dynamic systems: 

(1) ANNs can accurately recognize the inherent relationship 

between any set of inputs and outputs without a physical 

model or even without information about internal behaviour, 

and yet ANN results account for all the physics relating the 

output to the input. This ability is essentially independent of 

the complexity of the underlying relationship such as 

nonlinearity, multiple variables, and parameters. This 

essential ability is known as pattern recognition as the result 

of the learning process. 

(2) The methodology is inherently fault tolerant, due to the 

large number of processing units in the network undergoing 

massive parallel data processing. 

(3) The learning ability of ANNs means the methodology can 

adapt to changes in parameters. This ability enables the ANN 

to also handle time-dependent dynamic modelling. 

Lin et al. [7] showed that a NARX network behaves better 

with long-term dependencies by using a single neuron 

network compared with a recurrent network trained by 

Backpropagation through time (BPTT), and NARX networks 

have been tested for finite automata prediction. In theory, a 

NARX network can replace any recurrent network that is 

currently being used for a problem, without any 

computational power loss. A NARX model has also been 

shown to be effective for other types of chaotic series [8] 

(Diaconescu, 2008), including the chaotic Mackey-Glass 

series and Fractal Weierstrass series. For these series, a good 

prediction has been found with an average input order and low 

output order. The model has predicted values with 99% 

accuracy, comparing them with the original values. For a 

complex system, NARX has been shown again to have good 

results, with Bayesian regularization and in this scenario, the 

accuracy was 96%. 

In this study, solar radiation and collector adsorber tube 

temperature are considered the basic input-output parameter 

for nonlinear autoregressive models with an exogenous input 

(NARX) network to predict the collector temperature of a 

solar adsorption refrigerator. Therefore, this study included 

parameter identification (training), comparisons between 

observed and modelled collector output (estimated 

temperature), and simulated solar collector adsorber tube 

temperature.  
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2. MATERIALS AND METHODS   
2.1 Construction Principle of the Solar 
Collector 
The construction of a flat-plate adsorption solar collector with 

a polystyrene foam casing, blackened absorber surface, and 

transparent cover sheets is shown in Fig. 1. The solar collector 

is mounted on an adjustable stand with an inclined angle of 

32°C for winter, 56°C for spring/autumn, and 80°C for 

summer toward the horizon and oriented to the south. The 

dimensions of the rectangular casing are 1700 × 1000 × 300 × 

50 mm (length × width × height × thickness) with thermal 

conductivity λ = 0.034 (W/m.K). The bottom and the side of 

the casing are well insulated by Rockwool (30 mm thick) with 

thermal conductivity λ = 0.040 (W/m.K). The insulated 

materials provide sealing and reduce heat loss from the back 

or sides of the collector. 

The collector plate is covered with a high transmittance 

Plexiglas plate, 1940 × 940 × 3 mm (length × width × 

thickness). The optical (transparent cover transmittance τ = 

0.9%, absorptance of the glass covers the visible range αg = 

0.05) and thermal properties (λ = 0.19 W/m.K) of the 

Plexiglas plate reduced convective losses from the absorber 

plate and adsorption tube by retaining the stagnant air layer 

between the absorber plate and the cover glass. The plate also 

creates a greenhouse effect by allowing short-wave radiation 

to be absorbed from the sun and nearly opaque to long-wave 

thermal radiation to be emitted by the absorber plate to the 

atmosphere. A blackened (solar absorptance α = 0.96, infrared 

emittance P = 0.04, reflectance of coated surfaces ε = 0.88) 

absorber plate (aluminium, 0.5 mm thick, λ = 210 W/m.K)  

with attached absorber tubes (copper, λ = 380) is used to 

maximize radiant energy absorption, transfer this heat to a 

working fluid at a minimum temperature difference, and 

minimize radiant emission. 

