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ABSTRACT

In this article, we have investigate a Taylor collocation
method, which is based on collocation method for solving
fractional pantograph equation. This method is based on first
taking the truncated fractional Taylor expansions of the
solution function in the mathematical model and then
substituting their matrix forms into the equation. Using the
collocation points, we have the system of nonlinear algebraic
equation. Then, we solve the system of linear algebraic
equation using Maple 14 and we obtain the coefficients of
Taylor expansion. In addition illustrative example is presented
to demonstrate the effectiveness of the proposed method.
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1. INTRODUCTION

Nowadays notable contributions have been made theory and
applications of the fractional differential equations(FDEsS).
Many problem can be modelling with the help of the FDEs in
many areas such as seismic analysis, viscous damping,
viscoelastic materials and polymer physics[1-3].

The pantograph equation is a kind of delay differential
equation which is used different fields of pure and applied
mathematics such as number theory, dynamical systems,
probability, quantum mechanics and electrodynamics.
Pantograph equation was studied by many authors and solved
several numerical methods. The most important them are
collocation method [4], spline method [5], Runga-Kutta
method [6], Adomian decomposition method [7], homotopy
perturbation method [8] etc. There are several pantograph
equation kind in literature. One of them is multi Pantograph
equation and this equation is defined by [6,9,10]

u'(t) =au(t) + i,ui ®uat) + f(t),t=0

Another form of of pantograph equation is generalized
nonlinear multi pantograph equation of the form [11]

u'() = f(tu(®).u(At), - ub)
The general pantograph equation is defined by
y (x) =ay(x) +by(ax), 0< X< X, y(0) =y,
where 0 < q<1 [12].

Pantograph equation has very importance in applied science
because of this reason fractional model of pantograph
equation has been studied many researchers. Most fractional
differential equations do not have exact analytic solutions, so
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approximation and numerical techniques must be used. For
example Adomian decomposition method, the homotopy-
perturbation method, the variational iteration method and the
homotopy analysis method [13-19]. In this paper we use the
collocation method for solving fractional Pantograph
differential equation

DY) = T+ 3 P OY@EN) @

as<x<h,n-1<ma<n

under the initial conditions
Diy(c)=4, a<c<b,i=01..,.n-1 @

where 0 < g, <1 and A, is appropriate constant.

We investigate the approximate solution of Eq.(1) under the
conditions Eq.(2) with the fractional Taylor series as

Df“y(x) e C(a,b].

Y (%) = ;%(D;“y)(a) ®

where 0 < a <1. In recently, collocation method has become
very useful technique for solving differential equations [20-
27]. This method transform each part of differential equation
into matrix form and using the collocation points

x =, i=01.. N )
N

we get the linear algebraic equation. Solving this equation, we
obtained the coefficients of Taylor polynomial, the

approximate solutions for various N . All computations are
performed on the computer algebraic system Maplel4 in this
paper.

2. BASIC DEFINITIONS

In this section, we first give some basic definitions and then
present properties of fractional calculus [2,26].

Definition 2.1 A real function f(X), x>0, is said to be in
space C,. yeR if there exist a real number p(> x), such
that f(x)=x"f (x), where f (X) €[0,00), and it is said
to be in the space C" iff f mg C, meN.

Definition 2.2 The Riemann-Liouville fractional derivative of

order ¢ with respect to the variable t and with the starting
pointat t = ais
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D)= (djmj(t )" f(7)dr,

(m<a<m+1).
Definition 2.3 The Riemann-Liouville fractional integral of

order is

D, f (t) —mj(t—r)“-lf(r)dr, p>0

Definition 2.4 The fractional derivative of f(X) by means
of Caputo sense is defined as

l t
—— | t-0)" " (r)dr
=) j (t-7) ()

for N-1<a<n,NeN,t>0, f eC".

D“f (t) =

Definition 2.5 Riemann -Liouville fractional derivative
o D/ f(t) of the power function f(t) = (t—a)", where v
is areal number is

r'(v+1)
7)(

D (ta)'=
r(v-a+l)

a) "

Some properties of fractional derivative and fractional integral
are listed below: [2,27]

1. D*(Af (t) + 4 (t) = AD“  (t) + pD“ F (t), A, 4 are

constants.

