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ABSTRACT  
In this article, we have investigate a Taylor collocation 

method, which is based on collocation method for solving 

fractional pantograph equation. This method is based on first 

taking the truncated fractional Taylor expansions of the 

solution function in the mathematical model and then 

substituting their matrix forms into the equation. Using the 

collocation points, we have the system of nonlinear algebraic 

equation. Then, we solve the system of linear algebraic 

equation using Maple 14 and we obtain the coefficients of 

Taylor expansion. In addition illustrative example is presented 

to demonstrate the effectiveness of the proposed method. 
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1. INTRODUCTION 
Nowadays notable contributions have been made theory and 

applications of the fractional differential equations(FDEs).  

Many problem can be modelling with the help of the FDEs in 

many areas such as  seismic analysis, viscous damping, 

viscoelastic materials and polymer physics[1-3].  

The pantograph equation is a kind of delay differential 

equation which is used different fields of pure and applied 

mathematics such as number theory, dynamical systems, 

probability, quantum mechanics and electrodynamics. 

Pantograph equation was studied by many authors and solved 

several numerical methods. The most important them are 

collocation method [4], spline method [5], Runga-Kutta 

method [6], Adomian decomposition method [7], homotopy 

perturbation method [8] etc. There are several pantograph 

equation kind in literature. One of them is multi Pantograph 

equation and this equation is defined by [6,9,10] 
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Another form of of pantograph equation is generalized 

nonlinear multi pantograph equation of the form [11] 
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The general pantograph equation is defined by 
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 where 10  q  [12].  

Pantograph equation has very importance in applied science 

because of this reason fractional model of pantograph 

equation has been studied many researchers. Most fractional 

differential equations do not have exact analytic solutions, so 

approximation and numerical techniques must be used. For 

example Adomian decomposition method, the homotopy-

perturbation method, the variational iteration method and the 

homotopy analysis method [13-19]. In this paper we use the 

collocation method for solving fractional Pantograph 

differential equation   
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where 10  rq  and i  is appropriate  constant. 

 We investigate the approximate solution of Eq.(1) under the 

conditions Eq.(2) with the fractional Taylor series as 
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where 10  . In recently, collocation method has become 

very useful technique for solving differential equations [20-

27]. This method transform each part of differential equation 

into matrix form and using the collocation points  

N

i
xi  , Ni ,,1,0                                                (4) 

we get the linear algebraic equation. Solving this equation, we 

obtained the coefficients of Taylor polynomial, the 

approximate solutions for various N . All computations are 

performed on the computer algebraic system Maple14 in this 

paper.  

2. BASIC DEFINITIONS 
In this section, we first give some basic definitions and then 

present properties of fractional calculus [2,26]. 

Definition 2.1 A real function )(xf , 0x , is said to be in 

space 
C , R  if there exist a real number )( p , such 

that )()( 1 xfxxf p , where  )(1 xf  [0, ), and it is said 

to be in the space 
mC

 iff f
Cm )( , .Nm  

Definition 2.2 The Riemann-Liouville fractional derivative of 

order   with respect to the variable t  and with the starting 

point at at  is 
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Definition 2.3 The Riemann-Liouville fractional integral of 

order  is  

0,)()(
)(

1
)( 1 


 

 pdfttfD

t

a

ta 


  

Definition 2.4 The fractional derivative of )(xf  by means 

of Caputo sense is defined as 
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Definition 2.5 Riemann –Liouville fractional derivative 
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Some properties of fractional derivative and fractional integral 

are listed below: [2,27] 
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constants. 

2. 
ta D   )()( tftfDta   

3. 
ta D   )()( tfDtfD tata

   

4.  0* CD
 for any constant C  

Theorem 1. (Generalized Taylor Formula) [26] Suppose that 
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with xa   , ],( bax , where  
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a DDDDD ...    ( n  times). 

3. FUNDAMENTAL RELATIONS 
In this section, we consider the fractional Pantograph 

differential equations (1). We use the Taylor matrix method 

[20-27] to find the truncated fractional Taylor series 

expansions of each term in expression at cx  and their 

matrix representations for solving th order linear 

fractional part. 