 

 

Fig 1: Components of the solar collector  

2.2 Solar Collector Adsorber Tube  
A adsorber copper tube (Ø 15 mm) is placed inside a vacuum-

sealed absorber tube (Ø 40 mm) and attached to a blackened 

absorber plate (Fig. 2a). The space between the adsorber tube 

and absorber tube is filled with activated carbon fiber (AK 

type; Unitika Ltd., Japan) and methanol. The lengths of the 

adsorber tube and absorber tube are 1010 mm and 1000 mm, 

respectively. The adsorber tube is perforated with 0.3 mm 

holes, is hollow, and the space inside is evacuated. The reason 

for a perforated adsorber tube is to promote a change in state 

of the liquid methanol inside the absorber tube and to ease 

methanol flow to and from the activated carbon fiber. When 

solar radiation falls on the surface of the absorber plate and 

absorber tube, the liquid within the adsorption tube heatsed, 

turns to hot vapor, and is later evacuated. The casing contains 

twelve holes into which the adsorption tubes with adsorber 

tubes are fitted and the closed ends are placed inside the 

casing (Fig. 2b). 

 

Fig 2: Schematic diagram of cross-section of one ended 

absorber: adsorber tube (a) and link tubes along the 

length (b) 

2.3 Physical Processes inside a Flat-Plate 
Solar Collector  
Figure 3 shows a schematic drawing of the heat flow through 

a solar collector [9]. 

 

Fig 3: Heat flow through a flat-plate solar collector 

2.4 The Solar Collector Energy Balance 
The mathematical model of the flat-plate solar collector is 

based on the energy balance of the collector absorber plate 

[10]. The total solar radiation ��� incident on the flat plate 

solar collector has three components: direct beam solar 

radiation ���, ground diffuse radiation ���, and sky reflection 

radiation ���. However, this amount of radiation is reduced by 

optical losses from the flat-plate solar collector. The actual 

amount of radiation from the sun that is available for the 

collector ��  is given by 

��� = ���(	 ∙ �)� + ���(	 ∙ �)� + ���(	 ∙ �)� (1) 

(	 ∙ �)�	, (	 ∙ �)�	, (	 ∙ �)� are the transmittance-absorptance 

product for beam, ground, and sky diffuse radiation, 

respectively. The useful amount of radiation ����� that goes to 

the adsorption bed is reduced by heat losses to the ambient air 

�� �. For collector plate area A, useful heat ����� is calculated 

from the following equation:  

����� = � ∙ ���� − �� �        (2) 

Heat loss from the solar collector is expressed in terms of the 

overall heat transfer loss coefficient U as follows: �� � = � ∙
�(� − ����)     (3) 
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Heat transfer from the lateral and bottom surfaces of the solar 

collector are negligible compared with heat losses from the 

top surface of the collector. The heat transfer coefficient is 

calculated from the method presented by Klein [11] and is 

discussed by Duffie and Beckman [12] as follows:  

� = �� + �
��

 !� + "
# (� + ����) ∙ (�$ + �$���)   (4) 

where,  

� = % ∙ �
Γ '(� + ����)

% + ( )
!*

 

+ = 0.43 '1 − 100
� ) 

1 = 1
234 + 0.0591% ∙ �7

+ 2% + ( − 1 + 0.133234
2�9

− % 

( = (1 + 0.089�7 ∙ 234) ∙ (1 + 0.07866%) 

The wind convection coefficient �7 is in terms of the wind 

velocity =7 from the following equation [13]:  

�7 = 5.7 + 3.8=7     (5) 

When the flat-plate solar collector glass cover is opened 

during the isosteric cooling and adsorption processes, the 

overall heat transfer coefficient is given by  

� = 234 ∙ >(� + ����) ∙ (�$ + �$���) + �7  (6) 

A: Area, m2 

Tamb: Ambient temperature, °C 

N: Number of transparent covers 

>: Stefan-Boltzmann constant 

234: Absorber plate emissivity 

2�9: Transparent cover emissivity 

�:	Overall heat transfer coefficient 

�: Wavelength 

	: Transmittance  

+: Hour angle, ⁰ 
(: Latitude (angle defined locally), ⁰ 
2.5 Measurements 
The heating performance test of the experimental solar 

collector was undertaken during the period from July 1 to 

December 31, 2014 to determine the influence of the 

uncontrolled natural factor (solar radiation) and manipulating 

factor (adsorber tube temperature). Solar radiation and its 

diurnal changes were investigated to identify the dynamic 

response of the adsorber tube temperature. Temperature was 

measured using two 47SD digital thermometers with data 

logger function (Sato Shoji Inc., Japan), each with four 

thermocouples (Ø 0.3 mm) having an accuracy of ±0.1°C. 