2. D7 (,D*f(1)= f(t)

3.0 (,DF f(t))=.D 7 £ (1)
4. DZC =0 forany constant C

Theorem 1. (Generalized Taylor Formula) [26] Suppose that
D¥f(x)eC(a,b] for  k=01..,n+1  where

0 < a £1, then we have

f(X)=iZ_n())(r’((i;a‘+)iZ)(D;“f)(a)+ (([()n 1)a)(f 1)( g |

with a< & <x, VX € (a,b], where
D;* =D7.D;.D....D (N times).
3. FUNDAMENTAL RELATIONS

In this section, we consider the fractional Pantograph
differential equations (1). We use the Taylor matrix method
[20-27] to find the truncated fractional Taylor series
expansions of each term in expression at X =cand their
matrix representations for solving o —thorder linear
fractional part.

We first consider the solution Yy(X)of Eq. (1) defined by a
truncated fractional Taylor series (3). Then, we have the
matrix form of the solution Y(X) as
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v (0]=xm,A Q)
where
X=[1 (x—c)* (x—c)** (x C)N”‘]
1 0 o |
ro
! 0
INe+1)
M, = 1
0 P — 0
F(2q +1) ‘
L I'(Na +1) |
D2 y(c) |
D y(c)
A=| Dy(c)
| Dy(c) |

Similarly, the matrix representation of the function DS y(x)
become

DIy(x) = DIXM,A
where, we compute the D# X, then

DfX=[Df1 De(x—c)* DE(x—c)* - DE(x—c)"]

:[0 T(a+1) l"(2a+l)(x_c)a M(x )(Nm}
QY T(e+)) (N - +1)

=XM,
where
I'(ax +1) 0 o ]
()
0 o Ir'Ca +1) 0
M, =| . . F(a‘+1) )
I'(Nea +1)
I'((N - +1)
|0 0 0 0 |
then,
Dy(x) = XM,M A - (6)
and

DX =[D1 DX(x-c)* DX(x—c)* D2 (x—c)"]

:[0 0 F(Z“Jrl)(x,c)a M(X,c)w—zm
rQ C((N-2)a+1)
= XM,
where
0 IF'@a+1) 0
rQ
|\/|2: . . . )
0 0 _I'(Na+1)
(N —2)a +1)
00 0
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Then, so the matrix representation of fractional differential
part of equation can be written by

DZy(t) = XM ,M,A @)

In similar way for any i, it can be written by

Diy(x) = XM;M A ®)
where

_0 0 ... i 0 0 |

@
1

00 0 0

S ) F(a.+1) _ )
P T S S SR

T((N -i)a +1)
00 .. © 0 0
00 .. O 0 0

Finally, we obtained the matrix representation of the condition
ingiven Eq.(2)as i =01,...,m-1

U =XOM, =[u, uy u, - uyl=[2] ©)
4. METHOD OF SOLUTIONS
Using the collocation points in Eq.(1), we obtain
(XMiMO -Zm:PrXBqnc(xi)MojA =F(xx) (0
r=0

and the matrix representation of fractional pantograph
equation as

{XMiMO-ZP,XquVCMOJA:F (11)
r=0
where
1 (-0 (=0 - (%,—0)"
1 o(x—0)" (=0 - (x,—c)"
X=|1 (Xz -c)* (Xz_c)za (Xz_C)Na
1L (X =0 (xy—€)** - (xy -0
) 0 0 - 0 RS
0 px) O 0 f(x)
P = 0 pl) - 0 |'F=[f(x)
L 0 0 0 p(xy) LF (%))
(g, —¢)™ 0 0 0 0
0 (q, —c)« 0 0 0
0 0 (q, —c)* 0 0
Bac=| o 0 0 (-0 - 0
0 0 0 0 @0

Hence, the fundamental matrix equation (11) corresponding to
Eq. (1) can be written in the form

WA =For[W; Fl.W =[w,].i,]=0L...,N (12)
where
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W=XMM,-> P.XB, M, 13)
r=0