We first consider the solution )(xy of Eq. (1) defined by a 

truncated fractional Taylor series (3). Then, we have the 

matrix form of the solution )(xy  as 

  AXM 0)( xy                                                   (5) 

where 
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Similarly, the matrix representation of the function )(* xyD  
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Then, so the matrix representation of fractional differential 

part of equation can be written by  
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In similar way for any i , it can be written by 
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Finally, we obtained the matrix representation of the condition 

in given Eq.(2) as 1,,1,0  mi   
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4. METHOD OF SOLUTIONS   
   Using the collocation points in Eq.(1),  we obtain 
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Hence, the fundamental matrix equation (11) corresponding to 

Eq. (1) can be written in the form 

FWA  or ][ FW; , ][ , jiwW , Nji ,...,1,0,         (12)                   

where 

W 


m

r

i

0

0 0c,qr MXBP-MXM
r

                                 (13) 

Consequently, to find the unknown fractional Taylor 
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approximate solution of the problem consisting of Eq. (1) and 

conditions (2), by replacing the m  row matrices (9) by the 

last m rows of the matrix (13), we have augmented matrix 
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or the corresponding matrix equation 
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and the matrtix A  is uniquely determined. Therefore, the 

approximate solution is given by the truncated fractional 

Taylor series 
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4.1 Accuracy of the solution and error 

bound 
To investigate the convergence, we define the error function 

as: [28] 
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where  )(xN  is the perturbation term that can be obtained by 

substituting the computed solution )(xyN
 into Eq.(1) , i.e. 
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Theorem 4.1 f  and )(xpr  be continuous functions on 
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The proof is complete. 

Theorem 4.2 Under the assumptions of Theroem 4.1, we have 
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We can easily check the accuracy of the method. Since the 

truncated fractional Taylor series (3) is an approximate 

solution of Eq.(1), when the solution )(xy  and its fractional 

derivatives are substituted in Eq.(1), the resulting equation 

must be satisfied approximately; that is  for   

,...2,1,0],,[  qbaxx q
 

0)()()()()(
0
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m
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rr

i

q xqyxpxfxyDxE


 

5. EXAMPLES 
In this section, we give a numerical example which is 

presented to demonstrate the effectiveness of the proposed 

method. 

Example 1: Consider the fractional pantograph equation 

2

9

3

8

2

3
2)(

22/3
2/1

*

xx
xyxyD 










 

with initial conditions 

0)0( y , 1)1( y . 

Here is, 
2

3
,20  rqP . We assume that 2/1 , 10  x  

and we seek the approximate solutions )(xyN
 by fractional 

Taylor polynomial, for 0c , 6N  

 






6

0
0*6 )(

)1(
)(

k
x

k
k

xyD
k

x
xy 




. 

With collocation points are  

00 x , 6/11 x , 3/12 x , 2/13 x , 3/24 x , 6/55 x

16 x  

Fundamental matrix relation of this problem is 

  FAMXBPMXM 0,0q001 r

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Also, we have the matrix representation of conditions as,  

   00000001)0(  Ay                                     

   16/115/82/13/41/21)1(  Ay  

Therefore, we can calculate the new augmented matrix based 

on conditions and solving this systems we obtain for 6N  

 55209188.05187881.0999975.15242222.05333911.05199364.00  eeeeeA  

Finally, we substitute the elements of the fractional Taylor 

coefficient matrix A  into Eq.(3). Thus the approximate 

solution of equation becomes  

32/522/3

6 1335.01218.099.012589,01218.0 xexexxexey   

Which is an appropriate solution. The exact solution of 

Example 1 is 2)( xxy  . 

Comparison of numerical results with the exact solution is 

shown in Table 1 and plotted the numerical results in Fig.1 for 

various N . Figure 1 shows that the exact solution and 

approximate solutions is overlapping Figure 2 shows that the 

errors result for various N 

 

Fig1:The numerical results of Example1 for various  N 

 