Solar radiation was measured using a solar power meter with 

data logger function (SPM-SD; Sato Shoji Inc., Japan). These 

data were recorded at intervals of 60 s for 24 h resulting in 

1440 readings per day. A NARX model, with Bayesian 

training algorithms, was examined and compared using 

MATLAB® environment (version R2014a, The MathWorks 

Inc., Natick, MA, USA) and the Neural Network ToolboxTM.  

2.6 Modelling the Solar Collectors with 
NARX 
In dynamic networks, the output depends both on the current 

input to the network and on the current or previous inputs, 

outputs, or states of the network. Generally, time series is a 

sequence of discrete data taken at specific time intervals, for 

example, daily time series, or monthly, etc. However, time 

series depend heavily on past values. A normal feed-forward 

network with a small number of inputs compared with the 

length of the time series can estimate the next value counting 

on little factors. In this paper, the architectural approach 

proposed to deal with a single input-single output chaotic time 

series is based on a recurrent dynamic network, with feedback 

connections enclosing several layers of the network called 

“Nonlinear AutoRegressive models with eXogenous input 

(NARX model)”. A NARX neural net has been demonstrated 

to be well suited for modeling nonlinear systems and 

especially time series [8, 14]. A Nonlinear AutoRegressive 

recurrent neural network with eXogenous inputs model is 

given as follows [15]:  

A(B) = C(D(B),⋯ , D(B − F), A(B − 1),⋯ , A(B − G), H(B −
1),⋯ , H(B − G))      (9) 

where d is the target (predict) for the time series; y is the past 

predicted value; a, b are the input and output order; x is the 

exogenous variables; and f is a nonlinear function.  

In the model [16], the input order gives the number of past 

exogenous variables that are fed into the system. The values 

for the exogenous variables are from current time t to t–a, 

where the input order is a. The input variables with their order 

are called the input regressor. The past predicted value is y 

and to predict the value at current time t, values starting from 

t–1 to t–b are used, where the number of past predictions fed 

into the model is b (the output order) and called the output 

regressor. The real value of the time series d (predicted target) 

is also fed into the system. The same order as for past 

predicted values is also used. If these values are missing, the 

system tries to predict the next values of the time series from 

the exogenous variables only or uses the feedback from past 

predicted values [16]. M is the number of inputs (exogenous). 

If M is 0, the NARX can fall back to a prediction system 

without exogenous inputs. The input order based on how 

many previous values are given to the system is denoted by a. 

Another parameter b is the actual order of delayed outputs or 

delayed targets. The parameter i represents a certain 

exogenous variable taken into account [16] and x(t) actually 

represents a vector of exogenous variables at time t, with i 

varying from 1 to M. The vector of outputs denoted by y and 

N is the number of output variables. The system parameters 

are given as follows:  

Exogenous inputs : M;  

Predicted Outputs : N; 

Input delays order: a > 0 only if M > 0;  

Output delay order: b 

The prediction, is y(t) when the output of the network for time 

is t, and the target d(t) can compute the error e(t) as d(t)–y(t). 

Figure 6 shows a standard closed feedback loop NARX 

network architecture.  
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Fig 4: A single input-output closed feedback loop NARX 

network architecture 

2.7 Number of Hidden Layers and 
Neurons 
Cybenko [17] showed that any multi-dimensional nonlinear 

mapping of any continuous function can be carried out by a 

two-layer model with a suitable chosen number of neurons in 

its hidden layer. The number of neurons indicates the 

complexity that can be approximated by the neural network. It 

is desirable to use the simplest possible network structure with 

the least number of input parameters. The developed model 

can be utilized to validate new process measurements. A true 

neural network training procedure is usually based on an 

iterative approximation in which the parameters are 

successively updated in numerous steps. Such steps can be 

based on a single data item, on a set of them, or on all 

available data points. In each step, the desired outcome is 

compared with the actual outcome and, using the knowledge 

of the architecture, all parameters are changed slightly such 

that the error for the presented data points decreases [18]. 