Consequently, to find the unknown fractional Taylor
coefficients D**y(c), k=0,.,...,N related with the
approximate solution of the problem consisting of Eq. (1) and
conditions (2), by replacing the M row matrices (9) by the
last m rows of the matrix (13), we have augmented matrix

Woo Woy Won ; f (Xo)
Wio Wiy Wiy ; f (X1)
[W*' F*]: Wy mo Wam 0 Waean 5 F(Xym)
Ugo Upy Uy ; ﬂ'o
Upo Uy Uiy ; /11
L Un_1o Ungr o Upow ; /Im—l B

or the corresponding matrix equation

WA=F (14)
If det W™ = 0, we can write Eq.(1) as
A=(W)'F (15)

and the matrtix A is uniquely determined. Therefore, the
approximate solution is given by the truncated fractional
Taylor series

— N (X_C)ka ke .
Yo () = Z T r 1)(Da ye)

4.1 Accuracy of the solution and error
bound

To investigate the convergence, we define the error function

as: [28]

ey (X) = y(x) - yy (%) (16)

where Y(X) and y, (x) are the exact and the computed
solution of the Eq.(1), respectively. Substituting y, (x) into
Eq.(1) leads to

[Di“yN (-2 P00, (qrx)j: ORVNOR

where 5, (x) is the perturbation term that can be obtained by
substituting the computed solution y, (x) into Eq.(1) , i.e.

Pu(¥) {Di”yN (x)fipr(x)yN (qrx)jf (%) (18)

Now, by subtracting (17) from (1) and using (16), the error
function €, (X) satisfies:

~00=( e, 003 p0eu(an | 19
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Theorem4.1 f and P, (X) be continuous functions on

[a,b] . Suppose that for some positive and we have

‘Da(N+l)y(X)‘ <M, vxel[0,b], a>p (20)

Then
fm p, =0,

Proof: Suppose that the solution y(X) and computed

solution 'y, (X) of Eq.(1) are approximated by their Taylor
expansions about zero. Then we may write

Xka k
en(X) = “Y(X) ) (1)
kZN‘hF (k+ 1)( s
which can be represented as
_ X e ,&Ee(0,x (22)
w0 =Ty +1)(D y(©)¢ <0.x)

for some & e (0, x) by generalized Taylor theorem. Replacing
e, (x) by (22) into (19) gives

N+

x(NH0e (N+Da (a,%)
F(N+1)(D ¥©)- Zp“ )F(N D

—py(X) = (Dl“ (D(“*”“y(i))]

Therefore, we have

| (X)‘<(D(”*“”y(§)) I'(Ne +1)
AIETENTD TN +Da+D)

where |[p (x)|<M and q"=max{q,} -

b(N+1)a _ mZM (q*b)Nﬂj

The proof is complete.

Theorem 4.2 Under the assumptions of Theroem 4.1, we have
hI‘im ey, =0-

Proof: Let assume

o' =0 - Ep. 0900 |
r=0
Then, the Eq.(18) can be written as
Dey (X) =—py (X)

Under the assumption, |im Py = 0 and the Eq.(1) has
N—w©

unique solution [2]. Then, the operator p* is invertible.

Hence lime, =0.

N—o0
We can easily check the accuracy of the method. Since the
truncated fractional Taylor series (3) is an approximate
solution of Eq.(1), when the solution Y(X) and its fractional

derivatives are substituted in Eq.(1), the resulting equation
must be satisfied approximately; that is for

X=X, €[ab], g=012,.
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E(x) =[P Y09 - £00 -3 p.(9(G0)|=

5. EXAMPLES

In this section, we give a numerical example which is
presented to demonstrate the effectiveness of the proposed
method.

Example 1: Consider the fractional pantograph equation
DY2y(x) = Zy(E XJ + 8" ox
2°) 3z 2
with initial conditions
y(0)=0, y(@)=1.
Here is, P, =20, :% We assume that ¢ =1/2, 0<x<1

and we seek the approximate solutions y, (x) by fractional
Taylor polynomial, for c=0,N =6