Fig. 2: The numerical results of erros for various N 

Table 1: Numerical result for Example 1 

x 

Exact 

Solution N=4 Ne=4 N=5 Ne=5 N=6 Ne=6 

0.0 0.000000 0.000000 0.000E-0 0.000000 0.000E-0 0.000000 0.000E-0 

0.1 0.010000 0.009999 0.314E-9 0.010000 0.31E-11 0.009999 0.45E-14 

0.2 0.040000 0.039999 0.225E-9 0.040000 0.75E-11 0.039999 0.31E-14 

0.3 0.090000 0.090000 0.115E-7 0.090000 0.95E-11 0.089999 0.53E-15 

0.4 0.160000 0.160003 0.25E-10 0.160000 0.88E-11 0.160001 0.13E-14 

0.5 0.250000 0.25000 0.330E-9 0.250000 0.66E-11 0.250004 0.35E-14 

0.6 0.360000 0.360008 0.561E-9 0.360000 0.33E-11 0.360005 0.53E-14 

0.7 0.490000 0.490008 0.754E-9 0.490000 0.66E-12 0.490006 0.55E-14 

0.8 0.640000 0.640007 0.779E-9 0.639999 0.12E-11 0.640004 0.38E-14 

0.9 0.810000 0.810005 0.710E-9 0.809999 0.15E-11 0.810002 0.22E-14 

1.0 1.000000 1.000000 0.114E-9 1.000000 0.82E-12 0.999990 0.15E-14 
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Example 2: Consider the following fractional Pantograph 

equation 
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with initial conditions 

0)0( y , 1)1( y . 

Where 
4

24)(
2

2 xx
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
.  

Then, 
2

1
,10  rqP . We assume that 2/1 , 10  x  

and we seek the approximate solutions )(xyN
 by fractional 

Taylor polynomial, for 0c , 6N  
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With collocation points are  

00 x , 6/11 x , 3/12 x , 2/13 x , 3/24 x , 6/55 x

16 x  

Fundamental matrix relation of this problem is 

  FAMXBPXMMMXMMXM 0,0q000304 r
  
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Also, we have the matrix representation of conditions as, 

   00000001)0(  Ay  

   1A6/115/82/13/41/21)1(  y

and so we solve the equation and obtain the coefficients of the 

fractional Taylor polynomials 

 12210585.012301528.0999999.112783892.012181959.000  eeeeA

Hence, for 6N , the approximate solution of Example 2 is 

given 32/522/3

6 1335.01390.099.01258,01218.0 xexexxexey 
 

The exact solution of Example 2 is 2)( xxy  . 

Comparison of numerical results with the exact solution is 

shown in Table 2 and plotted the numerical results in Fig.3 for 

various N . Figure 4 shows that the exact solution and 

approximate solutions is overlapping, Figure 4 shows that the 

errors result for various N 

 

Fig. 3: The numerical results of errors for various N 

 

Fig. 4: The numerical results of Example2 for various N 

Table 2: Numerical result for Example 2 

x 

Exact 

Solution N=4 Ne=4 N=5 Ne=5 N=6 Ne=6 

0.0 0.000000 0.000000 0.000E-0 0.000000 0.000E-0 0.000000 0.000E-0 
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0.1 0.010000 0.009998 0.100E-7 0.009999 0.380E-9 0.009999 0.22E-10 

0.2 0.040000 0.039999 0.115E-7 0.039999 0.421-E9 0.039999 0.24E-10 

0.3 0.090000 0.089999 0.115E-7 0.089999 0.411E-9 0.089999 0.23E-10 

0.4 0.160000 0.159999 0.107E-7 0.159999 0.377E-9 0.159999 0.21E-10 

0.5 0.250000 0.249999 0.967E-8 0.249999 0.329E-9 0.249999 0.18E-10 

0.6 0.360000 0.359999 0.811E-8 0.359999 0.271E-9 0.359999 0.15E-10 

0.7 0.490000 0.489999 0.641E-8 0.489999 0.208E-9 0.489999 0.11E-10 

0.8 0.640000 0.639999 0.440E-8 0.639999 0.139E-9 0.639999 0.77E-11 

0.9 0.810000 0.809999 0.223E-8 0.809999 0.67E-10 0.809999 0.39E-11 

1.0 1.000000 1.000000 0.372E-9 1.000000 0.40E-11 0.999999 0.60E-14 

6. CONCLUSION          
In this study, we present a Taylor collocation method for the 

numerical solutions of fractional Pantograph equation. This 

method transforms the fractional Pantograph equation into 

matrix equations. The desired approximate solutions can be 

determined by solving the resulting system, which can be 

effectively computed using symbolic computing codes on 

Maple 14. Example shows that Taylor collocation method has 

been successfully applied to finding the approximate solutions 

fractional Pantograph equation. Also the method can be 

expanded to solve fractional multi pantograph equation, 

fractional integro multi pantograph equation and fractional 

system of pantograph equation. 
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