Although increasing the number of neurons is sometimes 

necessary to catch nonlinear dynamics of the system, it does 

not mean that it can always and necessarily improve model 

accuracy and generalizability [19]. 

2.8 Weight Values 
Before training an ANN, the initial values of weights and 

biases have to be determined automatically by the ANN 

Toolbox software or it can be adjusted manually through 

writing and running codes in MATLAB® environment.  

2.9 Training Algorithms  
The network training function that updates the weight and 

bias values according to Levenberg-Marquardt optimization 

was modified to include the regularization technique. It 

minimizes a combination of squared errors and weights and 

then determines the correct combination to produce a network 

that generalizes well. The process is called Bayesian 

regularization [16]. If the number of weights in the network 

increases, the advantage of this algorithm decreases. 

However, in Bayesian regularization, training stops according 

to adaptive weight minimization (regularization). According 

to Beale  et al. [18], the advantages of Bayesian regularization 

are as follows: 

- The network training function updates weight and bias 

values according to gradient descent with momentum 

-The network training function updates weight and bias values 

according to gradient descent with adaptive learning rate 

-The network training function updates weight and bias values 

according to gradient descent momentum and adaptive 

learning rate.  

The neural network training can be made more efficient if 

certain preprocessing steps on the network inputs and targets 

are performed. The normalization of the input and target 

values into the interval [−1, 1]. This simplifies the problem of 

the outliers for the network. The normalized inputs and targets 

returned all fall in the interval [−1, 1]. 

2.10 Transfer Functions 
Karlik and Olgac [20] stated that transfer (activation) 

functions transform neuron into an output signal. Tan-

Sigmoid and Linear transfer functions are the two common 

transfer functions that are employed for a multi-layer model. 

These functions are differentiable and can cope with 

nonlinearity of the complex systems.  

2.11 Network Identification through 
Training – Testing – Validation  
The procedures for NARX model identification is shown 

in Fig. 7. This model identification process includes the 

following [21]: 

 

Fig 5: Flow chart for training of NARX neural network 

model 

2.11.1 Identification pre-training 
This study is very important in choosing the controlled, 

manipulated, and disturbance variables.  

2.11.2 Getting training data 
Studying the input range is required to calculate the maximal 

possible values of all input signals so that both inputs and 

outputs will be within the desired operating conditions range. 

The selection of input signal would allow the incorporation of 

additional objectives and constraints, that is, minimum or 
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maximum input event separations which are desirable for the 

input signals and the resulting process behavior. In this 

experiment, a previously obtained experimental data set, 

which consisted of 290 input vectors and their corresponding 

output vectors, was divided randomly into three subsets. 

Among this data, the first subset is the training set (75%), 

which is used for computing the gradient and updating the 

network weights and biases to minimize the network 

performance function. Training in the neural network is the 

process by which a neural network learns to recognize the 

underlying relationship between inputs and output, or just 

among the inputs. The second subset is a validation set (15%) 

and validation error is monitored during the training process. 

The validation error decreases during the initial phase of 

training, as does the training set error. The network weights 

and biases are saved at the minimum validation set error. And 

finally, the test set (15%) is used after training and validation 

for a final test. In most instances, such testing techniques 

prove adequate for the acceptance of a neural network system. 

The validation data set is used to stop training early if further 

training on the primary data will hurt generalization of the 

validation data. Test vector performance can be used to 

measure how well the network generalizes beyond primary 

and validation data. When the training is complete, network 

performance can be checked to see if any changes need to be 

made to the training process, the network architecture, or the 

data sets [18]. 

2.11.3 Estimate model 
The important step in estimating NARX models is to choose 

the model order. A tangent sigmoid function was applied to 

the hidden layer, and a linear transfer function was used in the 

output layer. The whole process was repeated for over 1000 

iterations. The neuron number of the hidden layer for 

estimating the model was selected as 12 (two tap delay lines: 

d1 = 10, d2 = 9) with the following trial and error technique. 

The model performance was evaluated by mean squared error 

(RMSE) and coefficient of determination (R
2

) [18].   