Ye (X) = Zr(k

With collocation points are

( l(a y(X) )x:O

Xo=0.%=1/6,x,=1/3,x,=1/2,X,=2/3,%,=5/6
Xs =1

Fundamental matrix relation of this problem is

(xM,M, - POXquVOMO)A =F

where
1 0 0 0 0 0 0
1 J6/6 1/6 /6/36 1/36 6/216  1/216
1 313 13 3/19 19  J3/27 1/27
X=|1 V2712 12 J2/4 1/4 V218 1/8
1 6/3 2/3 2J6/9 4/9 4J6/27  8/27
1 J/30/6 5/6 5v30/36 25/36 2530216 125/216
1 1 1 1 1 1 1
1 0 0 0 0 0 0]
024z 0 0 0 0 0
00 1 0 0 0 0
Me=[0 0 043z 0 0 0
0 0 0 0 12 0 0
0 0 0 0 0 815/ 0
0 0 0 0 0 0 1/6
2 00 0 0 0 0]
0200000
0020000
P,=/0 0 0 2 000
0000200
0000020
0 00000 2
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100 0 0 0 0] T oo T
0620 0 0 0 0 - 0.022631
00 32 0 0 0 0 —0.210457
B,o=[0 0 0 Weld 00 0 F=|-0.593076
00 0 0 94 0 0 —1.181050
000 0 0 0 %eig o0 ~1.980453
0 0o 0o o0 0 0 218 | ~2.995494 |

Also, we have the matrix representation of conditions as,
y@=1 0 0 0 0 0 0JaA=[0]
yO=p 2/Vz 1 a13dz 12 8115V 16a=[]

Therefore, we can calculate the new augmented matrix based
on conditions and solving this systems we obtain for N =6

A= [O 0.199364e-5 -0.333911e-5 0.242222%e-5 1999975 0.18788le-5 0.5209188e— 5}

Finally, we substitute the elements of the fractional Taylor

coefficient matrix A into Eq.(3). Thus the approximate
solution of equation becomes

¥, =0.18¢—12x - 0,589 —12x*% +0.99%* + 0.18e —12x°*'* + 0.35e — 13x*

Which is an appropriate solution. The exact solution of
Example 1is y(x) = x*.

Comparison of numerical results with the exact solution is
shown in Table 1 and plotted the numerical results in Fig.1 for
variousN . Figure 1 shows that the exact solution and
approximate solutions is overlapping Figure 2 shows that the
errors result for various N
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Fig. 2: The numerical results of erros for various N

Table 1: Numerical result for Example 1

Exact
X Solution N=4 Ne=4 N=5 Ne=5 N=6 N.=6
0.0 0.000000 0.000000 0.000E-0 0.000000 0.000E-0 0.000000 0.000E-0
0.1 0.010000 0.009999 0.314E-9 0.010000 0.31E-11 0.009999 0.45E-14
0.2 0.040000 0.039999 0.225E-9 0.040000 0.75E-11 0.039999 0.31E-14
0.3 0.090000 0.090000 0.115E-7 0.090000 0.95E-11 0.089999 0.53E-15
0.4 0.160000 0.160003 0.25E-10 0.160000 0.88E-11 0.160001 0.13E-14
0.5 0.250000 0.25000 0.330E-9 0.250000 0.66E-11 0.250004 0.35E-14
0.6 0.360000 0.360008 0.561E-9 0.360000 0.33E-11 0.360005 0.53E-14
0.7 0.490000 0.490008 0.754E-9 0.490000 0.66E-12 0.490006 0.55E-14
0.8 0.640000 0.640007 0.779E-9 0.639999 0.12E-11 0.640004 0.38E-14
0.9 0.810000 0.810005 0.710E-9 0.809999 0.15E-11 0.810002 0.22E-14
1.0 1.000000 1.000000 0.114E-9 1.000000 0.82E-12 0.999990 0.15E-14
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Example 2: Consider the following fractional Pantograph
equation

D2y (x) + D*%y(x) +y(X)= y(% x) + f(X)

with initial conditions

y(0) =0, y(1)=1.
2
Where f(x)=x2+4\F+2—X-
Vs 4

Then, p =1,q _1 Weassumethat ¢ =1/2, 0<x<1
1 Mr 2
and we seek the approximate solutions y, (x) by fractional