IJK = �
� ∙ ∑ (AM − NM)$��O�      (10) 

P$ = 1 − Q∑ (RS!TS)UVWXY
∑ (RS)UVWXY

Z   (11) 

where n is the number of data points, yk is network output, 

and rk is desired target. The optimum ANN configuration that 

gave the lowest MSE (near 0 means a close relationship, 1 a 

random relationship) and highest R² (an R value of 1 means a 

close relationship, 0) a random relationship) value for the 

training dataset was selected.  

2.11.4 Model validation 
When training a neural network, a stop criterion is determined 

to avoid overfitting, because an ANN has the potential 

tendency to overfit during training. Overfitting can occur 

during training when the ANN gets too specialized to fit the 

training data extremely well, but at the expense of reasonably 

fitting the validation data. Overfitting is reflected by a steady 

increase in validation error accompanied by a concomitant 

steady decrease in training error. Poor performance due to 

overfitting is one of the most common problems in training 

ANNs, but it can be overcome by using the cross-validation 

method, decreasing the number of neurons in hidden layer(s), 

or adding a penalty term to the objective function for large 

weights. By using the cross-validation method, network 

performance is measured during training and if any incentive 

is given, the training is stopped before the maximum number 

of epochs is reached. Epoch is a neural network term for 

iteration in a training process. The number of epochs shows 

the number of times that all patterns are presented to the 

neural network. More epochs means more training time. In 

each epoch of an ANN, all the weight values of the neurons 

are updated [19]. The model was validated with validation 

data that were independent data sets not used in NARX model 

parameter estimation. 

2.11.5 Model acceptance 
The objective in training a neural network is to minimize 

errors as much as possible. Minimizing errors simply means 

improving the performance of the training and getting a more 

accurate model. 

3. RESULTS AND DISCUSSION 
3.1 Fundamental Responses of inside 
Temperature to Manipulating Factors 
Figure 6 shows the short-term dynamic response of solar 

collector adsorber tube temperature to solar radiation, which 

fluctuated because of the weather conditions (sunny–cloudy). 

After sunrise, when solar radiation started increasing, the 

adsorber tube temperature also started increasing. The 

temperature inside the adsorber tube steadily increased 

because of the high thermal conductivity of the copper 

adsorber tube and high thermal absorbance of the activated 

carbon fiber stored inside the adsorber tube. When the solar 

radiation started decreasing, the adsorber tube temperature 

also decreased. This result shows that solar radiation caused 

the temperature difference in the absorber tube. Therefore, we 

chose solar radiation as the input variable for system 

identification. Place Tables/Figures/Images in text as close to 

the reference as possible (see Figure 1).  It may extend across 

both columns to a maximum width of 17.78 cm (7”). 

3.2 Solar Collector Adsorber Tube 
Temperature for Identification 
Many types of data-sets for the input and output variables 

were obtained for identification from a real system. Figure 7 

shows typical diurnal changes in solar radiation and the solar 

collector adsorber tube temperature of the solar collector. 

From the figure, it is observed that solar radiation first 

increased the solar collector adsorber tube temperature, and 

then in the absence of solar radiation the solar collector 

adsorber tube temperature decreased. Twelve types of data 

sets of the inputs and the output were obtained for 

identification. During the experiment period, under a 

maximum solar radiation of 669 W·m−2, the adsorber tube 

temperature was 86°C, while after sunset the average 

temperature was 18°C.  



Fig 6: Relationship between solar radiation and solar collector adsorber tube temperature

Fig 7: Typical diurnal changes in solar collector 

tube temperature, as affected by solar 

patterns) 

3.3 Training Performance Analysis
To find the best model for the solar collector, the generated 

code was run in MATLAB and a plot of the best resulting 

network based on the average performance of training and test 

errors with the number of training epochs is shown in 

The graph shows that the large values for 

network decrease to a smaller value as the weights are 

improved, that is, network training. Training stopped 

according to adaptive weight minimization at 35 epochs, that 

is, Bayesian regularization [18].   
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solar collector adsorber 

solar radiation (12 

Performance Analysis 
o find the best model for the solar collector, the generated 

code was run in MATLAB and a plot of the best resulting 

network based on the average performance of training and test 

errors with the number of training epochs is shown in Fig. 8. 

 the MSE of the 

to a smaller value as the weights are 

improved, that is, network training. Training stopped 

according to adaptive weight minimization at 35 epochs, that 

Fig 8: Performance of the ANN model 

Figure 9 shows the regression plot, in which the circles are 

the data points and the line represents the best fit between 

outputs and targets. As Fig. 9 shows, R values for all graphs 

are very close to 1. Therefore, it can be concluded that the 

ANN structure is satisfactory in

adsorber tube temperature by solar radiation. 

3.4 Prediction Performance Analysis
Figure 10a, b, c show the predicting performance of 

NARX model by evaluating time series response, error 

autocorrelation, and input error cross

Time series response displays the inputs, targets

versus time, and can also indicate which time points were 

selected for training, testing,

autocorrelation and input error cross

Fig. 10b, c show how the errors correlate with the input 

sequence; for a perfect prediction model, all the correlations 

should fall within the confidence bounds around zero. This 

observation suggests that the NARX ANN trained with 

training algorithm ‘Bayesian’ is efficient in predicti

solar collector adsorber tube temperature with solar radiation.
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Performance Analysis 
predicting performance of the 

NARX model by evaluating time series response, error 

error cross-correlation parameters. 

Time series response displays the inputs, targets, and errors 

versus time, and can also indicate which time points were 

, and validation. The error 

error cross-correlation illustrated in 

show how the errors correlate with the input 

ce; for a perfect prediction model, all the correlations 

the confidence bounds around zero. This 

NARX ANN trained with the 

’ is efficient in predicting the 

r tube temperature with solar radiation. 



Fig 9: Regression analysis with training test and validation 

for the optimum ANN model

Figure 11 shows the comparison of the estimated and 

observed relationship between solar radiation and the solar 

collector adsorber tube temperature. The estimated 

relationship was obtained from a simulation of the NN model. 

All the data in this graph were obtained from the calculation 

of the step responses of the adsorber tube temperature as 

affected by various levels of the step input of the solar 

radiation. It can be seen that the estimated relationship was 

closely related to the observed one. In general, it is wel

known that the relationship between solar radiation and the 

net solar collector adsorber tube temperature show

characteristics because of the thermo-physical properties of 

the adsorber tube and environmental. 

characteristics appear in both curves. This implies that the 

nonlinear identification of the net solar collector 

temperature was well attained using the NN method. 
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Fig 10: Prediction performance analysis of 

Fig 11: Simulated dynamic nonlinear relationship between 

observed and estimated results
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(a) 

 

(b) 

 

(c) 

Prediction performance analysis of NARX model 

 

11: Simulated dynamic nonlinear relationship between 

observed and estimated results 



The observed and estimated relationships between solar 

radiation and solar collector adsorber tube temperature are 

shown in Fig. 12. These values are obtained from the 

stationery values of step responses of net solar collector 

adsorber tube temperature as affected by the various gain of 

step input of solar radiation by using the nonlinear dynamic 

model method. It can be seen that the estimated relations

was closely related to the observed one. These results suggest 

that a reliable computational model could be obtained for 

predicting the behavior of the adsorber tube temperature under 

any combination of solar radiation. 

Fig 12: Predicted satic nonlinear relationships between 

observed and estimated results

4. CONCLUSION 
The advantages of the NARX-based ANN 

simplicity, and capacity to train from example over the 

mathematical models. The preprocessing data have been used 

to develop an ANN model to characterize the thermal 

behavior of the solar collector adsorber tube. In this paper, the 

performance of the prediction for different time series was 

tested using a NARX Bayesian regulation. The comparative 

analysis between the measured data and estimated data 

showed that the NARX model can recognize the relationship 

between the input and output variables and 

predict hourly solar collector adsorber tube temperature with 

NARX 1–12–1 (input–hidden neuron number

tapped delay lines (d1 = 10, d2 = 9). Therefore, in this study 

we can conclude that the Bayesian training algorithm with 

minimum mean squared error (MSE near zero) and maximum 

correlation coefficient (R near 1) was found 

under 35 epochs in the training, testing, and validation period 

for predicting the solar collector adsorber tube thermal 

performance. Therefore, NARX-based ANN 

be used for the prediction of thermal performance 

adsorber tube by reducing time in testing 

longer duration. 
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