Taylor polynomial, for C=0, N =6

6

00 =Y e Py 00) o

With collocation points are
Xo=0,%=1/6,x,=1/3,x,=1/2,X,=2/3,% =5/6
Xs =1

Fundamental matrix relation of this problem is

(XM, M, + XM M, + XMM, - P,XB, M, JA=F

Where

m o 0 0 0 0 0
1 J6/6 1/6 6/36 1/36 +6/216  1/216
1 3/3 1/3 319 1/9  J3/27 1/27
X=[1 J2/2 12 214  1/4 V218 1/8
1 613 2/3 2619 4/9 4Je6/27  8/27
1 /30/6 5/6 530/36 25/36 2530216 125/216

1 1 1 1 1 1 1
[o0o01 0 O o] 7 2 ]
0000 2/Jz 0 0 2942151
0000 0 1 0 3.386273

M,=|0 0 0 0 0 0 4/3Jz|F=|3783269
0000 O 0 O 4.175968
0000 O 0 O 4.580962
oooo0o 0 0 0 | |5006758]
100 0O O O] 10 0 0 0 0 0]
0100000 02020 0 0 0 0
0010000 00 120 0 0 0

P,=|0 0 0 1 0 0 OB,=0 0 0240 0 0
0000100 000 0 0 U4 0 0
00000O0T10 000 0 0 0 80
loooo0o0o0 1 00 0 0 0 0 U

Also, we have the matrix representation of conditions as,
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y©)=fL 0 0 0 0 0 0]a=[0]
y) = 2/Vz 1 4/3z 1/2 8115V 1/6ja=[]

and so we solve the equation and obtain the coefficients of the
fractional Taylor polynomials

A=[0 0 -0.181959e—12 0.783892%e—12 1999999 0.301528¢-12 0.210585¢-12]
Hence, for N =6, the approximate solution of Example 2 is
given Ys =0.18e —12x — 0,58 —12x*'2 + 0.99x* + 0.90e —13x"'? + 0.35¢ —13x>

The exact solution of Example 2 is y(x) = x?.

Comparison of numerical results with the exact solution is
shown in Table 2 and plotted the numerical results in Fig.3 for
various N. Figure 4 shows that the exact solution and
approximate solutions is overlapping, Figure 4 shows that the
errors result for various N

-8
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Fig. 3: The numerical results of errors for various N
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Fig. 4: The numerical results of Example2 for various N

Table 2: Numerical result for Example 2

Exact
X Solution N=4 Ne= N=5 N.=5 N=6 N.=6
0.0 0.000000 0.000000 0.000E-0 0.000000 0.000E-0 0.000000 0.000E-0
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0.1 0.010000 0.009998 0.100E-7 0.009999 0.380E-9 0.009999 0.22E-10
0.2 0.040000 0.039999 0.115E-7 0.039999 0.421-E9 0.039999 0.24E-10
0.3 0.090000 0.089999 0.115E-7 0.089999 0.411E-9 0.089999 0.23E-10
0.4 0.160000 0.159999 0.107E-7 0.159999 0.377E-9 0.159999 0.21E-10
0.5 0.250000 0.249999 0.967E-8 0.249999 0.329E-9 0.249999 0.18E-10
0.6 0.360000 0.359999 0.811E-8 0.359999 0.271E-9 0.359999 0.15E-10
0.7 0.490000 0.489999 0.641E-8 0.489999 0.208E-9 0.489999 0.11E-10
0.8 0.640000 0.639999 0.440E-8 0.639999 0.139E-9 0.639999 0.77E-11
0.9 0.810000 0.809999 0.223E-8 0.809999 0.67E-10 0.809999 0.39E-11
1.0 1.000000 1.000000 0.372E-9 1.000000 0.40E-11 0.999999 0.60E-14

6. CONCLUSION

In this study, we present a Taylor collocation method for the
numerical solutions of fractional Pantograph equation. This
method transforms the fractional Pantograph equation into
matrix equations. The desired approximate solutions can be
determined by solving the resulting system, which can be
effectively computed using symbolic computing codes on
Maple 14. Example shows that Taylor collocation method has
been successfully applied to finding the approximate solutions
fractional Pantograph equation. Also the method can be
expanded to solve fractional multi pantograph equation,
fractional integro multi pantograph equation and fractional
system of pantograph equation.
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